EE434

ASIC and Digital Systems

Final Exam

May 4, 2017. (8am - 10am)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	30	
6	10	
7	10	
8	10	
Total	80	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Layout Analysis, 10 points)

The following combinational logic has six primary inputs (A, B, C, D, E, F) and a primary output (Out). Find all input vectors that can detect a stuck-at-1 fault at input E.

And

$$
(E F)=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

Problem \#2 (Static CMOS gates, 10 points)

Describe the function of the following circuit in as much detail as possible (D : data input, CK: clock).

(Partovi, ISSCC'96)
Suppose X is the node driving the pFET and the nFET in the second stage and Y is the node driving the first inverter.

- When CK=0.
o If $D=0, X$ is 1 due to the pFETs in the first stage. $=>Y=0=>Q=0$.
o If $\mathrm{D}=1, \mathrm{X}$ is 0 due to the nFET in the first stage. => $\mathrm{Y}=1=>\mathrm{Q}=1$.
o Thus, $\mathrm{Q}=\mathrm{D}$ if $\mathrm{CK}=0$.
- When CK=1.
o Y is floating, i.e., it holds the previous value regardless of D.
Thus, this is an active-low D-latch (i.e., a D-latch in which Q=D when CK=0).

Problem \#3 (Timing Analysis, 10 points)

Answer the following questions.

- WNS can be less than TNS (i.e., "WNS<TNS" can happen). (True/False)
$T N S=\sum N e g a t i v e ~ s l a c k(N S)=W N S+\sum_{N S \neq W N S} N S . \sum_{N S \neq W N S} N S \leq 0$, so TNS $\leq W N S$.
- TNS can be less than WNS (i.e., "TNS<WNS" can happen). (True/False)
- WNS can be equal to TNS (i.e., "WNS=TNS" can happen). (True/False)
- A design has only two violating paths. In this case, the following can happen. (True/False)
o "WNS of the design is $-2 n s$ and TNS of the design is $-4.5 n s$.
In this case, TNS = WNS1 + WNS2 where WNS1 is the negative slack of the first critical path and $W N S 2$ is the negative slack of the second critical path (WNS1 $\leq W N S 2$). $T N S=-4.5 n s=W N S 1+W N S 2=-2 n s+W N S 2$, so $W N S 2$ is $-2.5 n s$, but this is a contradiction because $W N S 1$ should be less than or equal to $W N S 2$. Thus, this cannot happen.
- A design has only four violating paths. In this case, the following can happen. (True/False)
o "WNS of the design is $-2 n s$ and TNS of the design is $-8.2 n s$.
$W N S 1=-2 n s \leq W N S 2 \leq W N S 3 \leq W N S 4$. Thus, TNS $=\sum W N S \geq-8 n s$, so TNS cannot be -8.2ns.

Problem \#4 (Timing Analysis, 10 points)

You are given six designs, (a), (b), ..., (f). Their timing analysis results are shown below. It is also known that the power consumption and the total layout area of a design are proportional to the total positive slack. You are supposed to choose a design and send it to a foundry for fabrication without any further optimization. Choose one among the six designs and explain why you decided to choose the design for fabrication.

I would choose (b) for the following reasons.

	Timing	Power	Area
(a)	Violated		
(b)		Low	Small
(c)		High	Large
(d)	Violated		
(e)	Violated		
(f)	Violated		

Problem \#5 (Interconnect Optimization, 30 points)

The following figure shows a net optimized by buffer insertion. The driver and the sink are denoted by K_{D} and K_{S}, respectively, and the inserted buffers are denoted by B_{i} $(1 \leq i \leq n-1) . n \geq 2$, i.e., there is at least one buffer between the driver and the sink.

