EE434

ASIC and Digital Systems

Final Exam

May 5, 2015. (1pm – 3pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (CMOS gates, 10 points).

What does the following circuit do? Describe the function of the circuit in as much detail as possible (D: input, Q: output, CK: clock).

When *CK* goes to 0 (falling edge), *X* is floating, *Y* is \overline{D} , and *Q* is $\overline{X}(=D)$.

When *CK* goes to 1 (rising edge), *Y* is floating, *X* is \overline{D} , and *Q* is $\overline{Y}(=D)$.

Therefore, this is a dual-edge-triggered D flip flop (it captures *D* twice per clock cycle, at rising and falling edges).

Problem #2 (Transistor Sizing Under Timing Constraints, 10 points).

Let's design a *k*-input NOR gate ($k \ge 10$) using the dynamic CMOS design methodology. The following shows a schematic of the *k*-input NOR gate.

Our objective is to <u>minimize</u> the total width, $Width = a \cdot k + b$ and satisfy given timing constraints at the same time. Two timing constraints are given to us as follows:

- Setup time: Elmore delay $\leq 4 \cdot R_n \cdot C_L$
- Hold time: Elmore delay $\geq \frac{1}{4} \cdot R_n \cdot C_L$

 R_n is the resistance of a 1X NMOS transistor. $\mu_n = 2 \cdot \mu_p$. Ignore all the parasitic capacitances. All the transistors for $x_1 \sim x_k$ are upsized to aX and the transistor for *CK* is upsized to bX (a and b are <u>real</u> numbers). <u>Find</u> *a* and *b* minimizing the total width and satisfying the timing constraints.

The worst-case resistance of the pull-down network: $\frac{R_n}{a} + \frac{R_n}{b}$

The worst-case delay: $\left(\frac{R_n}{a} + \frac{R_n}{b}\right) C_L$ Constraints: $\frac{1}{4}R_nC_L \leq \left(\frac{R_n}{a} + \frac{R_n}{b}\right)C_L \leq 4R_nC_L \Rightarrow \frac{1}{4} \leq \left(\frac{1}{a} + \frac{1}{b}\right) \leq 4$ Width: W(a, b) = ak + bLet $\frac{1}{a} + \frac{1}{b}$ be c, then $W(a, b) = b + \frac{bk}{bc-1}$ where $\frac{1}{4} \leq c \leq 4$. $\frac{\partial W}{\partial b} = 1 + \frac{k(bc-1)-bkc}{(bc-1)^2} = 1 - \frac{k}{(bc-1)^2} = \frac{(bc-1)^2-k}{(bc-1)^2} = 0 \Rightarrow b = \frac{1}{c} (1 \pm \sqrt{k})$

$$\frac{b}{\frac{\partial W}{\partial b}} + 0 - 0 +$$

 $k \ge 10, \frac{1}{4} \le c \le 4 \implies \frac{1}{c} (1 + \sqrt{k}) > 1$, so W is minimized when b is $\frac{1}{c} (1 + \sqrt{k})$.

$$\Rightarrow a = \frac{b}{bc-1} = \frac{1}{c} \left(1 + \frac{1}{\sqrt{k}} \right)$$

W = ak + b =
$$\frac{1}{c}(k + 2\sqrt{k} + 1) = \frac{(\sqrt{k} + 1)^2}{c}$$

We set c to 4 to minimize W.

Answer)
$$a = \frac{1}{4} \left(1 + \frac{1}{\sqrt{k}} \right)$$
 $b = \frac{1}{4} \left(1 + \sqrt{k} \right)$

A source drives two sinks through a net and you are supposed to insert a buffer between the source and the branch point (MP) as shown in the above figure. <u>Find</u> an optimal location of the buffer minimizing the total delay, i.e., <u>represent</u> "s" as a function of the following parameters:

- Output resistance of BUF_X1: R₁
- Input capacitance of BUF_X1: C₁
- Unit wire resistance: $r (\Omega/\mu m)$
- Unit wire capacitance: $c (F/\mu m)$
- $\frac{C_1}{c} + L_2 + L_3 < L_1$

