EE 466/586 VLSI Design

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

Lecture 7 Static MOS Gate Circuits

CMOS Gate Sizing

NAND and NOR gate sizingFollow board notes

Pseudo-NMOS Gate Sizing

Fanin and Fanout Considerations

- □ Gates with a large number of inputs (high fan-in gates)
 - Too high resistance
 - Area penalty
- Follow board notes
- □ Fan Out
 - Output driving capability

Fan Out

10

VTC of NAND Gates

□ If input A is held high while input B switched from low to high, the gate is equivalent to an inverter with a 2W pull-up device and a 2W pull-down device. The resulting transfer characteristic would shift to the left of the standard inverter.

VTC of NOR Gates

Static Complementary CMOS

• The function of the PUN is to provide a connection between the output and Vdd anytime the output of the logic gate is meant to be 1

• Similarly the role of the PDN is to connect the output to GND when the output is meant to be 0

PUN and PDN are dual logic networks

NMOS as PDN & PMOS as PUN

- NMOS device can pull the output all the way down to GND, but the PMOS device can pull it down to Vtp
- □ NMOS transmits a strong 0
- PMOS transmits a strong 1

Complex CMOS Gate

Constructing a Complex Gate

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

Sequential Logic

- 2 storage mechanisms
- positive feedback
- charge-based

A latch is level sensitive

A register is edge-triggered

Latch versus Register

Latch

Stores data depending on the level of the clock

□ Register

Q

stores data when

clock rises

Latch-Based Design

Timing Definitions

Timing Definitions

□ T_{su} (Setup time)

- Incoming data must be stable before the clock arrives
- □ T_{hold} (Hold time)
 - The length of time the data remains stable after the clock arrives for proper operation
- If the data is stable before the setup time and continues to be stable after the hold time, the register will properly capture the data
- □ T_{clk-Q} (clk to Q delay)
 - This is the delay from the time the clock arrives to the point at which the Q output stabilizes

Maximum Clock Frequency

$$t_{clk-Q} + t_{p,comb} + t_{setup} = T$$

Positive Feedback: Bi-Stability

Gain should be larger than 1 in the transition region

Cross-Coupled Pairs

NOR-based set-reset

Cross-Coupled NAND

This is not used in datapaths any more, but is a basic building memory cell