Homework Assignment 3

(Due Feb. 23rd at the beginning of the class)

1. [Power Analysis, **10 points**]

C _L =10fF	Power (fall)	Power (rise)
1X	5.15uW	5.20uW
2X	5.31uW	5.37uW
4X	5.47uW	5.58uW
8X	6.04uW	6.13uW
16X	6.62uW	6.53uW

C _L =20fF	Power (fall)	Power (rise)
1X	10.2uW	10.3uW
2X	10.3uW	10.4uW
4X	10.6uW	10.9uW
8X	11.0uW	11.0uW
16X	11.9uW	11.9uW

- 2. [DC Analysis, 10 points]
 - [Submit] V_{IL}, V_{IH}, V_{OL}, V_{OH}, NM_L, and NM_H for the following three cases for the 1x two-input NAND gate with a 10fF load cap:

 \circ Case 1) V_A: 0 \rightarrow V_{DD} and V_B: V_{DD}.

- V_{IL}=410mV, V_{IH}=583mV, V_{OL}=65mV, V_{OH}=958mV, NM_L=345mV, NM_H=375mV.
- \circ Case 2) V_A: V_{DD} and V_B: 0 \rightarrow V_{DD}.
 - $V_{IL}=390mV$, $V_{IH}=595mV$, $V_{OL}=56mV$, $V_{OH}=945mV$, $NM_L=334mV$, $NM_H=350mV$.

 \circ Case 3) V_A: 0 \rightarrow V_{DD} and V_B: 0 \rightarrow V_{DD}.

- $V_{IL}=465mV$, $V_{IH}=644mV$, $V_{OL}=52mV$, $V_{OH}=966mV$, $NM_{L}=413mV$, $NM_{H}=322mV$.
- [Submit] Create a netlist for a 1X two-input NOR gate with a 10fF load cap. Obtain V_{IL}, V_{IH}, V_{OL}, V_{OH}, NM_L, and NM_H for the following three cases:

 \circ Case 1) V_A: 0 \rightarrow V_{DD} and V_B: 0 \rightarrow V_{DD}.

• $V_{IL}=375mV$, $V_{IH}=526mV$, $V_{OL}=29mV$, $V_{OH}=955mV$, $NM_{L}=346mV$, $NM_{H}=429mV$.

 \circ Case 2) V_A: 0 \rightarrow V_{DD} and V_B: 0.

 V_{IL}=440mV, V_{IH}=595mV, V_{OL}=39mV, V_{OH}=946mV, NM_L=401mV, NM_H=351mV. \circ Case 3) V_A: 0 and V_B: 0 \rightarrow V_{DD}.

```
    V<sub>IL</sub>=430mV, V<sub>IH</sub>=642mV, V<sub>OL</sub>=50mV, V<sub>OH</sub>=955mV,
NM<sub>L</sub>=380mV, NM<sub>H</sub>=313mV.
```

- 3. [Elmore Delay, **10 points**]
 - [Submit] 10%-90% rise time of the RC tree in elmore_s.sp (at Vout) obtained by hspice simulation. 10%-90% rise time of the RC tree approximated by the Elmore delay model.

• Spice = **497ps**

 \circ Elmore delay-based rise time = 2.2*(258.5ps) = **568.7ps**

• [Submit] 10%-90% rise time of the RC tree in elmore_m.sp (at Vout1 and Vout2) obtained by hspice simulation. 10%-90% rise time of the RC tree approximated by the Elmore delay model.

 \circ Vout1

- Spice = **896ps**
- Elmore = 2.2*(429ps) = **943.8ps**

0 Vout2

- Spice = **932ps**
- Elmore = 2.2*(488.5ps) = 1074.7ps
- [Submit] In all the above simulations, we use 10ps for the rising transition time at the input. Now, open elmore_ex.sp and change the input rising transition time from 10ps to 100ps. Run hspice again and obtain 10%-90% rise time at Vout. Compare this with the rise time I obtained above (724ps). Is the delay dependent on the input transition time? Obtain 10%-90% rise time for the following input transition times (200ps, 300ps, 400ps, 500ps).

Slew	Rise time
10ps	724ps
100ps	733ps
200ps	743ps
300ps	769ps
400ps	807ps
500ps	850ps

4. [Transient Analysis of Transmission Gates, 10 points]

	Fall time	Rise time
1X	264ps	290ps
2X	173ps	191ps
4X	141ps	153ps

- 5. [Analysis of Pass Transistors, **10 points**]
 - [Submit] Simulate pt_1.sp and obtain 10%-60% rise time. If you use the "measurement tool" in WaveView and set H(%) to 60.00, it will measure 10%-55% rise time, but this is acceptable. Submit the 10%-60% rise time.

0 **1.01ns**

• [**Submit**] Obtain 10%-60% rise time for the following pass transistor sizes: 2X, 4X, 8X.

	Rise time
1X	1.01ns
2X	588ps
4X	361ps
8X	245ps

• [Submit] Add one more pass transistor between the existing pass transistor and the output capacitor. Set the sizes of the two pass transistors (the existing one and the new one) to 1X. Obtain 10%-60% rise time. Upsize them to 2X, 4X, and 8X, and obtain 10%-60% rise time.

	Rise time
1X	2.18ns
2X	1.28ns
4X	802ps
8X	527ps

• [Submit] Add two more pass transistors between the new pass transistor you added above and the output capacitor (so there are total four pass transistors between the output of the inverter and the output capacitor). Obtain 10%-60% rise time for 1X, 2X, 4X, and 8X pass transistor sizes.

	Rise time
1X	3.33ns
2X	1.94ns
4X	1.21ns
8X	809ps