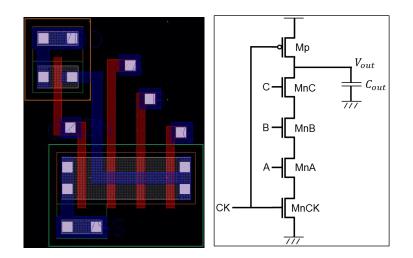
Homework Assignment 4


(Due Mar. 4th at the beginning of the class)

- 0. Preparation for homework 4
 - Download the following file into your working directory.
 o wget http://www.eecs.wsu.edu/~ee434/Homework/hw04.tar.gz
 - Unzip it.

•

o tar xvzf hw04.tar.gz

- Source synopsys.sh o source synopsys.sh
- 1. [Pseudo-nMOS, 20 points]
 - Design a pseudo-nMOS inverter for the following design spec:
 - \circ Simulate the inverter with the following load cap and input signal
 - Load cap: 10fF
 - The fall & rise transition time of the input signal: 10ps
 - \circ Spec
 - Rise time < 100ps
 - Fall time < 100ps
 - $V_{OL} < 100 mV$
 - $V_{OH} > 900 mV$
 - $NM_L > 150mV$
 - $NM_H > 300mV$
 - [Submit]
 - \circ The size of the NMOS and PMOS transistors
 - o Rise time, fall time
 - \circ V_{IH}, V_{IL}, V_{OH}, V_{OL}, NM_L, NM_H
 - o Average power for falling and rising transitions
- 2. [Dynamic CMOS, 20 points]
 - We design a three-input NAND gate using the dynamic CMOS design style.
 - Open myNAND3_pex.cdl and see the netlist of the NAND gate. I drew a layout for the NAND gate and extracted parasitic RC. myNAND3_pex.cdl includes all the parasitic RC.
 - Open myNAND3_simul.sp and see the netlist. It is used to simulate the NAND gate.
 - The followings show the layout and schematic of the NAND gate.

- Add four signal waveforms (CK, A, B, C) to simulate charge sharing.
 - o Load cap: 10fF
 - $\circ CK: V_{DD} \to 0 \to V_{DD}$
 - \circ When CK is V_{DD} (before it goes down to 0), set A, B, and C to V_{DD} so that it can fully discharge the output capacitor and all the parasitic capacitors.
 - \circ Then, set A, B, and C to 0 before CK goes to 0.
 - \circ Then, CK goes to 0 and the gate will charge the output capacitor.
 - \circ Then, CK goes to V_{DD} .
 - \circ Then, set C to V_{DD} so that charge sharing can happen between the output capacitor and the parasitic capacitor between MnC and MnB.
 - \circ Perform the same simulation, but set both B and C to V_{DD} so that charge sharing can happen among the output capacitor, the parasitic capacitors between MnC and MnB and between MnB and MnA.
- [Submit]

 \circ Vout when only C is set to V_{DD} for C_{out} =10fF, 9fF, ..., 1fF.

- [Submit]
 - \circ Vout when both C and B are set to V_{DD} for C_{out} =10fF, 9fF, ..., 1fF.

3. [Synthesis, 20 points]

- In this problem, we will synthesize a netlist for a few gates.
- Make sure you have the following files in your working directory.
 - NangateOpenCellLibrary_typical_ecsm.db
 nand8.v
- Source synopsys.sh.
- Run Design Compiler (DC).
 - o design_vision _no_gui
- In DC, run the following commands.
 - o set link_library {NangateOpenCellLibrary_typical_ecsm.db}

o set target_library {NangateOpenCellLibrary_typical_ecsm.db}
o read_file -format verilog {nand8.v}
o compile -exact_map
o write -format verilog -output nand8_mapped.v
o exit

- The two "set" statements set up target libraries.
- "read_file" reads HDL source codes.
- "compile" compiles (synthesizes) the source codes.
- "write" writes the synthesized code into the file specified after "-output".
- Open "nand8.v" and see the function of the module.
- Open "nand8_mapped.v" and see the function of the module. Are they equal?
- [Submit] Draw a schematic for the netlist of "nand8_mapped.v".
- Implement a 20-input nand gate by modifying "nand8.v" and synthesize it.
- [Submit] Draw a schematic for the netlist of the synthesized 20-input nand gate.
- Implement a full adder and synthesize it.
 - o Primary inputs: A, B, CI
 - o Primary outputs: S, CO
 - Use ^, &&, and || for XOR, logical AND, and logical OR operations in Verilog.
 - Use parentheses to prioritize the operations.
 - \circ Use two assignments, one for S and the other for CO.
- [Submit] Draw a schematic for the netlist of the synthesized full adder.