Homework Assignment 3

(Due Feb. $23{ }^{\text {rd }}$ at the beginning of the class)

1. [Power Analysis, $\mathbf{1 0}$ points]

$\mathrm{C}_{\mathrm{L}}=10 \mathrm{fF}$	Power (fall)	Power (rise)
1X	5.15uW	5.20uW
2X	5.31uW	5.37uW
4X	5.47 uW	5.58uW
8X	6.04uW	6.13uW
16X	6.62uW	6.53uW

$\mathrm{C}_{\mathrm{L}}=20 \mathrm{fF}$	Power (fall)	Power (rise)
1 X	$\mathbf{1 0 . 2 \mathbf { u W }}$	$\mathbf{1 0 . 3 \mathbf { u W }}$
2 X	$\mathbf{1 0 . 3 \mathbf { W }}$	$\mathbf{1 0 . 4 \mathbf { W }}$
4 X	$\mathbf{1 0 . 6 u W}$	$10.9 \mathbf{u W}$
8 X	$\mathbf{1 1 . 0 \mathbf { W }}$	$\mathbf{1 1 . 0 \mathbf { W }}$
16 X	$\mathbf{1 1 . 9 \mathbf { W }}$	$\mathbf{1 1 . 9 \mathbf { W }}$

2. [DC Analysis, $\mathbf{1 0}$ points]

- [Submit] $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{NM}_{\mathrm{L}}$, and NM_{H} for the following three cases for the 1x two-input NAND gate with a 10 fF load cap:
- Case 1) $\mathrm{V}_{\mathrm{A}}: 0 \rightarrow \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{B}}: \mathrm{V}_{\mathrm{DD}}$.
- $V_{\mathrm{IL}}=410 \mathrm{mV}, \mathrm{V}_{\mathrm{IH}}=583 \mathrm{mV}, \mathrm{V}_{\mathrm{OL}}=65 \mathrm{mV}, \mathrm{V}_{\mathrm{OH}}=958 \mathrm{mV}$, $\mathrm{NM}_{\mathrm{L}}=345 \mathrm{mV}, \mathrm{NM}_{\mathrm{H}}=375 \mathrm{mV}$.
\circ Case 2) $V_{A}: V_{D D}$ and $V_{B}: 0 \rightarrow V_{D D}$.
- $V_{\text {IL }}=390 \mathrm{mV}, \mathrm{V}_{\mathrm{IH}}=595 \mathrm{mV}, \mathrm{V}_{\mathrm{OL}}=56 \mathrm{mV}, \mathrm{V}_{\mathrm{OH}}=945 \mathrm{mV}$, $\mathrm{NM}_{\mathrm{L}}=334 \mathrm{mV}, \mathrm{NM}_{\mathrm{H}}=350 \mathrm{mV}$.
\circ Case 3) $\mathrm{V}_{\mathrm{A}}: 0 \rightarrow \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{B}}: 0 \rightarrow \mathrm{~V}_{\mathrm{DD}}$.
- $V_{\mathrm{IL}}=465 \mathrm{mV}, \mathrm{V}_{\mathrm{IH}}=644 \mathrm{mV}, \mathrm{V}_{\mathrm{OL}}=52 \mathrm{mV}, \mathrm{V}_{\mathrm{OH}}=966 \mathrm{mV}$, $\mathrm{NM}_{\mathrm{L}}=413 \mathrm{mV}, \mathrm{NM}_{\mathrm{H}}=322 \mathrm{mV}$.
- [Submit] Create a netlist for a 1 X two-input NOR gate with a 10fF load cap. Obtain $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{NM}_{\mathrm{L}}$, and NM_{H} for the following three cases:
- Case 1) $\mathrm{V}_{\mathrm{A}}: 0 \rightarrow \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{B}}: 0 \rightarrow \mathrm{~V}_{\mathrm{DD}}$.
- $V_{\mathrm{IL}}=375 \mathrm{mV}, \mathrm{V}_{\mathrm{IH}}=526 \mathrm{mV}, \mathrm{V}_{\mathrm{OL}}=29 \mathrm{mV}, \mathrm{V}_{\mathrm{OH}}=\mathbf{9 5 5 m V}$, $\mathrm{NM}_{\mathrm{L}}=346 \mathrm{mV}, \mathrm{NM}_{\mathrm{H}}=429 \mathrm{mV}$.
\circ Case 2) $\mathrm{V}_{\mathrm{A}}: 0 \rightarrow \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{B}}: 0$.
- $V_{\mathrm{IL}}=440 \mathrm{mV}, \mathrm{V}_{\mathrm{IH}}=595 \mathrm{mV}, \mathrm{V}_{\mathrm{OL}}=39 \mathrm{mV}, \mathrm{V}_{\mathrm{OH}}=946 \mathrm{mV}$, $\mathrm{NM}_{\mathrm{L}}=401 \mathrm{mV}, \mathrm{NM}_{\mathrm{H}}=351 \mathrm{mV}$.
- Case 3) $\mathrm{V}_{\mathrm{A}}: 0$ and $\mathrm{V}_{\mathrm{B}}: 0 \rightarrow \mathrm{~V}_{\mathrm{DD}}$.
- $V_{\mathrm{IL}}=430 \mathrm{mV}, \mathrm{V}_{\mathrm{IH}}=642 \mathrm{mV}, \mathrm{V}_{\mathrm{OL}}=50 \mathrm{mV}, \mathrm{V}_{\mathrm{OH}}=955 \mathrm{mV}$, $\mathrm{NM}_{\mathrm{L}}=380 \mathrm{mV}, \mathrm{NM}_{\mathrm{H}}=313 \mathrm{mV}$.

