
Homework Assignment 9

(Due May 3rd, 12pm)

1. [Carry Select Adder, 40 points] In the lecture note, we used k-bit adders to design an N-
bit carry select adder. However, we can use variable-length adders instead of fixed-length
adders. The following shows the specification of logic blocks we are going to use:
• N: 64
• Delay of a full adder: ∆𝐹𝐹𝐹𝐹= 100𝑝𝑝𝑝𝑝
• Delay of a k-bit ripple carry adder (RCA): 𝑘𝑘 ∙ ∆𝐹𝐹𝐹𝐹
• Delay of a k-bit MUX (when 𝑘𝑘 ≥ 10) and a CO logic: 𝜀𝜀 = 150𝑝𝑝𝑝𝑝
• Architecture: We split N into four groups as follows:

 Since N is 64, the above architecture should satisfy the following equation:

𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3 + 𝑘𝑘4 = 64
We also assume that 𝑘𝑘𝑖𝑖 ≥ 10 (𝑖𝑖 = 1~4).

1) Represent delay of the 64-bit adder shown above as a function of 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3,𝑘𝑘4, and

the MAX(a,b) function where “MAX(a, b) = a if (a>b) or b (if b>a)”.
• Delay of the k1-bit RCA: 𝑑𝑑1 = 𝑘𝑘1 ∙ ∆𝐹𝐹𝐹𝐹= 100𝑘𝑘1
• Delay of the k2-bit RCA: 𝑑𝑑2 = 𝑘𝑘2 ∙ ∆𝐹𝐹𝐹𝐹= 100𝑘𝑘2
• Delay of the k3-bit RCA: 𝑑𝑑3 = 𝑘𝑘3 ∙ ∆𝐹𝐹𝐹𝐹= 100𝑘𝑘3
• Delay of the k4-bit RCA: 𝑑𝑑4 = 𝑘𝑘4 ∙ ∆𝐹𝐹𝐹𝐹= 100𝑘𝑘4
• Arrival time (AT) at the output of the k2-bit MUX and the first Carry-Out logic:

d5 = MAX(𝑑𝑑1, 𝑑𝑑2) + 𝜀𝜀 = 150 + MAX(100𝑘𝑘1, 100𝑘𝑘2)
• AT at the output of the k3-bit MUX and the second Carry-Out logic: d6 =

MAX(𝑑𝑑3, 𝑑𝑑5) + 𝜀𝜀 = 150 + MAX{100𝑘𝑘3, 150+MAX(100𝑘𝑘1, 100𝑘𝑘2)}
• AT at the output of the k4-bit MUX and the third Carry-Out logic: d7 = MAX(𝑑𝑑4,

𝑑𝑑6) + 𝜀𝜀 = 150 + MAX[100𝑘𝑘4, 150 + MAX{100𝑘𝑘3, 150+MAX(100𝑘𝑘1, 100𝑘𝑘2)}]

2) Compute the total delay when 𝑘𝑘1 = 𝑘𝑘2 = 𝑘𝑘3 = 𝑘𝑘4.
• 𝑘𝑘1 = 𝑘𝑘2 = 𝑘𝑘3 = 𝑘𝑘4 = 16.
• 𝑑𝑑7 = 150 + 𝑀𝑀𝑀𝑀𝑀𝑀[1600, 150 + 𝑀𝑀𝑀𝑀𝑀𝑀{1600, 150 + 𝑀𝑀𝑀𝑀𝑀𝑀(1600, 1600)}]

 = 150 + 𝑀𝑀𝑀𝑀𝑀𝑀[1600, 150 + 𝑀𝑀𝑀𝑀𝑀𝑀{1600, 150 + 1600}]
 = 150 + 𝑀𝑀𝑀𝑀𝑀𝑀[1600, 150 + 1750]
 = 150 + 1900 = 2050𝑝𝑝𝑝𝑝

3) Compute 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3,𝑎𝑎𝑎𝑎𝑑𝑑 𝑘𝑘4 minimizing the delay and show the minimum delay.

(Hint: (1) Use your intuition and some math. (2) If you want, you can program it to
find 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3,𝑘𝑘4. In this case, you should show your program in your report).

