EE 466/586 VLSI Design

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

Lecture 18 Implementation Methods

The Design Productivity Challenge

A Simple Processor

Simple Processor (Cont'd)

Datapath

All computations are performed

Combinational & Arithmetic operations

Control Module

- Sequential circuit
- •FSM

Memory module

Data storage

Interconnect

Integrating the whole system

I/O circuitry

Connects to outside world

A System-on-a-Chip: Example

Courtesy: Philips

Implementation Approach

Flexibility (Programmable design)

- •Reuse of single design for multiple applications
- •Upgrade in the field

Hard-wired

•Totally fixed at the manufacturing time

Flexibility comes at the cost of higher energy dissipation

Impact of Implementation Choices

Implementation Choices

Custom Circuit Design

Performance or Design density is of prime importance

•Long time to market

Can be justified in limited situations

•Custom block can be reused many time (e.g. memory blocks)

•Cost can be amortized over large volumes

Design automation

• Very critical components are designed manually

The Custom Approach

Intel 4004

Courtesy Intel

Transition to Automation and Regular Structures

Intel 4004 ('71)

Intel 8080

Intel 8085

Intel 8286

Intel 8486

Courtesy Intel

Cell-based Design

Standardizes the design entry level at the logic gate

Library of logic gates

- •Inverter, AND/NAND, OR/NOR, Flip-flops
- •More complex functions, AOI.....
- Design generation
 - Schematic using the cells
 - •Higher level description language (VHDL, Verilog)
- All cells have identical heights
- Widths of the cells may vary

Standard cell design can be combined with other layout methodologies

Cell-based Design (or standard cells)

Routing channel requirements are reduced by presence of more interconnect Layers Feed Through cells – Connect between cells in different rows without having to route around a complete row

Rows of cells

Standard Cell — Example

[Brodersen92]

Standard Cell – The New Generation

Cell-structure hidden under interconnect layers

Standard Cell - Example

Path	1.2V - 125°C	1.6V - 40°C
In $1-t_{pLH}$	0.073+7.98C+0.317T	0.020+2.73 <i>C</i> +0.253 <i>T</i>
In $1-t_{pHL}$	0.069+8.43 <i>C</i> +0.364 <i>T</i>	0.018+2.14 <i>C</i> +0.292 <i>T</i>
In2—t _{pLH}	0.101+7.97 <i>C</i> +0.318 <i>T</i>	0.026+2.38 <i>C</i> +0.255 <i>T</i>
In2—t _{pHL}	0.097+8.42 <i>C</i> +0.325 <i>T</i>	0.023+2.14 <i>C</i> +0.269 <i>T</i>
In3— t_{pLH}	0.120+8.00 <i>C</i> +0.318 <i>T</i>	0.031+2.37C+0.258T
$In3-t_{pHL}$	0.110+8.41C+0.280T	0.027+2.15 <i>C</i> +0.223 <i>T</i>

3-input NAND cell (from ST Microelectronics): C = Load capacitance T = input rise/fall time

Macrocells

Complex blocks than random logic functions
(Multipliers, DSPs ...)
Complex cells – Macro cells

Hard & Soft Macro

Hard Macro - Design of a logic function on a chip that specifies how the required logic elements are interconnected and specifies the physical pathways and wiring patterns between the components.

Soft Macro - Design of a logic function on a chip that specifies how the required logic elements are interconnected, but not the physical wiring pattern.

Hard MacroModules

256×32 (or 8192 bit) SRAM Generated by hard-macro module generator

"Soft" MacroModules

Synopsys DesignCompiler

"Intellectual Property"

A Protocol Processor for Wireless

Semicustom Design Flow

The "Design Closure" Problem

Iterative Removal of Timing Violations (white lines)

Courtesy Synopsys

Integrating Synthesis with Physical Design