- Output resistance of $K_{D}: R_{D}$
- Output resistance of $B_{i}(1 \leq i \leq n-1): R_{i}\left(\right.$ e.g., $\left.R_{1}, R_{2}, \ldots\right)$
- Input capacitance of $K_{S}: C_{S}$
- Input capacitance of $B_{i}(1 \leq i \leq n-1): C_{i}$
- Delay of $B_{i}(1 \leq i \leq n-1): D_{i}$
- Length of the i-th net $(1 \leq i \leq n): s_{i}$ (um)
- $\sum_{i=1}^{n} s_{i}=L$ (um)
- Wire unit resistance: r (Ω / um)
- Wire unit capacitance: c (fF/um)

We assume that the net is optimized to minimize the delay from the driver to the sink.
(Hint: Derive s_{1} and s_{2} as functions of the above parameters when $n=2$. You can somehow use the result for the following questions).

Suppose $R_{D}=R_{0}$ and $C_{S}=C_{n}$. Then, the delay of segment s_{k} is

$$
\tau_{k}=R_{k-1}\left(c \cdot s_{k}+C_{k}\right)+r \cdot C_{k} \cdot s_{k}+\frac{1}{2} r c s_{k}^{2}
$$

Then, the total delay is

$$
\begin{gathered}
\tau=\sum_{k=1}^{n} \tau_{k}+\sum_{k=1}^{n-1} D_{k}=c \sum_{k=1}^{n} R_{k-1} s_{k}+\sum_{k=1}^{n} R_{k-1} C_{k}+r \sum_{k=1}^{n} C_{k} s_{k}+\frac{1}{2} r c \sum_{k=1}^{n} s_{k}^{2}+\sum_{k=1}^{n-1} D_{k} \\
\frac{\partial \tau}{\partial s_{k}}=c\left(R_{k-1}-R_{n-1}\right)+r\left(C_{k}-C_{n}\right)+r c\left(s_{k}-s_{n}\right)=0 \\
\therefore s_{k}=s_{n}+\frac{R_{n-1}-R_{k-1}}{r}+\frac{C_{n}-C_{k}}{c}
\end{gathered}
$$

From $\sum_{k=1}^{n} s_{k}=L, \sum_{k=1}^{n} s_{k}=n \cdot s_{n}+\frac{1}{r} \sum_{k=1}^{n}\left(R_{n-1}-R_{k-1}\right)+\frac{1}{c} \sum_{k=1}^{n}\left(C_{n}-C_{k}\right)=n \cdot s_{n}+$ $\frac{n \cdot R_{n-1}-R_{T}}{r}+\frac{n \cdot C_{n}-C_{T}}{c}=L$ where $R_{T}=\sum_{k=0}^{n-1} R_{k}$ and $C_{T}=\sum_{k=1}^{n} C_{k}$.

Thus, we obtain the following:

$$
s_{k}=\frac{L}{n}+\frac{1}{r} \cdot\left(\frac{1}{n} \cdot R_{T}-R_{k-1}\right)+\frac{1}{c} \cdot\left(\frac{1}{n} \cdot C_{T}-C_{k}\right)
$$

Answer the following questions for $n=10$ (i.e., we insert 9 buffers optimally):

- If C_{S} increases, we should increase s_{1} to minimize the total delay. (True/False) o If C_{S} increases, the delay of s_{10} goes up, so we should increase s_{1}, \ldots, s_{9}.
- If R_{9} increases, we should increase s_{1} to minimize the total delay. (True/False)
o If R_{9} increases, the delay of s_{9} goes up, so we should increase s_{1}, \ldots, s_{8}, s_{10}.
- If D_{9} increases, we should increase s_{1} to minimize the total delay. (True/False)
o Since we always insert 9 buffers, D_{9} does not affect the total delay.
- If C_{5} increases, we should increase s_{8} to minimize the total delay. (True/False)
o True for the same reason as the case of $C_{S} \uparrow$.
- If R_{5} increases, we should increase s_{8} to minimize the total delay. (True/False)
o True for the same reason as the case of $R_{9} \uparrow$.
- If D_{5} increases, we should increase s_{8} to minimize the total delay. (True/False)
o False for the same reason as the case of $D_{9} \uparrow$.
- If R_{D} increases, we should increase s_{1} to minimize the total delay. (True/False)
o If $R_{D}\left(R_{0}\right)$ increases, the delay of s_{1} goes up, so we should increase s_{2}, \ldots, , s_{10}.
- Suppose $s_{1} \approx 0$ because $R_{D} \gg R_{1}, \ldots, R_{9}$. In this case, if r and c increase at the same time, we should increase s_{1} to minimize the total delay. (True/False)
o If $r \rightarrow \infty$ and $c \rightarrow \infty$, the impact of output resistance and input capacitance on the delay reduces. In this case, the impact of the wire delay portion $\left(\frac{1}{2} r c l^{2}\right)$ goes up, so we should evenly distribute the buffers to minimize the total delay. Since s_{1} was almost 0 , we should increase s_{1}.