Delay of the first segment: $\tau_1 = R_1 \cdot (c \cdot s + C_1) + (r \cdot s) \cdot C_1 + \frac{1}{2} \cdot r \cdot c \cdot s^2$

Delay of the second segment: $\tau_2 = R_1 \cdot (c \cdot (L_1 - s) + c \cdot L_2 + c \cdot L_3 + 2C_1) + (r \cdot (L_1 - s)) \cdot (c \cdot L_2 + c \cdot L_3 + 2C_1) + \frac{1}{2} \cdot r \cdot c \cdot (L_1 - s)^2 + k$ (where k is a constant. Note that the delay of the downstream of MP is not related to the location of the buffer.)

$$\tau = \tau_1 + \tau_2$$

$$\frac{d\tau}{ds} = R_1 \cdot c + r \cdot C_1 + r \cdot c \cdot s - R_1 \cdot c - r(c \cdot L_2 + c \cdot L_3 + 2C_1) - r \cdot c \cdot (L_1 - s) = 0$$

$$s = \frac{r \cdot C_1 + r \cdot c \cdot L_1 + r \cdot c \cdot L_2 + r \cdot c \cdot L_3}{2 \cdot r \cdot c} = \frac{C_1 + c \cdot L_1 + c \cdot L_2 + c \cdot L_3}{2c}$$

$$\therefore s = \frac{1}{2} \left(\frac{C_1}{c} + L_1 + L_2 + L_3 \right)$$

Problem #4 (Timing Analysis for Dynamic CMOS Circuits, 10 points).

The following figure shows a dynamic CMOS circuit between two pipeline stages.

- Setup time: T_s
- Clock period: T_{CLK}
- D-F/F internal delay: T_{CQ}
- Clock skew: 0
- NMOS logic delay: T_{logic}
- Inverter delay: T_v
- Clock duty cycle: 50%

When the clock goes from low to high, the F/Fs capture their input signals. At the same time, the dynamic CMOS circuit starts pre-charging the output node. When the clock goes from high to low, the dynamic CMOS circuit starts evaluating its inputs. The delay of the dynamic CMOS circuit (T_{logic}) is actually the time spent to discharge the output node. <u>Derive</u> a new setup time constraint (inequality) for the dynamic CMOS circuit shown above.

The following is the setup time inequality for the single-edge F/F operation:

$$T_{\rm s} \le T_{\rm CLK} + T_{\rm skew} - T_{\rm logic} - T_{\rm CQ}$$

As the following figure shows, when the clock goes from low to high, the D-F/Fs capture their input signals. After T_v , \overline{CLK} goes from high to low and the dynamic CMOS circuit starts pre-charging the output capacitor. When the clock goes from high to low, \overline{CLK} goes from low to high after T_v and the dynamic CMOS circuits starts evaluating the

logic. The D-F/Fs will capture their input signals at the next rising edge, so the evaluation should be done at least T_s before the edge.

Problem #5 (Timing Analysis and Coupling in an RCA, 10 points).

Let's design a four-bit ripple carry adder (RCA) with C_0 tied to ground as shown below.

Due to some physical design constraints, only ten routing tracks are available for the eight primary input signals as follows:

You are supposed to use <u>eight</u> routing tracks <u>for signal</u> and the other <u>two</u> routing tracks <u>for shielding</u> tied to V_{DD} or V_{SS} . Wire resistance is negligible and each wire has a ground capacitor (C_g) and a coupling capacitor as follows:

- Output resistance of the buffers driving the wires: 500Ω
- $C_g: 50 fF$
- $C_c: 25 fF$
- Delay of a full adder (from its inputs to both its Sum and Carry-Out): 40ps
- Wire delay: $2 \cdot R \cdot C$ (where *R* is the output resistance of the buffer driving the net and *C* is the total capacitance of the wire).