1) We will first show that 𝑘𝑘1 = 𝑘𝑘2 will give us an optimal delay. Suppose
MAX(100𝑘𝑘1, 100𝑘𝑘2) affects the final delay. Then, 𝑘𝑘1 = 𝑘𝑘2 will minimize
MAX(100𝑘𝑘1, 100𝑘𝑘2), which will minimize the final delay.

𝑘𝑘1 = 𝑘𝑘2 leads to 𝑑𝑑7 = 150 + MAX[100𝑘𝑘4, 150 + MAX{100𝑘𝑘3, 150 + 100𝑘𝑘1}].

By the same reason, 100𝑘𝑘3 = 150 + 100𝑘𝑘1 will give us an optimal delay. From
this, we get 𝑘𝑘3 = 𝑘𝑘1 + 1.5. However, 𝑘𝑘3 should be an integer. If 𝑘𝑘3 ≤ 𝑘𝑘1 + 1, we
get 𝑑𝑑7 = 150 + MAX[100𝑘𝑘4, 150 + 150 + 100𝑘𝑘1]. However, reducing 𝑘𝑘3 will
increase 𝑘𝑘4, so let’s set 𝑘𝑘3 to 𝑘𝑘1 + 1.

𝑑𝑑7 = 150 + MAX[100𝑘𝑘4, 300 + 100𝑘𝑘1]. Setting 100𝑘𝑘4 = 300 + 100𝑘𝑘1 will
minimize 𝑑𝑑7 → 𝑘𝑘4 = 3 + 𝑘𝑘1

From 𝑘𝑘1 + 𝑘𝑘2 + 𝑘𝑘3 + 𝑘𝑘4 = 64, we get 𝑘𝑘1 + 𝑘𝑘1 + (𝑘𝑘1 + 1) + (𝑘𝑘1 + 3) = 64 →
𝑘𝑘1 = 15. 𝑘𝑘2 = 15. 𝑘𝑘3 = 16. 𝑘𝑘4 = 18.

Delay = 150+MAX[1800, 150+MAX{1600, 150+MAX(1500, 1500)}]=1950ps.

2) We can also use a computer program to simulate this. The following C/C++
code simulates it.

 #include <stdio.h>

 int max (int a, int b) {
 if (a > b)

 return a;
 return b;
 }

 int main () {
 int min_delay = 100000000; // min. delay achieved

 for (int k4 = 10 ; k4 <= 34 ; k4++) {
 for (int k3 = 10 ; k3 <= (44–k4) ; k3++) {
 for (int k2 = 10 ; k2 <= (54–k4–k3) ; k2++) {
 int k1 = 64 – (k4 + k3 + k2);
 int delay = 150+max(100*k4, 150+max(100*k3, 150+max(100*k1,
100*k2)));

 if (delay <= min_delay) {
 printf (“(k4, k3, k2, k1, d) = (%d, %d, %d, %d, %d)\n”, k4, k3, k2,
k1, delay);
 min_delay = delay;
 }
 }
 }
 }
 return 0;
 }

 You can also download the following file:
 http://eecs.wsu.edu/~ee434/Homework/add.cpp
 and compile it as follows (in the ee434-466 server):
 g++ add.cpp
 which will generate a.out in your directory. Then, run it to see its usage:
 > ./a.out
 The following shows the usage:
 ./a {delta_FA} {delta_MUX}
 Run the program for the above problem as follows:
 ./a.out 100 150
 which gives the following result (format: k4 k3 k2 k1 total delay in ps):
 delta_FA: 100 (ps) delta_MUX: 150 (ps)
 18 16 15 15 1950
 You can also try some different combinations as follows:
 ./a.out 100 200
 which gives the following result:

 17 17 15 15 2100
 18 16 15 15 2100

 18 17 14 15 2100
 18 17 15 14 2100
 19 15 15 15 2100
 19 16 14 15 2100
 19 16 15 14 2100
 19 17 13 15 2100
 19 17 14 14 2100
 19 17 15 13 2100

2. [Prefix Adder, 40 points] Complete the following prefix adders by inserting merging
blocks and drawing arrows (try to minimize the number of merging blocks inserted).

1)

2)