Answer the following questions assuming n is to be determined optimally (i.e., we find \# buffers ($n-1$) and $s_{1} \sim s_{n}$ optimally) and $L \gg 0$, so $n \gg 1$:

- If R_{D} increases, we should increase n to minimize the total delay. (True/False)
o In this case, s_{1} should be decreased to reduce the total delay, which increases s_{1}, \ldots, s_{n}. Thus, we should insert more buffers in general.
- If C_{2} increases, we should increase n to minimize the total delay. (True/False)
o In this case, we should decrease s_{2} and increase all the other s_{k}. If their lengths go up, we should insert more buffers.
- If C_{S} increases, we should increase n to minimize the total delay. (True/False)
o We should insert more buffers for the same reason as the case C_{S} increases.
- If the delay of each buffer is increased, we should generally increase n to minimize the total delay. (True/False)
o We should decrease the number of buffers because the buffer delay has negative impact on the total delay.
- If L increases, we should increase n to minimize the total delay. (True/False)
- If r increases, we should increase n to minimize the total delay. (True/False)
o The total delay when there is no buffer is

$$
\tau=R_{D}\left(c \cdot L+C_{S}\right)+r \cdot L \cdot C_{S}+\frac{1}{2} r c L^{2} .
$$

o In this formula, r can be treated as weighting factors for $L \cdot C_{S}$ and $\frac{1}{2} c L^{2}$. If r increases, inserting more buffers can reduce $\frac{1}{2} r c L^{2}$. For example, if a buffer is inserted, the sum of the values is $\frac{1}{2} r c\left(0.25 L^{2}+0.25 L^{2}\right)=\frac{1}{4} r c L^{2}$. Similarly, if three buffers are inserted, the sum of the values is $\frac{1}{2} r c\left(L^{2} /\right.$ $\left.16+L^{2} / 16+L^{2} / 16+L^{2} / 16\right)=\frac{1}{8} r c L^{2}$. Although the buffer delays and buffer input capacitance values are delay overheads, if r increases significantly, inserting more buffers helps reduce the delay as shown above.

- If c increases, we should increase n to minimize the total delay. (True/False)
o r and c basically have similar impacts on the total delay, so if c goes up, we should insert more buffers.

Problem \#6 (Timing Analysis, 10 points)

- Setup time of a D-FF: T_{s}
- Hold time of a D-FF: T_{h}
- D-F/F internal delay: $T_{C Q}$
- Logic 1 delay: $T_{L 1}$
- Logic 2 delay: $T_{L 2}$
- Clock period: $T_{C K}$ (duty cycle: 50%, i.e., the clock is high for $T_{C K} / 2$ and low for $T_{C K} / 2$.)
- Delay from CLK to D-FF 1: D_{1}
- Delay from CLK to D-FF 2: D_{2}
- Delay from CLK to D-FF 3: D_{3}
- D-F/F 2 is a negative-edge FF (i.e., it captures the input signal at falling edges.)

