EE 466/586 VLSI Design

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

Lecture 5 MOS Inverter Circuits

Saturated Enhancement Load

A single NMOS transistor with the gate connected to the drain can be used as a load device.

Saturated Enhancement Load (Cont'd)

- The load transistor can operate only in saturation or cutoff ($V_{GS} = V_{DS}$)
- The other NMOS device pulls down the output node

The relative sizes of the two transistors determine the output voltage

Saturated Enhancement Load (cont'd)

- \Box The output high level V_{OH} is not equal to V_{DD}
- The pull-up transistor ceases to conduct after its gate-source voltage decreases to the threshold voltage.
 - The output node never rises above V_{DD}-V_{TL}
 - V_{TL} is no longer V_{T0}
 - Output voltage appears as a body bias
 - Follow board notes

Saturated Enhancement Load (Cont'd)

- **\Box** How to find V_{OL}?
- □ For the inverting transistor, with $V_{GS}=V_{OH}$ the output voltage should be lower than V_{T0}
- □ Pull down transistor is in the linear region
 V_{DS}<V_{GS} V_{TI}
- $\Box I_{DI}(Iin) = I_{DL}(Sat)$
- Follow board notes

Linear Enhancement load

The output high level of the saturated enhancement load configuration is not sufficient

Linear Enhancement Load (Cont'd)

- □ The load device can pull the output all the way to V_{DD}
- \Box For the pull up device $V_{DS} < V_{GS} V_{TL}$
- The pull-up device, operates in the linear region