
EE 466/586
VLSI Design

 Partha Pande
 School of EECS

 Washington State University
 pande@eecs.wsu.edu

Two-Phase Systems

Lecture 20

Clocking disciplines

 Rules for constructing sequential machines.
– Combinations of registers and gates.
– Behavior of clocks and primary inputs over

time.
 Rules are sufficient to guarantee that the

system will work at some clock rate.
– May not be as fast as we want.

Clocking Rules

 Combinational logic gates cannot be
connected in a cycle

 All components must have bounded delay

Flip-flop rules

 Primary inputs change after clock (φ) edge.
 Primary inputs must stabilize before next

clock edge.
 Rules allow changes to propagate through

combinational logic for next cycle.
 Flip-flop outputs hold current-state values

for next-state computation.

Signals in flip-flop system

positive clock edge

Latch-based machines

 Latches do not cut combinational logic
when clock is active.

 Latch-based machines must use multiple
ranks of latches.

 Multiple ranks require multiple phases of
clock.

Two-sided latch constraint

 Latch must be open less than the shortest
combinational delay.

 Period between latching operations must be
longer than the longest combinational delay.

 Note: difference between shortest and
longest combinational delay may be large
(sum0 vs. sum31).

Strict two-phase clocking
discipline

 Strict two-phase discipline is conservative
but works.

 Can be relaxed later with proper knowledge
of constraints.

 Strict two-phase machine makes latch-based
machine behave more like flip-flop design,
but requires multiple phases.

Strict two-phase architecture

Two-phase clock

Phases must not overlap:

non-overlap region

Why it works

 Each phase has a one-sided constraint:
phase must be long enough for all
combinational delays.

 If there are no combinational loops, phases
can always be stretched to make that section
of the machine work.

 Total clock period depends on sum of phase
periods.

Clocking types

 Logic on different phases operate at
different times—can’t mix signals from
different phases.

 Primary inputs must obey the same rules as
internal signals.

 Clocking types help us to ensure that
machine structure is valid.

Stable signals

 A logic signal is always stable during one
phase—phase in which the latch which
produced it is not active.

 Easiest to think of machine behavior in
terms of stable signals, though signals
propagate while not stable.

Signal types

 Clocks are separate type: φ1 , φ2.
 Two types of stable data signal:

– stable φ1 (s φ1)
– stable φ2 (s φ2)

 A stable signal has a complementary valid
signal:
– stable φ2 (s φ2) = valid φ1 (v φ1)

Stable data signal

inactive clock

stable until latch
feeding this
logic goes active

stable φ2 becomes
valid at end of φ1

How clocking types combine

Clocking types in the two-phase
machine

combinational
logic

D Q

combinational
logic

D Q

I1(s φ2)

φ1

O1(s φ2)

I2(s φ1)

O2(s φ1)

s φ1

s φ2

φ2

Example: shift register

 Want to displace bit by n registers in n
cycles.

 Each register requires two phases:

Shift register operation

φ1 = 1, φ2 = 0

φ1 = 0, φ2 = 1

Non-strict disciplines

 Some relaxation of the rules can be useful:
– reduce area;
– increase performance.

 Rules must be relaxed in a way that ensures
the machine will still work.

Qualified clocks

 Use logic to generate a clock signal which
is not always active.

 Qualification must not introduce glitches
into the clock—glitches violate the
fundamental definition of a clock by
introducing extra edges.

 Use stable signals to qualify clocks.

Qualified clock

 Clock logically combined with signal:

D Q

φ

sig1

Uses of qualified clocks

 May want to conditionally load a register.
 May qualify a clock to turn off machine for

low-power operation.
 Latch must not lose its value during inactive

period.
 Difficult to ensure that logic value will

come high in time—use quasi-static latch.

Qualified clocks and skew

 Logic in the clocking path introduces delay.
 Delay can cause clock to arrive at latches at

different times, violating clocking
assumptions.

 When designing qualification logic:
– minimize and check skew;
– sharpen clock edge.

Unbalanced delays

Logic with unbalanced delays leads to
inefficient use of logic:

long clock period short clock period

Flip-flop-based system performance
analysis

Flip-flop-based system model

 Clock signal is perfect (no rise/fall), period P.
 Clock event on rising edge.
 Setup time s.

– Time from arrival of combinational logic event to clock
event.

 Propagation time p.
– Time for value to go from flip-flop input to output.

 Worst-case combinational delay C.
– Time from output of flip-flop to input.

Clock parameters

Clock period constraint

 P >= C + s + p. s p C

Clock with rise/fall

Rise/fall clock period constraint

 P >= C + s + p + tr. s p C tr

Latch system clock period

 For each phase, phase period must be longer
than sum of:
– combinational delay;
– latch propagation delay.

 Phase period depends on longest path.

Latch-based system model

Two-phase timing parameters

Clock period constraint

 Total clock period (both phases):
– P >= C1 + C2 + 2s + 2p.

 Each phase must meet timing for its own
latch.

Latch-based system model

Example with unbalanced phases

One phase is much longer than the other:

Spreading out a phase

Compute only part of long paths in one phase:

Spreading out a phase, cont’d.

Use other phase for end of long logic block
and all of short logic block:

Skew

 Skew: relative delay between events.
 Signal skew: most important for

asynchronous, timing-dependent logic.
 Clock skew: can harm any sequential

system.

Signal skew

Machine data signals must obey setup and
hold times—avoid signal skew.

Clock skew

Clock must arrive at all memory elements in
time to load data.

Clock skew example

Clock skew in system

D Q

D Q

logic

δ

Clock distribution

 Often one of the
hardest problems in
clock design.
– Fast edges.
– Minimum skew.

	EE 466/586�VLSI Design
	Slide Number 2
	Clocking disciplines
	Clocking Rules
	Flip-flop rules
	Signals in flip-flop system
	Latch-based machines
	Two-sided latch constraint
	Strict two-phase clocking discipline
	Strict two-phase architecture
	Two-phase clock
	Why it works
	Clocking types
	Stable signals
	Signal types
	Stable data signal
	How clocking types combine
	Clocking types in the two-phase machine
	Example: shift register
	Shift register operation
	Non-strict disciplines
	Qualified clocks
	Qualified clock
	Uses of qualified clocks
	Qualified clocks and skew
	Unbalanced delays
	Flip-flop-based system performance analysis
	Flip-flop-based system model
	Clock parameters
	Clock period constraint
	Clock with rise/fall
	Rise/fall clock period constraint
	Latch system clock period
	Latch-based system model
	Two-phase timing parameters
	Clock period constraint
	Latch-based system model
	Example with unbalanced phases
	Spreading out a phase
	Spreading out a phase, cont’d.
	Skew
	Signal skew
	Clock skew
	Clock skew example
	Clock skew in system
	Clock distribution