<u>Assign</u> the eight primary input signals and the two shielding to the ten routing tracks and <u>compute</u> the delay from the primary inputs to S_3 or C_4 . You should <u>minimize</u> the delay from the primary inputs to S_3 or C_4 when you assign the signals to the routing tracks. (See the next page for an example).

ds0 = MAX(da0, db0)+ ε where ε is the full adder delay.

 $ds1 = MAX(da1, db1, ds0)+\varepsilon$

 $ds2 = MAX(da2, db2, ds1)+\varepsilon$

 $ds3 = MAX(da3, db3, ds2)+\varepsilon$

Coupling capacitance

$B_3 A_3 Sh B_2 A_2 Sh B_1 A_1 B_0 A_0$
$(B_3 A_3 B_2 A_2 B_1 A_1 B_0 A_0) = (3C_c, 3, 3, 3, 3, 4, 4, 3)$
$\Rightarrow delay = (125, 125, 125, 125, 125, 150, 150, 125)$
$B_3 A_3 B_2 A_2 Sh B_1 A_1 Sh B_0 A_0$
Case 1: $(B_3 A_3 B_2 A_2 B_1 A_1 B_0 A_0) = (3C_c, 4, 4, 3, 3, 3, 3, 3)$
$\Rightarrow delay = (125, 150, 150, 125, 125, 125, 125, 125)$
$B_3 A_3 B_2 A_2 B_1 A_1 Sh B_0 Sh A_0$
Case 2: $(B_3 A_3 B_2 A_2 B_1 A_1 B_0 A_0) = (3C_c, 4, 4, 4, 4, 3, 2, 2)$
\Rightarrow delay = (125, 150, 150, 150, 150, 125, 100, 100)

Case 1: ds0 = 125+40 = 165ps ds1 = 165+40 = 205ps ds2 = 205+40 = 245ps ds3 = 245+40 = 285ps Case 2: ds0 = 100+40 = 140ps ds1 = 150+40 = 190ps ds2 = 190+40 = 230ps ds3 = 230+40 = 270ps

Thus, Case 2 is the best.

Example) Suppose the following is my assignment result.

The following shows the total capacitance of each wire:

The following shows the arrival time at each node:

- $B_3, A_3, B_2, A_2, B_1, A_0: 2RC = 2R(C_g + 3C_c) = 2 \cdot (500\Omega) \cdot (50fF + 3 \cdot 25fF) = 125ps$
- $A_1, B_0: 2RC = 2R(C_g + 4C_c) = 2 \cdot (500\Omega) \cdot (50fF + 4 \cdot 25fF) = 150ps$

Thus, the delay is 310ps.

Problem #6 (Timing Analysis under PVT Variation, 10 points).

- Delay from the clock source to D-F/F 1 (and D-F/F 2): cd_1 (and cd_2)
- Setup time of the F/Fs: T_s
- Hold time of the F/Fs: $T_{\rm h}$
- D-F/F internal delay: T_{CQ}
- Clock skew: $T_{\text{skew}} = cd_2 cd_1$
- Logic delay: *T*_{logic}
- Clock period: T_{CLK}

Ideally, the following inequalities should be satisfied:

- 1. Setup time: $T_s \leq T_{CLK} + T_{skew} T_{logic} T_{CQ}$
- 2. Hold time: $T_{\rm h} \leq T_{\rm CQ} + T_{\rm logic} T_{\rm skew}$

Process-voltage-temperature (PVT) variation causes serious problems such as delay variation. For example, a transistor can be faster or slower than predicted due to process variation (i.e., μ_p and μ_n change) and wire delay can be increased or decreased depending on the operating temperature. The following shows variations in the timing values due to PVT variation (Δ_1 , Δ_2 , Δ_3 , $\Delta_4 > 0$):

- $cd_1 \rightarrow cd_1 \pm \Delta_1$
- $cd_2 \rightarrow cd_2 \pm \Delta_2$
- $T_{CQ} \rightarrow T_{CQ} \pm \Delta_3$
- $T_{\text{logic}} \rightarrow T_{\text{logic}} \pm \Delta_4$

