Adder

Dae Hyun Kim

EECS
 Washington State University

References

- Israel Koren, "Computer Arithmetic Algorithms," 2001.
- Chapter 5

Table of Contents

- Full Adder
- Ripple-Carry Adder
- Conditional Sum Adder

Full Adder

- Sum
$-s_{i}=x_{i} \oplus y_{i} \oplus c_{i}$
- Carry-out

$$
-c_{i+1}=x_{i} \cdot y_{i}+c_{i}\left(x_{i}+y_{i}\right)
$$

x_{i}	y_{i}	c_{i}	s_{i}	c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder

- Delay computation
- Assume two-level logic inimization
$-s_{i}=x_{i} \oplus\left(y_{i} \oplus c_{i}\right)=x_{i} \oplus\left(y_{i} \cdot \overline{c_{i}}+\overline{y_{i}} \cdot c_{i}\right)=x_{i} \cdot \overline{\left(y_{i} \cdot \overline{c_{i}}+\overline{y_{i}} \cdot c_{i}\right)}+\overline{x_{i}}$. $\left(y_{i} \cdot \overline{c_{i}}+\overline{y_{i}} \cdot c_{i}\right)=x_{i} \cdot y_{i} \cdot c_{i}+x_{i} \cdot \overline{y_{i}} \cdot \overline{c_{i}}+\overline{x_{i}} \cdot y_{i} \cdot \overline{c_{i}}+\overline{x_{i}} \cdot \overline{y_{i}} \cdot c_{i}$
$-c_{i+1}=x_{i} \cdot y_{i}+x_{i} \cdot c_{i}+y_{i} \cdot c_{i}$
- Delay for $s_{i}: 2 \cdot \Delta_{G}$
- Delay for $c_{i+1}: 2 \cdot \Delta_{G}$

Ripple-Carry Adder (RCA)

- n-bit ripple-carry adder
- Delay of a FA: $\Delta_{F A}$

$$
\begin{aligned}
& x_{i}, y_{i}, c_{0}: 0 \\
& c_{1}, s_{0}: \Delta_{F A} \\
& c_{2}, s_{1}: 2 \Delta_{F A} \\
& \ldots \\
& c_{n-1}, s_{n-2}:(n-1) \cdot \Delta_{F A} \\
& c_{n}, s_{n-1}: n \cdot \Delta_{F A} \\
& \hline
\end{aligned}
$$

Carry-Lookahead Adder (CLA)

- 1-level CLA

$$
c_{i+1}=x_{i} \cdot y_{i}+c_{i} \cdot\left(x_{i}+y_{i}\right)=G_{i}+c_{i} \cdot P_{i}
$$

$G_{i}=x_{i} \cdot y_{i}$: Generated carry (the carry is always generated)
$P_{i}=x_{i}+y_{i}$: Propagated carry (the incoming carry c_{i} is propagated)

Carry-Lookahead Adder (CLA)

- 1-level CLA

$$
\begin{aligned}
& c_{i+1}=x_{i} \cdot y_{i}+c_{i} \cdot\left(x_{i}+y_{i}\right)=G_{i}+c_{i} \cdot P_{i} \\
& G_{i}=x_{i} \cdot y_{i} \text { : Generated carry (the carry is always generated) } \\
& P_{i}=x_{i}+y_{i}: \text { Propagated carry (the incoming carry } c_{i} \text { is propagated) } \\
& c_{1}=G_{0}+P_{0} \cdot c_{0} \\
& c_{2}=G_{1}+P_{1} \cdot c_{1}=G_{1}+P_{1} \cdot\left(G_{0}+P_{0} \cdot c_{0}\right)=G_{1}+P_{1} \cdot G_{0}+P_{1} \cdot P_{0} \cdot c_{0} \\
& c_{3}=G_{2}+P_{2} \cdot G_{1}+P_{2} \cdot P_{1} \cdot G_{0}+P_{2} \cdot P_{1} \cdot P_{0} \cdot c_{0} \\
& c_{4}=G_{3}+P_{3} \cdot G_{2}+P_{3} \cdot P_{2} \cdot G_{1}+P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0}+P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot c_{0}
\end{aligned}
$$

Delay
$G_{i}, P_{i}: \Delta_{G}$
$c_{1}, c_{2}, c_{3}, c_{4}: \Delta_{G}+2 \Delta_{G}$ (assuming two-level logic minimization)
$s_{0}: 2 \Delta_{G}$
$s_{1}, s_{2}, s_{3}: \Delta_{G}+2 \Delta_{G}+2 \Delta_{G}$