3. [Elmore Delay, $\mathbf{1 0}$ points]

- [Submit] 10\%-90\% rise time of the RC tree in elmore_s.sp (at Vout) obtained by hspice simulation. $10 \%-90 \%$ rise time of the RC tree approximated by the Elmore delay model.
- Spice $=497$ ps
- Elmore delay-based rise time $=2.2^{*}(258.5 \mathrm{ps})=\mathbf{5 6 8 . 7} \mathbf{p s}$
- [Submit] 10\%-90\% rise time of the RC tree in elmore_m.sp (at Vout1 and Vout2) obtained by hspice simulation. $10 \%-90 \%$ rise time of the RC tree approximated by the Elmore delay model.
- Vout 1
- Spice $=896$ ps
- Elmore $=2.2^{*}(429 \mathrm{ps})=943.8 \mathrm{ps}$
- Vout2
- Spice $=932$ ps
- Elmore $=2.2^{*}(488.5 \mathrm{ps})=1074.7 \mathrm{ps}$
- [Submit] In all the above simulations, we use 10 ps for the rising transition time at the input. Now, open elmore_ex.sp and change the input rising transition time from 10ps to 100 ps. Run hspice again and obtain $10 \%-90 \%$ rise time at Vout. Compare this with the rise time I obtained above (724ps). Is the delay dependent on the input transition time? Obtain $10 \%-90 \%$ rise time for the following input transition times (200ps, 300ps, 400ps, 500ps).

Slew	Rise time
10 ps	$\mathbf{7 2 4 p s}$
100 ps	$\mathbf{7 3 3 p s}$
200 ps	$\mathbf{7 4 3 p s}$
300 ps	$\mathbf{7 6 9 p s}$
400 ps	$\mathbf{8 0 7} \mathrm{ps}$
500 ps	$\mathbf{8 5 0 p s}$

4. [Transient Analysis of Transmission Gates, $\mathbf{1 0}$ points]

	Fall time	Rise time
1 X	$\mathbf{2 6 4 p s}$	290ps
2 X	$\mathbf{1 7 3 p s}$	$\mathbf{1 9 1} \mathrm{ps}$
4 X	$\mathbf{1 4 1} \mathrm{ps}$	$\mathbf{1 5 3 p s}$

5. [Analysis of Pass Transistors, 10 points]

- [Submit] Simulate pt_1.sp and obtain $10 \%-60 \%$ rise time. If you use the "measurement tool" in WaveView and set $\mathrm{H}(\%)$ to 60.00 , it will measure 10% 55% rise time, but this is acceptable. Submit the $10 \%-60 \%$ rise time.
1.01ns
- [Submit] Obtain $10 \%-60 \%$ rise time for the following pass transistor sizes: 2 X , 4X, 8X.

	Rise time
1 X	$\mathbf{1 . 0 1 \mathrm { ns }}$
2 X	$\mathbf{5 8 8 p s}$
4 X	361 ps
8 X	245 ps

- [Submit] Add one more pass transistor between the existing pass transistor and the output capacitor. Set the sizes of the two pass transistors (the existing one and the new one) to 1 X . Obtain $10 \%-60 \%$ rise time. Upsize them to $2 \mathrm{X}, 4 \mathrm{X}$, and 8 X , and obtain $10 \%-60 \%$ rise time.

	Rise time
1 X	$\mathbf{2 . 1 8 n s}$
2 X	$\mathbf{1 . 2 8 n s}$
4 X	$\mathbf{8 0 2} \mathrm{ps}$
8 X	$\mathbf{5 2 7} \mathrm{ps}$

- [Submit] Add two more pass transistors between the new pass transistor you added above and the output capacitor (so there are total four pass transistors between the output of the inverter and the output capacitor). Obtain $10 \%-60 \%$ rise time for $1 \mathrm{X}, 2 \mathrm{X}, 4 \mathrm{X}$, and 8 X pass transistor sizes.

	Rise time
1 X	3.33 ns
2 X	1.94 ns
4 X	1.21 ns
8 X	809 ps

