EE586
 VLSI Design

Partha Pande School of EECS
Washington State University pande@eecs.wsu.edu

Lecture 1 (Introduction)

\square Why is designing digital ICs different today than it was before?

- Will it change in future?

The First Computer

The Babbage Difference Engine (1832)
 25,000 parts
 cost: $£ 17,470$

ENIAC - The fîrst electronic computer (1946)

The Transistor Revolution

First transistor Bell Labs, 1948

The First Integrated Circuits

Bipolar logic 1960's

ECL 3-input Gate Motorola 1966

Intel 4004 Micro-Processor

1971
1000 transistors
1 MHz operation

Intel Pentium (IV) microprocessor

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
- He made a prediction that semiconductor technology will double its effectiveness every 18 months

Moore's Law

Electronics, April 19, 1965.

Evolution in Complexity

Transistor Counts

Courtesy, Intel

Moore's law in Microprocessors

Courtesy, Intel

Die Size Growth

Die size grows by 14\% to satisfy Moore's Law

Courtesy, Intel

Frequency

Lead Microprocessors frequency doubles every 2 years

Courtesy, Intel

Power Dissipation

Lead Microprocessors power continues to increase

Courtesy, Intel

Power will be a major problem

Power delivery and dissipation will be prohibitive

Courtesy, Intel

Power density

Power density too high to keep junctions at low temp

Courtesy, Intel

Not Only Microprocessors

Cell
 Phone

Digital Cellular Market (Phones Shipped)

19961997199819992000
Units 48M 86M 162M 260M 435M

(data from Texas Instruments)

MOS Transistor Scaling (1974 to present)

Scaling factor $\mathbf{s}=0.7$ per node (0.5 x per 2 nodes)

Technology Node set by $1 / 2$ pitch
(interconnect)

Gate length (transistor)

Ideal Technology Scalìng (constant field)

Quantity	Before Scaling	After Scaling
Channel Length	L	$\mathrm{L}^{\prime}=\mathrm{L}{ }^{*} \mathrm{~s}$
Channel Width	W	$\mathrm{W}^{\prime}=\mathrm{W} * \mathrm{~s}$
Gate Oxide thickness	t_{ox}	$\mathrm{t}_{\mathrm{ox}}^{\prime}=\mathrm{t}_{\mathrm{ox}}{ }^{*} \mathrm{~s}$
Junction depth	x_{j}	$\mathrm{x}_{\mathrm{j}}^{\prime}=\mathrm{x}_{\mathrm{j}}{ }^{*} \mathrm{~s}$
Power Supply	V_{dd}	$\mathrm{V}_{\mathrm{dd}}^{\prime}=\mathrm{Vdd}^{*} \mathrm{~s}$
Threshold Voltage	V_{th}	$\mathrm{V}_{\mathrm{th}}^{\prime}=\mathrm{V}_{\mathrm{th}} * \mathrm{~s}$
Doping Density, p	N_{A}	$\mathrm{N}_{\mathrm{A}}^{\prime}=\mathrm{N}_{\mathrm{A}} / \mathrm{s}$
$\mathrm{n}+$	N_{D}	$\mathrm{N}_{\mathrm{D}}^{\prime}=\mathrm{N}_{\mathrm{D}} / \mathrm{s}$

Challenges in Digital Design

\propto DSM

"Microscopic Problems"

- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock distribution.

\propto 1/DSM

"Macroscopic Issues"

- Time-to-Market
- Millions of Gates
- High-Level Abstractions
- Reuse \& IP: Portability
- Predictability
- etc.

Everything Looks a Little Different

Productivity Trends

Complexity outpaces design productivity

Courtesy, ITRS Roadmap

Why Scaling?

- Technology shrinks by 0.7/generation
\square With every generation can integrate $2 x$ more functions per chip; chip cost does not increase significantly
- Cost of a function decreases by $2 x$
- But ...
- How to design chips with more and more functions?
- Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
- Exploit different levels of abstraction

Design Abstraction Levels

Design Metrics

- How to evaluate performance of a digital circuit (gate, block, ...)?
- Cost
- Reliability
- Scalability
- Speed (delay, operating frequency)
- Power dissipation
- Energy to perform a function

Cost of Integrated Circuits

- NRE (non-recurrent engineering) costs
- design time and effort, mask generation
- one-time cost factor
- Recurrent costs
- silicon processing, packaging, test
- proportional to volume
- proportional to chip area

NRE Cost is Increasing

1996 1997 1998 1999 2000 2001 2002 2003
Innovasion
Exploding NRE / Mask Costs

70nm ASICs will have $\$ 4 \mathrm{M}$ NRE

Die Cost

From http://www.amd.com

Cost per Transistor

What about Interconnect

- Global wires
- Non-scalable delay
- Delay exceeds one clock cycle
> Non-scalable interconnects
> Excessive power dissipation
> Non reliability in signal transmission

Emergìng Interconnect Technologies

Summary

\square Digital integrated circuits have come a long way and still have quite some potential left for the coming decades
\square Some interesting challenges ahead

- Getting a clear perspective on the challenges and potential solutions is the purpose of this course
\square Understanding the design metrics that govern digital design is crucial
- Cost, reliability, speed, power and energy dissipation

Course Structure

- MOS Transistors
- MOS Inverter Circuits
- Static MOS Gate Circuits
- High-Speed CMOS Logic Design
- Transfer Gate and Dynamic Logic Design
- Semiconductor Memory Design
- Advanced Devices beyond CMOS

Course Structure

- Extensive use of CAD tools
-Homework assignments
- One to two midterm exams and one final exam
- Course Project

Suite of two courses EE 466/586 and EE587 will cover various aspects starting from circuits to systems

References

- Textbook:
- CMOS VLSI Design, Weste and Harris, Fourth Edition
\square Additional Reference:
- Analysis and Design of Digital Integrated Circuits In Deep Submicron Technology, Hodges, Jackson and Saleh, McGraw-Hill, Third Edition, 2004.
- J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A Design Perspective. Second Edition, Prentice Hall, 2003.
- Important announcements will be posted in the course website
- www.eecs.wsu.edu/~ee586