The above figure shows three FFs connects in series. D-FF 2 is a negative-edge FF, whereas D-FF 1 and 3 are positive-edge FFs. The operation of the circuit is as follows. D-FF 1 captures its input signal at k-th positive clock edge P_{k}. Logic 1 performs computation for the output of D-FF 1. D-FF 2 captures its input signal at k-th negative clock edge N_{k}. Logic 2 performs computation for the output of D-FF2. D-FF 3 captures its input signal at $(k+1)$-th positive clock edge P_{k+1}.

Derive two setup time inequalities (one for Logic 1 and the other for Logic 2).

1) For Logic $1, D_{1}+T_{C Q}+T_{L 1} \leq D_{2}+\frac{T_{C K}}{2}-T_{s} \Rightarrow T_{L 1} \leq\left(D_{2}-D_{1}\right)+\frac{T_{C K}}{2}-T_{C Q}-T_{s}$
2) For Logic 2, $D_{2}+\frac{T_{C K}}{2}+T_{C Q}+T_{L 2} \leq D_{3}+T_{C K}-T_{S} \Rightarrow T_{L 2} \leq\left(D_{3}-D_{2}\right)+\frac{T_{C K}}{2}-$ $T_{C Q}-T_{S}$

Problem \#7 (Testing, 10 points)

We want to detect stuck-at-0 and stuck-at-1 faults at all the primary inputs, a, b, c, d, and the two internal nodes, e, f. Computation of Y to detect a stuck-at-0/1 fault at an internal node can be done by setting the value of the node to constant 0 (for stuck-at-0 faults) or 1 (for stuck-at-1 faults). Find a minimal set of test vectors that can detect all the s-a-0 and s-a-1 faults at a, b, c, d, e, and f for the following logic (Hint: all the minimal sets have five test vectors).

$$
Y=(a \oplus b) \cdot \overline{c+d}
$$

- s-a-0 at $a: Y_{f}=b \cdot \overline{c+d} . Y \oplus Y_{f}=\{(a \oplus b) \cdot \overline{c+d}\} \oplus\{b \cdot \overline{c+d}\}=1 \Rightarrow$ $\left(\begin{array}{lll}a b c\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ or $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$
- s-a-1 at $a: Y_{f}=\bar{b} \cdot \overline{c+d} . Y \oplus Y_{f}=\{(a \oplus b) \cdot \overline{c+d}\} \oplus\{\bar{b} \cdot \overline{c+d}\}=1 \Rightarrow$ $\left(\begin{array}{lll}a b c & d\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ or $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$
- s-a-0 at b: $\left(\begin{array}{lll}a & b & d\end{array}\right)=\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)$ or $\left(\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right)$
- s-a-1 at $b:\left(\begin{array}{lll}a & b & d\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ or $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$
- s-a-0 at $c: Y_{f}=(a \oplus b) \cdot \bar{d} . Y \oplus Y_{f}=\{(a \oplus b) \cdot \overline{c+d}\} \oplus\{(a \oplus b) \cdot \bar{d}\}=1 \Rightarrow$ $(a b c d)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$ or $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$
- s-a-1 at $c: Y_{f}=0 . Y \oplus Y_{f}=\{(a \oplus b) \cdot \overline{c+d}\} \oplus 0=1 \Rightarrow(a b c d)=(0100)$ or (1000)
- s-a-0 at $d:(a b c d)=\left(\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right)$ or $\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)$
- s-a-1 at $d:\left(\begin{array}{lll}a & b & c\end{array}\right)=\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)$ or $\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$
- s-a-0 at $e: Y_{f}=0 . Y \oplus Y_{f}=\{(a \oplus b) \cdot \overline{c+d}\} \oplus 0=1 \Rightarrow(a b c d)=\left(\begin{array}{lll}0 & 10 & 0\end{array}\right)$ or (1000)
- s-a-1 at $e: Y_{f}=\overline{c+d} . Y \oplus Y_{f}=\{(a \oplus b) \cdot \overline{c+d}\} \oplus\{\overline{c+d}\}=1 \Rightarrow(a b c d)=$ (0 0000) or (11100)
- s-a-0 at $f: Y_{f}=0 . Y \oplus Y_{f}=\{(a \oplus b) \cdot \overline{c+d}\} \oplus 0=1 \Rightarrow(a b c d)=\left(\begin{array}{lll}0 & 100\end{array}\right)$ or (1000)
- s-a-1 at $f: Y_{f}=(a \oplus b) . Y \oplus Y_{f}=\{(a \oplus b) \cdot \overline{c+d}\} \oplus\{(a \oplus b)\}=1 \Rightarrow$ $(a b c d)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$ or (01110) or $\left(0 \begin{array}{lll}1 & 1 & 1\end{array}\right)$ or $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ or $\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)$ or $\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$

