EE 466/586 VLSI Design

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

Lecture 2 The MOS Transistor

(Reference: Chapter 2 of Weste and Harris or Chapter 2 of HJS)

The MOS Transistor

Structural Details

□ Channel length L

- Typical values of L today vary from 90nm to 32 nm
- The dimension will continue to scale according to Moore's law
- Perpendicular to the plane of the figure is the channel width W
 - Much larger than the minimum length
- \Box Gate oxide thickness t_{ox}
 - Around 25 Å

Operational Mechanism

- □ We consider a NMOS transistor
- N+ source and N+ drain regions separated by p-type material
- □ The body or substrate, is a single-crystal silicon wafer
- Suppose, source, drain and body are all tied to ground and a positive voltage applied to the gate
 - A positive gate voltage will tend to draw electrons from the substrate into the channel region
 - A conducting path is created between drain and source
 - Current will flow from drain to source in presence of a voltage difference between the source and the drain
 - The gate voltage needed to initiate formation of a conducting channel is termed as the threshold voltage Vt

Threshold Voltage: Concept

The Threshold Voltage

-

-

-

.

•

Follow board notes

What is a Transistor?

The Body Effect

Current-Voltage Relations

□ Follow board notes

Current-Voltage Relations

Transistor in Linear

MOS transistor and its bias conditions

Transistor in Saturation

Current-Voltage Relations The Deep-Submicron Era

- The quadratic model is valid for long channel devices
- □ In DSM, channel length is scaled
 - Vertical and horizontal electric fields are large and they interact with each other
 - Saturation in DSM devices occur when the carriers reach velocity saturation

 I_{DS} vs. V_{DS} for NMOS

Effect of high fields

1980:	1995:	2001:
$E_y = \frac{5V}{5\mu m} = 10^4 \frac{V}{cm}$	$E_{y} = \frac{3.3V}{0.35\mu m} = 9.4 \times 10^{4} \frac{V}{cm}$	$E_{y} = \frac{1.2V}{0.1\mu m} = 1.2 \times 10^{5} V / cm$

Horizontal Field

1980:	1995:	2001:
$E_x = \frac{5V}{1000\text{\AA}} = 50 \times 10^4 \text{ V/cm}$	$E_x = \frac{3.3V}{100\text{\AA}} = 4.4 \times 10^6 \frac{V}{cm}$	$E_x = \frac{1.2V}{22\text{\AA}} = 5.5 \times 10^6 \frac{V}{cm}$

Vertical Field

Effect of high fields (Cont'd)

Effect of the vertical field on the mobility

- The vertical field increases the electron scattering at the surface of the channel
- □ Follow board notes
- The horizontal field acts to reduce the mobility even further

Velocity Saturation

Velocity Saturation (Cont'd)

$$v = \mu_e \frac{E}{\left(1 + \frac{E}{E_e}\right)} \qquad \qquad E_y < E_e$$

$$v = v_{sat}$$
 $E_y \ge E_c$

$$v = \mu_e \frac{E}{\left(1 + \frac{E}{E_e}\right)} = \frac{\mu_e E_c}{2}$$
$$\therefore E_c = \frac{2 v_{sat}}{\mu_e}$$

Current Equations

$$\begin{split} I_{DS} &= W \times Q_n \times V \\ I_{DS} &= W \quad C_{ox} (V_{GS} - V_T - V(y)) \left(\frac{\mu_e E}{1 + \frac{E}{Ec}} \right) \end{split}$$

$$I_{DS} = \frac{W}{1 + \frac{E}{E_c}} C_{ox}(V_{GS} - V_T - V(y)) \quad \mu_e E$$

where
$$E = -\frac{dV(y)}{dy}$$

Current Equation (Cont'd)

$$I_{DS} = W\mu_e \left[C_{ox}(V_{GS} - V_T - V(y)) + \frac{I_{DS}}{W/\mu_e E} \right] \frac{dV(y)}{dy}$$

$$I_{DS} = \frac{W}{L} \cdot \frac{\mu_e C_{ox}}{(1 + \frac{V_{DS}}{E_e L})} (V_{GS} - V_T - \frac{V_{DS}}{2}) V_{DS}$$

Current Equation (Saturation)

$$I_{DS} = W \times Q_n \times V_{sat}$$

$$I_{DS} = W \times C_{ox} \left(V_{GS} - V_T - V_{DS} \right) V_{sat}$$

$$V_{Dsat} = \frac{(V_{GS} - V_T)E_cL}{(V_{GS} - V_T) + E_cL}$$

$$I_{DS} = W V_{sat} C_{ox} \frac{(V_{GS} - V_T)^2}{(V_{GS} - V_T) + E_c L}$$

Current-Voltage Relations The Deep-Submicron Era

I_D versus V_{GS}

I_D versus V_{DS}

Long Channel

Short Channel

Simple Model versus SPICE

A PMOS Transistor

Transistor Model for Manual Analysis

Table 3.2 Parameters for manual model of generic 0.25 μm CMOS process (minimum length device).

	V _I (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	$115 imes 10^{-6}$	0.06
PMOS	-0.4	-0.4	-1	$-30 imes10^{-6}$	-0.1

The Transistor as a Switch

$$V_{GS} \ge V_T$$

S R_{on} D

The Transistor as a Switch

Table 3.3 Equivalent resistance R_{eq} (*W*/*L*= 1) of NMOS and PMOS transistors in 0.25 µm CMOS process (with $L = L_{min}$). For larger devices, divide R_{eq} by *W*/*L*.

V _{DD} (V)	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31