EE 466/586 VLSI Design

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 15 Dynamic Logic

Dynamic CMOS

- □ In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of *n* requires 2n (*n* N-type + *n* P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires on n + 2 (n+1 N-type + 1 P-type) transistors

Dynamic Gate

Two phase operation **Precharge** (Clk = 0) Evaluate (Clk = 1)

Conditions on Output

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_L
- This behavior is fundamentally different than the static counterpart that always has a low resistance path between the output and one of the power rails.

Properties of Dynamic Gates

□ Logic function is implemented by the PDN only

- number of transistors is N + 2 (versus 2N for static complementary CMOS)
- □ Full swing outputs (V_{OL} = GND and V_{OH} = V_{DD})
- Non-ratioed sizing of the devices does not affect the logic levels
- □ Faster switching speeds
 - reduced load capacitance due to lower input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading (Cout)
 - no lsc, so all the current provided by PDN goes into discharging CL

Properties of Dynamic Gates

Overall power dissipation usually higher than static CMOS

- no static current path ever exists between V_{DD} and GND
- no glitching
- higher transition probabilities
- extra load on Clk

□ Needs a precharge/evaluate clock

Issues in Dynamic Design 1: Charge Leakage

leakage sources are reverse-biased diode and the sub-threshold leakage of the NMOS pull down device.

Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic During precharge, Out is VDD and inverter out is GND, so keeper is on

Issues in Dynamic Design 2: Charge Sharing

Charge stored originally on C_L is redistributed (shared) over C_L and C_A leading to reduced robustness CA initially discharged and CL fully charged

Charge Sharing

Charge Sharing Example

Solution to Charge Redistribution

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

Issues in Dynamic Design 3: Clock Feedthrough

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above V_{DD} . The fast rising (and falling edges) of the clock couple to Out.

Clock Feedthrough

Cascading Dynamic Gates

Only $0 \rightarrow 1$ transitions allowed at inputs!

Cascading Dynamic Gates

- Out2 should remain at V_{DD} since Out1 transitions to 0 during evaluation. However, since there is a finite propagation delay for the input to discharge Out1 to GND, the second output also starts to discharge.
- The second dynamic inverter turns off (PDN) when Out1 reaches V_{Tn}.
- Setting all inputs of the second gate to 0 during precharge will fix it.
- Correct operation is guaranteed (ignoring charge redistribution and leakage) as long as the inputs can only make a single 0 -> 1 transition during the evaluation period

Domino Logic

Ensures all inputs to the Domino gate are set to 0 at the end of the precharge period. Hence, the only possible transition during evaluation is 0 -> 1

Why Domino?

Like falling dominos!

Designing with Domino Logic

Footless Domino

The first gate in the chain needs a foot switch Precharge is rippling – short-circuit current A solution is to delay the clock for each stage

np-CMOS

Only $0 \rightarrow 1$ transitions allowed at inputs of PDN Only $1 \rightarrow 0$ transitions allowed at inputs of PUN

Properties of Domino Logic

□ Only non-inverting logic can be implemented

- □ Very high speed
 - static inverter can be skewed, only L-H transition
 - Input capacitance reduced

Differential (Dual Rail) Domino

Solves the problem of non-inverting logic

Take Home Exercise

Design a dual-rail XOR/XNOR domino gate and share as many transistors as possible between the true and complement logic blocks