Derive a new setup time and a new hold time constraints (inequalities) that should be satisfied under the PVT variations. The new inequalities should consist of the following constants and variables only:

•
$$T_{\rm s}$$
, $T_{\rm h}$, $T_{\rm CQ}$, $T_{\rm CLK}$, $T_{\rm skew}$, $T_{\rm logic}$, Δ_1 , Δ_2 , Δ_3 , Δ_4

The new range of T_{skew} : $[(cd_2 - \Delta_2) - (cd_1 + \Delta_1), (cd_2 + \Delta_2) - (cd_1 - \Delta_1)]$

The new range of T_{CQ} : $[T_{CQ} - \Delta_3, T_{CQ} + \Delta_3]$

The new range of T_{logic} : $[T_{\text{logic}} - \Delta_4, T_{\text{logic}} + \Delta_4]$

Setup time)

Rewrite the setup time inequality as follows: $T_{\text{logic}} \leq T_{\text{CLK}} + T_{\text{skew}} - T_{\text{s}} - T_{\text{CQ}}$

To derive a new setup time inequality, let's first focus on the right term. The smallest value the right term can have is $T_r = T_{\text{CLK}} + \{(cd_2 - \Delta_2) - (cd_1 + \Delta_1)\} - T_s - \{T_{\text{CQ}} + \Delta_3\}$.

The new logic delay should be less than or equal to T_r .

$$\begin{bmatrix} T_{\text{logic}} - \Delta_4, T_{\text{logic}} + \Delta_4 \end{bmatrix} \leq T_r$$

$$\therefore T_{\text{logic}} \leq T_{\text{CLK}} + \{ (cd_2 - \Delta_2) - (cd_1 + \Delta_1) \} - T_{\text{s}} - \{ T_{\text{CQ}} + \Delta_3 \} - \Delta_4$$

$$T_{\text{logic}} \leq (T_{\text{CLK}} + T_{\text{skew}} - T_{\text{s}} - T_{\text{CQ}}) - (\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4)$$

Hold time)

Rewrite the hold time inequality as follows: $T_{\text{logic}} \ge T_{\text{h}} - T_{\text{CQ}} + T_{\text{skew}}$

To derive a new hold time inequality, let's first focus on the right term. The largest value the right term can have is $T_r = T_h - \{T_{CQ} - \Delta_3\} + \{(cd_2 + \Delta_2) - (cd_1 - \Delta_1)\}.$

The new logic delay should be greater than or equal to T_r .

$$[T_{\text{logic}} - \Delta_4, T_{\text{logic}} + \Delta_4] \ge T_r$$

$$\therefore T_{\text{logic}} \ge T_{\text{h}} - \{T_{\text{CQ}} - \Delta_3\} + \{(cd_2 + \Delta_2) - (cd_1 - \Delta_1)\} + \Delta_4$$

$$T_{\text{logic}} \ge (T_{\text{h}} - T_{\text{CQ}} + T_{\text{skew}}) + (\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4)$$

Problem #7 (High-Speed Adder, 10 points).

Compute the sum of A and B and Cin using the conditional sum adder.

