Homework Assignment 8

(Due Apr. $2^{\text {nd }}$ at the beginning of the class)

1. [Timing Analysis, $\mathbf{1 5}$ points] The following shows the delay of each net and cell. Compute arrival time at each node ($\mathrm{n} 1 \sim \mathrm{n} 12$, Out $0 \sim$ Out 3) shown below. Arrival time at each input pin is zero.

	Arrival time		Arrival time
n 1	140 ps	n 9	557 ps
n 2	101 ps	n 10	581 ps
n 3	118 ps	n 11	394 ps
n 4	94 ps	n 12	501 ps
n 5	370 ps	Out 0	592 ps
n 6	376 ps	Out 1	616 ps
n 7	445 ps	Out 2	429 ps
n 8	266 ps	Out 3	536 ps

2. [Timing Analysis, $\mathbf{1 5}$ points] The following shows the delay of each net and cell and the required time at each output. Compute required time at each node ($\mathrm{n} 1 \sim \mathrm{n} 12$, In $0 \sim \operatorname{In} 3$).

	Required time		Required time
n 1	374 ps	n 9	865 ps
n 2	371 ps	n 10	815 ps
n 3	362 ps	n 11	895 ps
n 4	358 ps	n 12	745 ps
n 5	604 ps	In 0	234 ps
n 6	620 ps	In 1	244 ps
n 7	679 ps	In 2	237 ps
n 8	670 ps	In 3	246 ps

3. [Timing Analysis and Buffer Insertion, $\mathbf{6 0}$ points] A source drives a sink as follows:

The length of the wire is 3000 um . The following shows the characteristics of the source, the sink, and the wire:

- Source
o Output resistance: $1 \mathrm{k} \Omega$
o Cell delay: 50ps
- Sink
o Input capacitance: 10fF
o Cell delay: 100ps
- Wire
o Unit resistance: 3Ω /um
o Unit capacitance: $0.2 \mathrm{fF} / \mathrm{um}$

1) The arrival time at the input of the source is 0 . Compute arrival time at the output of the sink.

- Total wire resistance: $R_{w}=3 * 3000=9 k \Omega$
- Total wire capacitance: $C_{w}=0.2 * 3000=600 f F$
- Delay from the output of the source to the input of the sink: $\tau=1 \mathrm{k} \Omega$.

$$
(600 f F+10 f F)+9 k \Omega \cdot 10 \mathrm{fF}+0.5 \cdot 9 \mathrm{k} \Omega \cdot 600 \mathrm{fF}=610 \mathrm{ps}+90 \mathrm{ps}+
$$ $2700 \mathrm{ps}=3400 \mathrm{ps}$

- AT at the output of the source: 50ps
- AT at the input of the sink: $50 \mathrm{ps}+3400 \mathrm{ps}=3450 \mathrm{ps}$
- AT at the output of the sink: 3450ps $+100 \mathrm{ps}=3550 \mathrm{ps}$

2) The required time at the output of the sink is 2500 ps . Compute required time at the input of the sink, at the output of the source, and at the input of the source.

- RT at the input of the sink: $2500 \mathrm{ps}-100 \mathrm{ps}=2400 \mathrm{ps}$
- RT at the output of the source: 2400ps $-3400 \mathrm{ps}=-1000 \mathrm{ps}$
- RT at the input of the source: $-1000 \mathrm{ps}-50 \mathrm{ps}=-1050 \mathrm{ps}$

3) Compute slack at the output of the sink, at the input of the sink, at the output of the source, and at the input of the source.

- Slack at the output of the sink: 2500ps $-3550 \mathrm{ps}=-1050 \mathrm{ps}$
- Slack at the input of the sink: $2400 \mathrm{ps}-3450 \mathrm{ps}=-1050 \mathrm{ps}$
- Slack at the output of the source: $-1000 \mathrm{ps}-50 \mathrm{ps}=-1050 \mathrm{ps}$
- Slack at the input of the source: $-1050 \mathrm{ps}-0=-1050 \mathrm{ps}$

4) Let's insert a buffer into the net. The following shows the characteristics of the buffer:
a. Output resistance: 200Ω
b. Input capacitance: 20fF
c. Cell delay: 50ps

Find an optimal location for this buffer.
Suppose we insert a buffer at the following location:
Length: 3000 um

Then, the delay is computed as follows:
R_{1} : Output resistance of the source $(1 \mathrm{k} \Omega)$
R_{2} : Output resistance of the buffer (200Ω)
C_{2} : Input capacitance of the buffer (20fF)
C_{3} : Input capacitance of the sink (10fF)
L: The total wire length (3000um)
d_{2} : Cell delay of the buffer (50ps)

