Homework Assignment 9

(Due May 3rd, 12pm)

- 1. [Carry Select Adder, **40 points**] In the lecture note, we used k-bit adders to design an Nbit carry select adder. However, we can use variable-length adders instead of fixed-length adders. The following shows the specification of logic blocks we are going to use:
 - N: 64
 - Delay of a full adder: $\Delta_{FA} = 100 ps$
 - Delay of a k-bit ripple carry adder (RCA): $k \cdot \Delta_{FA}$
 - Delay of a k-bit MUX (when $k \ge 10$) and a CO logic: $\varepsilon = 150ps$
 - Architecture: We split N into four groups as follows:

Since N is 64, the above architecture should satisfy the following equation:

 $k_1 + k_2 + k_3 + k_4 = 64$ We also assume that $k_i \ge 10$ $(i = 1 \sim 4)$.

- 1) Represent delay of the 64-bit adder shown above as a function of k_1, k_2, k_3, k_4 , and the MAX(a,b) function where "MAX(a, b) = a if (a>b) or b (if b>a)".
- 2) Compute the total delay when $k_1 = k_2 = k_3 = k_4$.
- 3) Compute k₁, k₂, k₃, and k₄ minimizing the delay and show the minimum delay.
 (Hint: (1) Use your intuition and some math. (2) If you want, you can program it to find k₁, k₂, k₃, k₄. In this case, you should show your program in your report).

2. [Prefix Adder, **40 points**] Complete the following prefix adders by inserting merging blocks and drawing arrows (try to minimize the number of merging blocks inserted).

1)

