Homework Assignment 2 (Due Oct. 16 ${ }^{\text {th }}$ at the beginning of the class)

(1) [Static CMOS, 10 points] Draw a transistor-level schematic for the following Boolean function.

$$
\boldsymbol{Y}=\overline{A+B+C \cdot(D \cdot E+F \cdot(G+H))}
$$

(2) [DC analysis, 10 points] Draw a DC curve (Vin vs. Vout) for a buffer $(Y=A)$. A buffer consists of two inverters connected in series.
(3) [Transistor sizing, 10 points] The following shows a schematic of an NFET network of a gate. Size the transistors. The target timing constraint is $\tau=\frac{R_{n}}{10}$ where R_{n} is the resistance of a 1X NFET.

(4) [Schematic analysis, $\mathbf{1 0}$ points] Derive output Y as a Boolean function of inputs A, B, C, and D. Use Z for high impedance.

(5) [Power analysis, 10 points] The following schematic shows a two-input NOR gate. It is known that input A switches between 0 and 1 very often and input B
stays at 1 most of the time. C_{X} and R_{X} show a small parasitic capacitance and a leaky path to the ground, respectively. Which one (between (a) and (b)) do you prefer to save power consumption? Why?

(a)

(b)

