EE434

ASIC and Digital Systems

Midterm Exam 2

April 8, 2015. (5:10pm - 6pm)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	20	
$2-1$	13	
$2-2$	7	
$3-1$	10	
$3-2$	10	
4	20	
Total	80	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Layout, 20 points).

Represent Out as a Boolean function of $E N$ and A or describe the function of the following layout in as much detail as possible (Primary inputs: A, EN. Primary output: Out).

Active

Poly

Contact

Problem \#2 (Coupling Analysis, 20 points).

Three nets are coupled through $C_{c 1}$ and $C_{c 2}$ as shown in the following figure:

Net 3 is the only aggressor and Net 2 and Net 1 are victims. Although Net 1 is not directly connected to Net 3 , Net 1 is affected by the potential change of Net 2 when Net 3 switches. The above figure can be simplified as follows:

1 - 13 points) Derive ΔV_{2} and ΔV_{1} as a function of $\Delta V_{3}, C_{g 1}, C_{g 2}, C_{c 1}$, and $C_{c 2}$.

2-7 points) True/False questions (Hint: Use your intuition or the formulas you derived in the above problem).
a) If $C_{g 1}$ increases, ΔV_{1} increases (true/false).
b) If $C_{g 1}$ increases, ΔV_{2} increases (true/false).
c) If $C_{g 2}$ increases, ΔV_{1} increases (true/false).
d) If $C_{g 2}$ increases, ΔV_{2} increases (true/false).
e) If $C_{c 1}$ increases, ΔV_{1} increases (true/false).
f) If $C_{c 2}$ increases, ΔV_{1} increases (true/false).
g) If $C_{c 2}$ increases, ΔV_{2} increases (true/false).

Problem \#3 (Coupling Minimization, 20 points).

1-10 points) Compute effective capacitance for the net in the middle $\left(d_{m}\right)$ for the following transition patterns:

Transition patterns $\left(d_{m+1} d_{m} d_{m-1}\right)$	Effective cap of d_{m}
$010 \rightarrow 000$	
$010 \rightarrow 001$	
$010 \rightarrow 100$	
$010 \rightarrow 101$	

$2-10$ points) A bus consisting of five bits $\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right)$ is routed in three metal layers. Due to some unknown reasons, four of them ($b_{1} b_{2} b_{4} b_{5}$) are routed in parallel with b_{3}. The following shows the coupling capacitance among the five nets.

Due to the coupling between b_{3} and b_{k}, the worst-case effective coupling capacitance that b_{3} experiences will be $8 \cdot C_{c}$. List all transition patterns that make b_{3} experience $8 \cdot C_{c}$ and $7 \cdot C_{c}$.

Problem \#4 (Buffer Insertion, 20 points).

A source (type: BUF_X1) drives a sink (type: BUF_X2) through a net and you are supposed to insert a buffer (type: BUF_X1) between them as shown in the above figure. Find an optimal location of the buffer minimizing the total delay, i.e., represent "s" as a function of the following parameters.

- Output resistance of BUF_X1: R_{1}
- Input capacitance of BUF_X1: C_{1}
- Input capacitance of BUF_X2: C_{2}
- Total length of the net: L (um)
- Total wire resistance: R_{w}
- Total wire capacitance: C_{w}
- $\left(C_{w}+C_{2}>C_{1}\right)$

