EE434 ASIC & Digital Systems

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

Lecture 11

Physical Design Issues

Interconnect Scaling Effects

• Dense multilayer metal increases coupling capacitance

 Long/narrow line widths further increases resistance of interconnect

Wire Modeling

Wires are a distributed RC circuit

Wire has r= resistance/mm and c=capacitance/mm
How should you model the interconnect for hand calc?
Use a simple L, ∏, or T model assuming C=cL and R = rL

- · One of the three models above is not useful for distributed RC modeling
- Even with proper modeling, we still have to deal with RC trees

Elmore Delay

□ Follow board notes

Elmore Delay

- C_k = every capacitance in the network in sequence
- R_{ik} = common resistance in path between source and node i and source and node k

 $\tau_1 = R1C1 + R1C2 + R1C3$ $\tau_2 = R1C1 + (R1+R2)C2 + R1C3$ $\tau_3 = R1C1 + R1C2 + (R1+R3)C3$

Delay of a wire

What is the delay along the distributed line as a function on length L?

Use Elmore delay = $(r \Delta L)(c \Delta L) + 2(r \Delta L)(c \Delta L) + ... + N(r \Delta L)(c \Delta L)$ = $(\Delta L)^2 rc(1 + 2 + ... + N)$ = $(\Delta L)^2 rc(N)(N+1)/2 \approx (\Delta L)^2 rcN^2$ = $L^2 rc/2 = RC/2$ (according to Elmore) $\approx 0.4 rcL^2$ (measured) Note that delay is proportional to length²

FO4 vs. Wire Delay

Buffer Insertion for Long Wires

 Make Long wires into short wires by inserting buffers periodically. Divide interconnect into N sections as follows:

 $R_{eff} = R_{eqn}/M \qquad C_{self} = C_j 3W^*M \qquad C_{fanout} = C_g 3W^*M \qquad R_w = R_{int}L/N \qquad C_w = C_{int}L/N$

- Then delay through buffers and interconnect is given by: $t_p = N * [R_{eff}(C_{self} + C_W/2) + (R_{eff} + R_W)(C_W/2 + C_{fanout})]$
- What is the optimal number of buffers? Find N such that $\partial t_P / \partial N = 0 \implies N \approx \text{sqrt}(0.4R_{\text{int}}C_{\text{int}}L^2 / t_{\text{pbuf}})$ where $t_{\text{pbuf}} = R_{\text{eff}}(C_{\text{self}} + C_{\text{fanout}})$
- What size should the buffers be? Find M such that $\partial t_P / \partial M = 0 \implies M = sqrt((R_{eqn}/C_g 3W)(C_{int}/R_{int}))$

Global wire delay

Global wires limit the system performance

Purpose of Power Distribution

- Goal of power distribution system is to deliver the required current across the chip while maintaining the voltage levels necessary for proper operation of logic circuits
- Must route both power and ground to all gates
- Design Challenges:
 - How many power and ground pins should we allocate?
 - Which layers of metal should be used to route power/ground?
 - How wide should be make the wire to minimize voltage drops and reliability problems
 - How do we maintain V_{DD} and Gnd within noise budget?
 - How do we verify overall power distribution system?

Power Distribution Issues - IR Drop

- Narrow line widths increase metal line resistance
- As current flows through power grid, voltage drops occur
- Actual voltage supplied to transistors is less than Vdd
- Impacts speed and functionality
- Need to choose wire widths to handle current demands of each segment

Power Grid Issues - Electromigration

- As current flows down narrow wires, metal begins to migrate
- Metal lines break over time due to metal fatigue
- Based on average/peak current density
- Need to widen wires enough to avoid this phenomenon

Power Routing Examples

Simple Routing Examples

Interleaved Power/Ground Routing

Interleaved Vdd/Vss

Ldi/dt Effects in the Power Supply

- In addition to IR drop, power system inductance is also an issue
- Inductance may be due to power pin, power bump or power grid
- Overall voltage drop is:

$$V_{drop} = IR + Ldi/dt$$

- Distribute decoupling capacitors (de caps) liberally throughout design
 - Capacitors store up charge
 - Can provide instantaneous source of current for switching

Clock Design Issues

Clock cycle depends on a number of factors:

$$T_{cycle} = T_{Clk-Q} + T_{Logic} + T_{setup} + (T_{skew})$$

Sources of clock skew

Main sources:

- 1. Imbalance between different paths from clock source to FF's
 - interconnect length determines RC delays
 - capacitive coupling effects cause delay variations
 - buffer sizing
 - number of loads driven
- 2. Process variations across die
 - interconnect and devices have different statistical variations

Power Dissipation in Clocks

- Significant power dissipation can occur in clocks in highperformance designs:
 - clock switches on every cycle so P= CV²f (i.e., α=1)
 - clock capacitance can be ~nF range, say 1nF = 1000pF
 - assuming a power supply of 1.8V, CV = 1800pC of charge
 - if clock switches every 2ns (500MHz), that's 0.9A
 - for V_{DD} = 1.8V, P=IV=0.9(1.8)=1.6W in the clock circuit alone
- Much of the power (and the skew) occurs in the <u>final drivers</u> due to the sizing up of buffers to drive the flip-flops
- Key to reducing the power is to examine equation CV²f and reduce the terms wherever possible
 - V_{DD} is usually given to us; would not want to reduce swing due to coupling noise, etc.
 - Look more closely at C and f

Reducing Power in Clocking

- Gated Clocks:
 - can gate clock signals through AND gate before applying to flip-flop; this is more of a total chip power savings
 - all clock trees should have the same type of gating whether they are used or not, and at the same level - total balance
- Reduce overall capacitance (again, shielding vs. spacing)

shield	eloek	shield	Signal 1	clock	Signal 2
--------	-------	--------	----------	-------	----------

(a) higher total cap./less area

(b) lower cap./ more area

- Tradeoff between the two approaches due to coupling noise
- approach (a) is better for inductive noise; (b) is better for capacitive noise

Clock Design

Tree

- Minimal area cost
- Requires clock-tree management
- Use a large super buffer to drive downstream buffers
- Balancing may be an issue

Clock Configurations

H-Tree

- Place clock root at center of chip and distribute as an H structure to all areas of the chip
- Clock is delayed by an equal amount to every section of the chip
- Local skew inside blocks is kept within tolerable limits

Clock Configurations

Grid

- Greater area cost
- Easier skew control
- Increased power consumption
- Electromigration risk increased at drivers
- Severely restricts floorplan and routing

