EE434

ASIC and Digital Systems

Midterm Exam 1
 February 25, 2015. (5:10pm - 6pm)
 Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
*Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Static CMOS gates, 10 points).
Represent F as a function of a, b, c, and d.

Problem \#2 (Static CMOS gates, 10 points).

What does the following circuit do? Describe the function of the circuit in as much detail as possible.

Problem \#3 (CMOS Logic, 10 points).

What is the functionality of the following circuit? Describe the functionality in as much detail as possible.

Problem \#4 (Transistor Sizing, 10 points).

Size the transistors in the following gate. R_{n} is the resistance of a 1 X NMOS transistor. $\mu_{n}=2 \cdot \mu_{p}$. Ignore all the parasitic capacitances. Target time constant: $\tau_{\text {target }}=R_{n} \cdot C_{L}$. Try to minimize the total area.

Problem \#5 (Transistor Sizing, 10 points).

We want to design a k-input NOR gate. However, the static CMOS gate design methodology is not suitable for the design of the k-input NOR gate due to area overhead in the pull-up network and the body-bias effect. Therefore, we are going to design it using the dynamic CMOS design methodology. The following shows a schematic of the k-input NOR gate.

R_{n} is the resistance of a 1X NMOS transistor. $\mu_{n}=2 \cdot \mu_{p}$. Ignore all the parasitic capacitances. Target time constant: $\tau_{\text {target }}=R_{n} \cdot C_{L}$. All the transistors for $x_{1} \sim x_{k}$ are upsized to aX and the transistor for $C K$ is upsized to bX (a and b are real numbers). We minimize the total width, Width $=a \cdot k+b$. Find a and b (i.e., derive a (and b) as a function of k) minimizing the total width.

Problem \#6 (Elmore Delay, 10 points).

6-1. Compute Elmore delay at LOAD1 and LOAD2, i.e., represent the delay at LOAD1 (and LOAD2) as a function of $R_{1} \sim R_{4}, C_{1}, C_{2}, C_{\text {LOAD1 } 1}$, and $C_{\text {LOAD2 } 2}$.

6-2. Compute Elmore delay at LOAD1 for $R_{1}=R_{2}=R_{3}=1 \mathrm{k} \Omega, C_{1}=C_{2}=C_{\text {LOAD1 }}=$ $10 f F, R_{4}=\mathbf{0 . 1} \mathbf{k} \Omega$, and $C_{\text {LOAD2 }}=1 p F$. Then, compute Elmore delay at LOAD1 for $R_{1}=R_{2}=R_{3}=1 \mathrm{k} \Omega, C_{1}=C_{2}=C_{L O A D 1}=10 f F, R_{4}=\mathbf{1 0 M} \Omega$, and $C_{L O A D 2}=1 p F$. This result is called "resistive shielding". Discuss a limitation of the Elmore delay model in terms of the resistive shielding effect.

Problem \#7 (Dynamic CMOS, 10 points).

Compare the following implementations for a dynamic-CMOS k-input NOR gate. Are there any problems in (a)? in (b)?

(a)
(b)

Problem \#8 (DC Characteristics, 10 points).

The following circuit is called "pseudo-PMOS". Sketch a DC characteristic curve of the pseudo-PMOS inverter and properly split the curve into regions. In each region, show the status (cut-off, linear, saturation) of each transistor (m_{n} and m_{p}).

