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Lecture 2

The MQOS Transistor

(Reference: Chapter 2 of Weste and Harris or Chapter 2 of HJS)




The MQOS Transistor
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Structural Details

a Channel length L
= Typical values of L today vary from 90nm to 32 nm

* The dimension will continue to scale according to
Moore’s law

Q Perpendicular to the plane of the figure is the
channel width W

* Much larger than the minimum length

0 Gate oxide thickness Tox
= Around 25 A



Operational Mechanism

a We consider a NMOS transistor

O N+ source and N+ drain regions separated by p-type
material

O The body or substrate, is a single-crystal silicon wafer
Q Suppose, source, drain and body are all tied to ground
and a positive voltage applied to the gate

= A positive gate voltage will tend to draw electrons from the
substrate into the channel region

= A conducting path is created between drain and source

= Current will flow from drain to source in presence of a
voltage difference between the source and the drain

= The gate voltage needed to initiate formation of a conducting
channel is termed as the threshold voltage Vt



Threshold Voltage: Concept
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The Threshold Voltage

Follow board notes




What Is a Transistor?

A Switch! = - An MOS Transistor
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The Body Effect
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Current-Voltage Relations

a Follow board notes




Current-Voltage Relations
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Transistor in Linear
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MOS transistor and its bias conditions




Transistor in Saturation
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Current-Voltage Relations
The Deep-Submicron Era

a The quadratic model Is valid for long
channel devices

aIn DSM, channel length Is scaled

= Vertical and horizontal electric fields are
large and they interact with each other

= Saturation in DSM devices occur when the
carriers reach velocity saturation




lps vs. Vs for NMOS
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Effect of high fields
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Effect of high fields (Cont’d)

Q Effect of the vertical field on the mobility

* The vertical field increases the electron
scattering at the surface of the channel

Qa Follow board notes

a The horizontal field acts to reduce the
mobility even further




Velocity Saturation

t Velocity saturation
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Velocity Saturation (Cont’d)
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Current Equations
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Current Equation (Cont’d)
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Current Equation (Saturation)
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Current-Voltage Relations
The Deep-Submicron Era
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Perspective

Long-channel device

Short-channel device




lp Versus Ve

-4
x 10 o
6 5 10
5,
2,
4 drati
quadratic 1d
<3 <
e =
1,
2,
A 0.5
quadratic
C 1 1 1 O I 1 L
0 0.5 1 15 2 2.5 0 0.5 1 15 2 2.5
Long Channel Short Channel



Ip versus Vpe
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Simple Model versus SPICE
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A PMOS Transistor
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Transistor Model
for Manual Analysis

Table 3.2 Parameters for manual model of generic 0.25 um CMOS process (minimum length
device).

Vi (V) ¥ (VP5) Vpsar V) k' (AVD) AV
NMOS 0.43 0.4 .63 115 % 107" 0.006

PMOS 0.4 -0.4 -1 30 % 1070 -0.1




The Transistor as a Switch
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The Transistor as a Switch

Table 3.3 Equivalent resistance R, (W/L= 1) of NMOS and PMOS transistors in 0.25 pm CMOS
process (with L = L,.). For larger devices, divide R, by W/L.

Vop (V) 1 1.5 2 2.5

NMOS (k&) 35 19 15 13

PMOS (k&) 115 55 38 31
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