

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

# Lecture 1 (Introduction)

 Why is designing digital ICs different today than it was before?
 Will it change in future?



# The First Computer



The Babbage Difference Engine (1832) 25,000 parts cost: £17,470

### ENIAC - The first electronic computer (1946)



### **The Transistor Revolution**



First transistor Bell Labs, 1948

# **The First Integrated Circuits**



*Bipolar logic* 1960's

ECL 3-input Gate Motorola 1966

### Intel 4004 Micro-Processor



19711000 transistors1 MHz operation

### Intel Pentium (IV) microprocessor



## Moore's Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
He made a prediction that semiconductor technology will double its effectiveness every 18 months

### Moore's Law



Electronics, April 19, 1965.

### **Evolution in Complexity**



Year

## **Transistor Counts**



Courtesy, Intel

### Moore's law in Microprocessors



### **Die Size Growth**







Courtesy, Intel

## **Power Dissipation**



Lead Microprocessors power continues to increase

# Power will be a major problem



## **Power density**



Power density too high to keep junctions at low temp

Courtesy, Intel

## **Not Only Microprocessors**

Cell Phone



Digital Cellular Market (Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M

(data from Texas Instruments)



## MOS Transistor Scaling (1974 to present)

Scaling factor s=0.7 per node (0.5x per 2 nodes)



Technology Node set by 1/2 pitch (interconnect)

Gate length (transistor)

# Ideal Technology Scaling (constant field)

| <u>Quantity</u>         | Before Scaling                   | After Scaling                        |
|-------------------------|----------------------------------|--------------------------------------|
| Channel Length          | L                                | L' = L * s                           |
| Channel Width           | W                                | W' = W * s                           |
| Gate Oxide thickness    | t <sub>ox</sub>                  | $t'_{ox} = t_{ox} * s$               |
| Junction depth          | x <sub>j</sub>                   | $x'_j = x_j * s$                     |
| Power Supply            | V <sub>dd</sub>                  | V <sub>dd</sub> ' = Vdd * s          |
| Threshold Voltage       | V <sub>th</sub>                  | $V'_{th} = V_{th} * s$               |
| Doping Density, p<br>n+ | N <sub>A</sub><br>N <sub>D</sub> | $N_A' = N_A / s$<br>$N_D' = N_D / s$ |

# **Challenges in Digital Design**

### $\infty$ DSM

#### "Microscopic Problems"

- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock distribution.

#### **Everything Looks a Little Different**



7

### ∞ **1/DSM**

#### "Macroscopic Issues"

- Time-to-Market
- Millions of Gates
- High-Level Abstractions
- Reuse & IP: Portability
- Predictability
- etc.

#### ...and There's a Lot of Them!

# **Productivity Trends**



Courtesy, ITRS Roadmap

# Why Scaling?

- □ Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- □ Cost of a function decreases by 2x
- □ But ...
  - How to design chips with more and more functions?
  - Design engineering population does not double every two years...
- □ Hence, a need for more efficient design methods
  - Exploit different levels of abstraction

### **Design Abstraction Levels**



### **Design Metrics**

How to evaluate performance of a digital circuit (gate, block, ...)?

- Cost
- Reliability
- Scalability
- Speed (delay, operating frequency)
- Power dissipation
- Energy to perform a function

# **Cost of Integrated Circuits**

□ NRE (non-recurrent engineering) costs

- design time and effort, mask generation
- one-time cost factor
- Recurrent costs
  - silicon processing, packaging, test
  - proportional to volume
  - proportional to chip area

# **NRE Cost is Increasing**

1996 1997 1998 1999 2000 2001 2002 2003





From http://www.amd.com

## **Cost per Transistor**



# What about Interconnect

### □ Global wires

- Non-scalable delay
- Delay exceeds one clock cycle
- Non-scalable interconnects
- Excessive power dissipation
- > Non reliability in signal transmission



# Summary

- Digital integrated circuits have come a long way and still have quite some potential left for the coming decades
- □ Some interesting challenges ahead
  - Getting a clear perspective on the challenges and potential solutions is the purpose of this course
- Understanding the design metrics that govern digital design is crucial
  - Cost, reliability, speed, power and energy dissipation

## **Course Structure**

- MOS Transistors
- MOS Inverter Circuits
- Static MOS Gate Circuits
- High-Speed CMOS Logic Design
- □ Transfer Gate and Dynamic Logic Design
- Semiconductor Memory Design
- Advanced Devices beyond CMOS

### **Course Structure**

Extensive use of CAD tools
 Homework assignments
 One to two midterm exams and one final exam

Course Project

Suite of two courses EE 466/586 and EE587 will cover various aspects starting from circuits to systems

## **References**

### Textbook:

 CMOS VLSI Design, Weste and Harris, Fourth Edition

### □ Additional Reference:

- Analysis and Design of Digital Integrated Circuits -In Deep Submicron Technology, Hodges, Jackson and Saleh, McGraw-Hill, Third Edition, 2004.
- J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A Design Perspective. Second Edition, Prentice Hall, 2003.
- Important announcements will be posted in the course website
  - www.eecs.wsu.edu/~ee586