Homework Assignment 9

(Due May 3 ${ }^{\text {rd }}$, 12pm)

1. [Carry Select Adder, $\mathbf{4 0}$ points] In the lecture note, we used k-bit adders to design an N bit carry select adder. However, we can use variable-length adders instead of fixed-length adders. The following shows the specification of logic blocks we are going to use:

- N: 64
- Delay of a full adder: $\Delta_{F A}=100 \mathrm{ps}$
- Delay of a k-bit ripple carry adder (RCA): $k \cdot \Delta_{F A}$
- Delay of a k-bit MUX (when $k \geq 10$) and a CO logic: $\varepsilon=150 p s$
- Architecture: We split N into four groups as follows:

Since N is 64 , the above architecture should satisfy the following equation:

$$
k_{1}+k_{2}+k_{3}+k_{4}=64
$$

We also assume that $k_{i} \geq 10(i=1 \sim 4)$.

1) Represent delay of the 64 -bit adder shown above as a function of $k_{1}, k_{2}, k_{3}, k_{4}$, and the $\operatorname{MAX}(\mathrm{a}, \mathrm{b})$ function where " $\operatorname{MAX}(\mathrm{a}, \mathrm{b})=\mathrm{a}$ if $(\mathrm{a}>\mathrm{b})$ or b (if $\mathrm{b}>\mathrm{a}$)".

- Delay of the k_{1}-bit RCA: $d_{1}=k_{1} \cdot \Delta_{F A}=100 k_{1}$
- Delay of the k_{2}-bit RCA: $d_{2}=k_{2} \cdot \Delta_{F A}=100 k_{2}$
- Delay of the k_{3}-bit RCA: $d_{3}=k_{3} \cdot \Delta_{F A}=100 k_{3}$
- Delay of the k_{4}-bit RCA: $d_{4}=k_{4} \cdot \Delta_{F A}=100 k_{4}$
- Arrival time (AT) at the output of the k_{2}-bit MUX and the first Carry-Out logic: $\mathrm{d}_{5}=\operatorname{MAX}\left(d_{1}, d_{2}\right)+\varepsilon=150+\operatorname{MAX}\left(100 k_{1}, 100 k_{2}\right)$
- AT at the output of the k_{3}-bit MUX and the second Carry-Out logic: $\mathrm{d}_{6}=$ $\operatorname{MAX}\left(d_{3}, d_{5}\right)+\varepsilon=150+\operatorname{MAX}\left\{100 k_{3}, 150+\operatorname{MAX}\left(100 k_{1}, 100 k_{2}\right)\right\}$
- AT at the output of the k_{4}-bit MUX and the third Carry-Out logic: $\mathrm{d}_{7}=\mathrm{MAX}\left(d_{4}\right.$, $\left.d_{6}\right)+\varepsilon=150+\operatorname{MAX}\left[100 k_{4}, 150+\operatorname{MAX}\left\{100 k_{3}, 150+\operatorname{MAX}\left(100 k_{1}, 100 k_{2}\right)\right\}\right]$

2) Compute the total delay when $k_{1}=k_{2}=k_{3}=k_{4}$.

- $k_{1}=k_{2}=k_{3}=k_{4}=16$.
- $d_{7}=150+\operatorname{MAX}[1600,150+\operatorname{MAX}\{1600,150+\operatorname{MAX}(1600,1600)\}]$
$=150+\operatorname{MAX}[1600,150+\operatorname{MAX}\{1600,150+1600\}]$
$=150+M A X[1600,150+1750]$
$=150+1900=2050 p s$

3) Compute k_{1}, k_{2}, k_{3}, and k_{4} minimizing the delay and show the minimum delay. (Hint: (1) Use your intuition and some math. (2) If you want, you can program it to find $k_{1}, k_{2}, k_{3}, k_{4}$. In this case, you should show your program in your report). 1) We will first show that $k_{1}=k_{2}$ will give us an optimal delay. Suppose $\operatorname{MAX}\left(100 k_{1}, 100 k_{2}\right)$ affects the final delay. Then, $k_{1}=k_{2}$ will minimize $\operatorname{MAX}\left(100 k_{1}, 100 k_{2}\right)$, which will minimize the final delay.

$$
k_{1}=k_{2} \text { leads to } d_{7}=150+\operatorname{MAX}\left[100 k_{4}, 150+\operatorname{MAX}\left\{100 k_{3}, 150+100 k_{1}\right\}\right] .
$$

By the same reason, $100 k_{3}=150+100 k_{1}$ will give us an optimal delay. From this, we get $k_{3}=k_{1}+1.5$. However, k_{3} should be an integer. If $k_{3} \leq k_{1}+1$, we get $d_{7}=150+\operatorname{MAX}\left[100 k_{4}, 150+150+100 k_{1}\right]$. However, reducing k_{3} will increase k_{4}, so let's set k_{3} to $k_{1}+1$.
$d_{7}=150+\operatorname{MAX}\left[100 k_{4}, 300+100 k_{1}\right]$. Setting $100 k_{4}=300+100 k_{1}$ will minimize $d_{7} \rightarrow k_{4}=3+k_{1}$

From $k_{1}+k_{2}+k_{3}+k_{4}=64$, we get $k_{1}+k_{1}+\left(k_{1}+1\right)+\left(k_{1}+3\right)=64 \rightarrow$ $k_{1}=15 . k_{2}=15 . k_{3}=16 . k_{4}=18$.

Delay $=150+$ MAX $[1800,150+$ MAX $\{1600,150+\operatorname{MAX}(1500,1500)\}]=1950 \mathrm{ps}$.
2) We can also use a computer program to simulate this. The following C/C++ code simulates it.
\#include <stdio.h>
int max (int a, int b) \{
if ($\mathrm{a}>\mathrm{b}$)
return a;
return b;
\}

```
    int main () {
        int min_delay = 100000000; // min. delay achieved
        for (int k4 = 10 ; k4 <= 34; k4++ ) {
        for ( int k3 = 10 ; k3 <= (44-k4) ; k3++ ) {
            for (int k2 = 10; k2 <= (54-k4-k3) ; k2++ ) {
                int k1 = 64 - (k4 + k3 + k2);
                int delay = 150+max(100*k4, 150+max(100*k3, 150+max(100*k1,
100*k2)));
                    if (delay <= min_delay ) {
                        printf ("(k4, k3, k2, k1, d) = (%d, %d, %d, %d, %d)\n", k4, k3, k2,
k1, delay);
                min_delay = delay;
            }
            }
        }
    }
    return 0;
}
```

You can also download the following file:
http://eecs.wsu.edu/~ee434/Homework/add.cpp
and compile it as follows (in the ee434-466 server):
g++ add.cpp
which will generate a.out in your directory. Then, run it to see its usage:
> ./a.out
The following shows the usage:
./a \{delta_FA\} \{delta_MUX\}
Run the program for the above problem as follows:
./a.out 100150
which gives the following result (format: k 4 k 3 k 2 k 1 total delay in ps): delta_FA: 100 (ps) delta_MUX: 150 (ps) 181615151950
You can also try some different combinations as follows:
./a.out 100200
which gives the following result:
$17171515 \quad 2100$
181615152100

18171415	2100
18171514	2100
19151515	2100
19161415	2100
19161514	2100
19171315	2100
19171414	2100
19171513	2100

2. [Prefix Adder, $\mathbf{4 0}$ points] Complete the following prefix adders by inserting merging blocks and drawing arrows (try to minimize the number of merging blocks inserted).
1)

2)