Carry-Lookahead Adder (CLA)

- 1-level CLA

$$
\begin{aligned}
& c_{1}=G_{0}+P_{0} \cdot c_{0} \\
& c_{2}=G_{1}+P_{1} \cdot G_{0}+P_{1} \cdot P_{0} \cdot c_{0} \\
& c_{3}=G_{2}+P_{2} \cdot G_{1}+P_{2} \cdot P_{1} \cdot G_{0}+P_{2} \cdot P_{1} \cdot P_{0} \cdot c_{0} \\
& c_{4}=G_{3}+P_{3} \cdot G_{2}+P_{3} \cdot P_{2} \cdot G_{1}+P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0}+P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot c_{0} \\
& c_{5}=G_{4}+P_{4} \cdot c_{4} \\
& c_{6}=G_{5}+P_{5} \cdot G_{4}+P_{5} \cdot P_{4} \cdot c_{4} \\
& c_{7}=G_{6}+P_{6} \cdot G_{5}+P_{6} \cdot P_{5} \cdot G_{4}+P_{6} \cdot P_{5} \cdot P_{4} \cdot c_{4} \\
& c_{8}=G_{7}+P_{7} \cdot G_{6}+P_{7} \cdot P_{6} \cdot G_{5}+P_{7} \cdot P_{6} \cdot P_{5} \cdot G_{4}+P_{7} \cdot P_{6} \cdot P_{5} \cdot P_{4} \cdot c_{4}
\end{aligned}
$$

Carry-Lookahead Adder (CLA)

- n-bit 1-level CLA

Delay

$$
\Delta_{G}+2 \Delta_{G} \cdot\left(\frac{n}{4}\right)+2 \Delta_{G}=\left(\frac{n}{2}+3\right) \Delta_{G}
$$

Carry-Lookahead Adder (CLA)

- 2-level CLA

$$
\begin{aligned}
& c_{1}=G_{0}+P_{0} \cdot c_{0} \\
& c_{2}=G_{1}+P_{1} \cdot G_{0}+P_{1} \cdot P_{0} \cdot c_{0} \\
& c_{3}=G_{2}+P_{2} \cdot G_{1}+P_{2} \cdot P_{1} \cdot G_{0}+P_{2} \cdot P_{1} \cdot P_{0} \cdot c_{0} \\
& c_{4}=\frac{G_{3}+P_{3} \cdot G_{2}+P_{3} \cdot P_{2} \cdot G_{1}+P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0}}{G_{3: 0}}+\frac{P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot c_{0}}{P_{3: 0}} \\
& c_{5}=G_{4}+P_{4} \cdot c_{4} \\
& c_{6}=G_{5}+P_{5} \cdot G_{4}+P_{5} \cdot P_{4} \cdot c_{4} \\
& c_{7}=G_{6}+P_{6} \cdot G_{5}+P_{6} \cdot P_{5} \cdot G_{4}+P_{6} \cdot P_{5} \cdot P_{4} \cdot c_{4} \\
& c_{8}=\frac{G_{7}+P_{7} \cdot G_{6}+P_{7} \cdot P_{6} \cdot G_{5}+P_{7} \cdot P_{6} \cdot P_{5} \cdot G_{4}}{G_{7: 4}}+\frac{P_{7} \cdot P_{6} \cdot P_{5} \cdot P_{4} \cdot c_{4}}{P_{7: 4}} \\
& c_{9}=G_{8}+P_{8} \cdot c_{8} \\
& c_{10}=G_{9}+P_{9} \cdot G_{8}+P_{9} \cdot P_{8} \cdot c_{8} \\
& c_{11}=G_{10}+P_{10} \cdot G_{9}+P_{10} \cdot P_{9} \cdot G_{8}+P_{10} \cdot P_{9} \cdot P_{8} \cdot c_{8} \\
& c_{12}=\frac{G_{11}+P_{11} \cdot G_{10}+P_{11} \cdot P_{10} \cdot G_{9}+P_{11} \cdot P_{10} \cdot P_{9} \cdot G_{8}+\frac{P_{11} \cdot P_{10} \cdot P_{9} \cdot P_{8} \cdot c_{8}}{P_{11: 8}}}{G_{11: 8}} \\
& \\
& c_{16}=\frac{G_{15: 12}+P_{15: 12} \cdot G_{11: 8}+P_{15: 12} \cdot P_{11: 8} \cdot G_{7: 4}+P_{15: 12} \cdot P_{11: 8} \cdot P_{7: 4} \cdot G_{3: 0}}{+P_{15: 12} \cdot P_{11: 8} \cdot P_{7: 4} \cdot P_{3: 0} \cdot c_{0}} \\
&
\end{aligned}
$$

