EE434 ASIC & Digital Systems

Project

Design of a High-Speed Low-Power 32-Bit Adder

Spring 2015 Dae Hyun Kim daehyun@eecs.wsu.edu

Project

• Due May 1 (firm)

High-Speed 32-Bit Adder

High-Speed Low-Power 32-Bit Adder

Design Procedure

- 1. Verilog coding (hslp32add.v) \implies This will be provided.
- 2. Automatic P&R and optimization (layout, hslp32add_opt.v)
- 3. Export (hslp32add.gds)
- 4. Import into Virtuoso.
- 5. Add sleep transistors. Modify the netlist. hslp32add_opt_sleep.sp
- 6. DRC/LVS/xRC. Post-layout simulation and optimization.

hslp32add_opt.sp

Design Procedure

- Submit
 - Layout snapshot
 - Worst-case rise and fall delay (NOT rise and fall times) and waveforms
 - LVS/xRC report
 - Design report
 - Description of how you designed it, e.g., how you sized the PMOS and NMOS transistors.

Files

- Download the following file.
 - http://eecs.wsu.edu/~ee434/Labs/proj.tar.gz

How to Export GDS from Encounter

- Use the following command.
 - streamOut <gds_file_name> -mapFile <map_file> libName <virtuoso_library_name> -structureName
 <top_level_cell_name> -disAreaAsBoundary -units 2000 mode ALL
 - The map file will be provided.
- Example
 - streamOut 03_postrouteopt.gds -mapFile ng45nm.map libName ng45nm_proj1 -structureName VKSA32 dieAreaAsBoundary -units 2000 -mode ALL

Netlist Conversion (Verilog → **SPICE)**

- v2lvs -v <verilog_netlist> -l <verilog_library> -o <output> – Verilog_library will be provided.
- Example
 - v2lvs -v my_netlist.v -l Nangate.v -o my_netlist.sp

How to Proceed

- 1. Design an adder in Encounter.
 - The initial verilog netlist will be provided.
- 2. Export it into a gds file.
- 3. Create a new library in Virtuoso.
- 4. Import a standard cell library.
 - gds for standard cells will be provided.
- 5. Import the gds file you exported in Encounter into the library.
- 6. Export the top-level gds file.
- 7. Run LVS to make sure your initial DB is correct.
- 8. Run xRC to get a PEX SPICE netlist.

How to Proceed

- 9. Add sleep transistors to your PEX SPICE netlist.
- 10. Simulate it (HSpice) and optimize the sleep transistors.
- 11. Draw the sleep transistors in your layout (Virtuoso).
- 12. Run LVS and PEX.
- 13. Simulate it (HSpice).