Homework Assignment 9

(Due May 3 ${ }^{\text {rd }}$, 12pm)

1. [Carry Select Adder, $\mathbf{4 0}$ points] In the lecture note, we used k-bit adders to design an N bit carry select adder. However, we can use variable-length adders instead of fixed-length adders. The following shows the specification of logic blocks we are going to use:

- N: 64
- Delay of a full adder: $\Delta_{F A}=100 \mathrm{ps}$
- Delay of a k-bit ripple carry adder (RCA): $k \cdot \Delta_{F A}$
- Delay of a k-bit MUX (when $k \geq 10$) and a CO logic: $\varepsilon=150 p s$
- Architecture: We split N into four groups as follows:

Since N is 64 , the above architecture should satisfy the following equation:

$$
k_{1}+k_{2}+k_{3}+k_{4}=64
$$

We also assume that $k_{i} \geq 10(i=1 \sim 4)$.

1) Represent delay of the 64-bit adder shown above as a function of $k_{1}, k_{2}, k_{3}, k_{4}$, and the $\operatorname{MAX}(a, b)$ function where " $\operatorname{MAX}(a, b)=a$ if $(a>b)$ or b (if $b>a)$ ".
2) Compute the total delay when $k_{1}=k_{2}=k_{3}=k_{4}$.
3) Compute k_{1}, k_{2}, k_{3}, and k_{4} minimizing the delay and show the minimum delay. (Hint: (1) Use your intuition and some math. (2) If you want, you can program it to find $k_{1}, k_{2}, k_{3}, k_{4}$. In this case, you should show your program in your report).
2. [Prefix Adder, $\mathbf{4 0}$ points] Complete the following prefix adders by inserting merging blocks and drawing arrows (try to minimize the number of merging blocks inserted).
1)

2)