Carry-Lookahead Adder (CLA)

- 2-level CLA

$$
\begin{aligned}
& c_{4}=G_{3: 0}+P_{3: 0} \cdot c_{0} \\
& c_{8}=G_{7: 4}+P_{7: 4} \cdot G_{3: 0}+P_{7: 4} \cdot P_{3: 0} \cdot c_{0} \\
& c_{12}=G_{11: 8}+P_{11: 8} \cdot G_{7: 4}+P_{11: 8} \cdot P_{7: 4} \cdot G_{3: 0}+P_{11: 8} \cdot P_{7: 4} \cdot P_{3: 0} \cdot c_{0} \\
& c_{16}=G_{15: 12}+P_{15: 12} \cdot G_{11: 8}+P_{15: 12} \cdot P_{11: 8} \cdot G_{7: 4}+P_{15: 12} \cdot P_{11: 8} \cdot P_{7: 4} \cdot G_{3: 0} \\
& \quad+P_{15: 12} \cdot P_{11: 8} \cdot P_{7: 4} \cdot P_{3: 0} \cdot c_{0}
\end{aligned}
$$

Carry-Lookahead Adder (CLA)

- 16-bit 2-level CLA

Delay: $9 \Delta_{G}$

Carry-Lookahead Adder (CLA)

- k-level CLA

$$
\begin{aligned}
& c_{4}=G_{3: 0}+P_{3: 0} \cdot c_{0} \\
& c_{8}=G_{7: 4}+P_{7: 4} \cdot G_{3: 0}+P_{7: 4} \cdot P_{3: 0} \cdot c_{0} \\
& c_{12}=G_{11: 8}+P_{11: 8} \cdot G_{7: 4}+P_{11: 8} \cdot P_{7: 4} \cdot G_{3: 0}+P_{11: 8} \cdot P_{7: 4} \cdot P_{3: 0} \cdot c_{0} \\
& c_{16}=G_{15: 12}+P_{15: 12} \cdot G_{11: 8}+P_{15: 12} \cdot P_{11: 8} \cdot G_{7: 4}+P_{15: 12} \cdot P_{11: 8} \cdot P_{7: 4} \cdot G_{3: 0} \\
& \quad \quad+P_{15: 12} \cdot P_{11: 8} \cdot P_{7: 4} \cdot P_{3: 0} \cdot c_{0} \\
& \quad \\
& c_{20}=f_{20}\left(G_{19: 16}, P_{19: 16}, c_{16}\right) \\
& c_{24}=f_{24}\left(G_{23: 20}, G_{19: 16}, P_{23: 20}, P_{19: 16}, c_{16}\right) \\
& c_{28}=f_{28}\left(G_{27: 24}, G_{23: 20}, G_{19: 16}, P_{27: 24}, P_{23: 20}, P_{19: 16}, c_{16}\right) \\
& c_{32}=f_{32}\left(G_{31: 28}, G_{27: 24}, G_{23: 20}, G_{19: 16}, P_{31: 28}, P_{27: 24}, P_{23: 20}, P_{19: 16}, c_{16}\right)
\end{aligned}
$$

Carry-Lookahead Adder (CLA)

- n-bit k-level CLA

\square FA

Delay

$$
\Delta_{G}+2 \Delta_{G} \cdot\left(\log _{4} n-1\right)+2 \Delta_{G}+2 \Delta_{G}+2 \Delta_{G}=\left(2 \log _{4} n+5\right) \Delta_{G}
$$

Carry-Lookahead Adder (CLA)

- 64-bit CLA
\square FA
$\begin{array}{lllllllllllllll}60 & 56 & 52 & 48 & 44 & 40 & 36 & 32 & 28 & 24 & 20 & 16 & 12 & 8 & 4\end{array}$

Conditional Sum Adder

- n -bit conditional sum adder
- Delay: $\log (\mathrm{n})$

Conditional Sum Adder