1) Need (01001) to cover the $7^{\text {th }}$ column. It also covers the $9^{\text {th }}$ column.
2) Covering the $1^{\text {st }}$ column requires either $\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$ or (1 1000$)$.
3) Covering the $2^{\text {nd }}$ column requires either (0000) or (0100).
4) For (1000) and (0000), we should cover the $3^{\text {rd }}$ and the $5^{\text {th }}$ columns.
5) If we proceed this way, we get the following test vectors.

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Set 1																
Set 2																
Set 3																
Set 4																
Set 5																
Set 6																
Set 7																
Set 8																

Problem \#8 (Testing, 10 points)

A combinational logic G is given. It has n inputs and one output. The inputs are $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$ and the output is y, i.e., $y=G\left(x_{1}, \ldots, x_{n}\right)$. To find an input vector that can detect a stuck-at-v fault $\left(v=0\right.$ or 1) at $x_{i}(1 \leq i \leq n)$, we solve $G\left(x_{1}, \ldots, x_{n}\right) \oplus$ $G_{f}\left(x_{1}, \ldots, x_{i}=v, \ldots, x_{n}\right)=1$. Let S_{i} be the set of all input vectors that can detect a stuck-at- $v_{i}\left(v_{i}=0\right.$ or 1$)$ fault at x_{i} and S_{k} be the set of all input vectors that can detect a stuck-at- $v_{k}\left(v_{k}=0\right.$ or 1$)$ fault at $x_{k}(i \neq k)$.

If we assume that two stuck-at-v faults occur at the same time, we can find an input vector that can detect the faults. For example, we solve $G\left(x_{1}, \ldots, x_{n}\right) \oplus G_{f}\left(x_{1}, \ldots, x_{i}=\right.$ $\left.v_{i}, \ldots, x_{k}=v_{k}, \ldots, x_{n}\right)=1$ to find an input vector that can detect a stuck-at- v_{i} fault at x_{i} and a stuck-at- v_{k} fault at x_{k} occurring at the same time $(i \neq k)$. Let $S_{i, k}$ be the set of all input vectors that can detect a stuck-at- $v_{i}\left(v_{i}=0\right.$ or 1$)$ fault at x_{i} and a stuck-at$v_{k}\left(v_{k}=0\right.$ or 1$)$ fault at $x_{k}(i \neq k)$.

Prove or disprove the following statement:

$$
S_{i, k}=S_{i} \cap S_{k}
$$

(If you want to disprove it, you can just show a counterexample.)
Counterexample: A two-input AND gate (inputs: a, b, output: Z).

$$
Z=a \cdot b
$$

Let a s-a-0 fault at input a be f_{a} and a s-a-1 fault at input b be f_{b}. For $f_{a}, Z_{f}=0$, so
$S_{a}=\{(a, b)=(11)\}$. For $f_{b}, Z_{f}=a$, so $S_{b}=\{(a, b)=(10)\} . S_{a} \cap S_{b}=\emptyset$.
When the two faults occur at the same time, $Z_{f}=0$. In this case, $S_{a, b}=\{(a, b)=(11)\}$.
Thus, $S_{a, b} \neq S_{a} \cap S_{b}$.