1. Delay of the first segment

$$
\tau_{1}=R_{1} \cdot\left(C_{w} \cdot \frac{S}{L}+C_{2}\right)+\left(R_{w} \cdot \frac{S}{L}\right) \cdot C_{2}+\frac{1}{2}\left(R_{w} \cdot \frac{S}{L}\right)\left(C_{w} \cdot \frac{S}{L}\right)
$$

2. Delay of the second segment

$$
\tau_{2}=R_{2} \cdot\left(C_{w} \cdot \frac{L-s}{L}+C_{3}\right)+\left(R_{w} \cdot \frac{L-s}{L}\right) \cdot C_{3}+\frac{1}{2}\left(R_{w} \cdot \frac{L-s}{L}\right)\left(C_{w} \cdot \frac{L-s}{L}\right)
$$

3. Total delay

$$
\begin{gathered}
\tau=\tau_{1}+d_{2}+\tau_{2} \\
\frac{d \tau}{d s}=\left(\frac{R_{1} C_{w}}{L}+\frac{R_{w} C_{2}}{L}+\frac{R_{w} C_{w}}{L^{2}} s\right)+\left(-\frac{R_{2} C_{w}}{L}-\frac{R_{w} C_{3}}{L}+\frac{R_{w} C_{w}}{L^{2}}(s-L)\right)=0 \\
\\
\rightarrow s\left(2 \frac{R_{w} C_{w}}{L^{2}}\right)=\left(\frac{-R_{1} C_{w}-R_{w} C_{2}+R_{2} C_{w}+R_{w} C_{3}+R_{w} C_{w}}{L}\right) \\
s=\frac{-R_{1} C_{w}-R_{w} C_{2}+R_{2} C_{w}+R_{w} C_{3}+R_{w} C_{w}}{2 R_{w} C_{w}} \cdot L \\
=\frac{-600-180+120+90+5400}{10800} \cdot 3000 u m=1341.67 \mathrm{um}
\end{gathered}
$$

5) Repeat 1) after buffer insertion.

$$
\begin{gathered}
\tau_{1}=268.33 p s+20 p s+80.5 p s+540.02 p s=908.85 p s \\
\tau_{2}=66.33 p s+2 p s+49.75 p s+825.01 p s=943.09 p s
\end{gathered}
$$

- AT at the output of the source: 50ps
- AT at the input of the buffer: $50 \mathrm{ps}+908.85 \mathrm{ps}=958.85 \mathrm{ps}$
- AT at the output of the buffer: $958.85 \mathrm{ps}+50 \mathrm{ps}=1008.85 \mathrm{ps}$
- AT at the input of the sink: 1008.85ps $+943.09 \mathrm{ps}=1951.94 \mathrm{ps}$
- AT at the output of the sink: $1951.94 \mathrm{ps}+100 \mathrm{ps}=2051.94 \mathrm{ps}$

6) Repeat 3) after buffer insertion.

- RT at the output of the sink: 2500ps
- \quad RT at the input of the sink: 2500ps $-100 \mathrm{ps}=2400 \mathrm{ps}$
- RT at the output of the buffer: 2400ps $-943.09 \mathrm{ps}=1456.91 \mathrm{ps}$
- RT at the input of the buffer: $1456.91 \mathrm{ps}-50 \mathrm{ps}=1406.91 \mathrm{ps}$
- RT at the output of the source: $1406.91 \mathrm{ps}-908.85=498.06 \mathrm{ps}$
- RT at the input of the source: $498.06 \mathrm{ps}-50 \mathrm{ps}=448.06 \mathrm{ps}$
- \quad Slack at the output of the sink: 2500ps $-2051.94 \mathrm{ps}=+448.06 \mathrm{ps}$
- Slack at the input of the sink: $2400 \mathrm{ps}-1951.94 \mathrm{ps}=+448.06 \mathrm{ps}$
- Slack at the output of the buffer: $1456.91 \mathrm{ps}-1008.85=+448.06 \mathrm{ps}$
- \quad Slack at the input of the buffer: $1406.91 \mathrm{ps}-958.85 \mathrm{ps}=+448.06 \mathrm{ps}$
- Slack at the output of the source: $498.06 \mathrm{ps}-50 \mathrm{ps}=+448.06 \mathrm{ps}$
- Slack at the input of the source: $448.06 \mathrm{ps}-0=+448.06 \mathrm{ps}$