- A = 65534 (111111111111111)
- B = 13421 (0011010001101101)
- Cin = 1

																$CI_0 = 1$				
	<i>i</i> :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	A_i :	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0			
	<i>B</i> _{<i>i</i>} :	0	0	1	1	0	1	0	0	0	1	1	0	1	1	0	1			
Step 1	S_i^0 :	1	1	0	0	1	0	1	1	1	0	0	1	0	0	1				
	CO_i^{0} :	0	0	1	1	0	1	0	0	0	1	1	0	1	1	0				
	S_i^1 :	0	0	1	1	0	1	0	0	0	1	1	0	1	1	0	0			
	CO_i^{1} :	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Step 2	S_i^0 :	1	1	1	0	0	0	1	1	0	0	0	1	1	0					
	CO_i^{0} :	0		1		1		0		1		1		1						
	S_i^1 :	0	0	1	1	0	1	0	0	0	1	1	0	1	1	0	0			
	CO_i^{1} :	1		1		1		1		1		1		1		1				
Step 3	S_i^0 :	0	0	1	0	0	0	1	1	0	1	0	1							
	CO_i^{0} :	1				1				1										
	S_i^{1} :	0	0	1	1	0	1	0	0	0	1	1	0	1	1	0	0			
	CO_i^{1} :	1				1				1				1						
Step 4	S_i^0 :	0	0	1	1	0	0	1	1											
	CO_i^{0} :	1																		
	S_i^1 :	0	0	1	1	0	1	0	0	0	1	1	0	1	1	0	0			
	CO_i^{1} :	1								1										
Result		0	0	1	1	0	1	0	0	0	1	1	0	1	1	0	0			

Carry out: 1

Problem #8 (Testing, 10 points).

We want to detect stuck-at-0 and stuck-at-1 faults at all the primary inputs, x_1, x_2, x_3, x_4 , and the two internal nodes, a, b. Computation of Z_f to detect a stuck-at-0/1 fault at an internal node can be done by setting the value of the node to constant 0 (for stuck-at-0 faults) or 1 (for stuck-at-1 faults). Find a *minimal* set of test vectors that can detect all the s-a-0 and s-a-1 faults at x_1, x_2, x_3, x_4, a , and b.

 $\mathbf{Z} = x_1 x_2 + \overline{x_3 x_4}$

 x_1 s-a-0: $Z_f = \overline{x_3 x_4} \implies Z \bigoplus Z_f = (x_1 x_2 + \overline{x_3 x_4}) \bigoplus \overline{x_3 x_4} = 1 \implies (x_1 x_2 x_3 x_4) =$ (1111) x_1 s-a-1: $Z_f = x_2 + \overline{x_3x_4} \Rightarrow Z \oplus Z_f = (x_1x_2 + \overline{x_3x_4}) \oplus (x_2 + \overline{x_3x_4}) = 1$ \Rightarrow $(x_1 x_2 x_3 x_4) = (0 \ 1 \ 1 \ 1)$ x_2 s-a-0: $Z_f = \overline{x_3 x_4} \implies (x_1 x_2 x_3 x_4) = (1 \ 1 \ 1 \ 1)$ x_2 s-a-1: $Z_f = x_1 + \overline{x_3 x_4} \implies (x_1 x_2 x_3 x_4) = (1 \ 0 \ 1 \ 1)$ *x*₃ s-a-0: $Z_f = 1 \implies Z \bigoplus Z_f = (x_1 x_2 + \overline{x_3 x_4}) \bigoplus 1 = 1 \implies (x_1 x_2 x_3 x_4) =$ $(0\ 0\ 1\ 1)$ or $(0\ 1\ 1\ 1)$ or $(1\ 0\ 1\ 1)$ x_3 s-a-1: $Z_f = x_1 x_2 + \overline{x_4} \Rightarrow Z \bigoplus Z_f = (x_1 x_2 + \overline{x_3 x_4}) \bigoplus (x_1 x_2 + \overline{x_4}) = 1 \Rightarrow$ $(x_1 x_2 x_3 x_4) = (0 0 0 1) \text{ or } (0 1 0 1) \text{ or } (1 0 0 1)$ x_4 s-a-0: $Z_f = 1 \implies (x_1 x_2 x_3 x_4) = (0 \ 0 \ 1 \ 1) \text{ or } (0 \ 1 \ 1 \ 1) \text{ or } (1 \ 0 \ 1 \ 1)$ x_4 s-a-1: $Z_f = x_1 x_2 + \overline{x_3} \Rightarrow (x_1 x_2 x_3 x_4) = (0 \ 0 \ 1 \ 0) \text{ or } (0 \ 1 \ 1 \ 0) \text{ or } (1 \ 0 \ 1 \ 0)$ *a* s-a-0: $Z_f = \overline{x_3 x_4} \implies (x_1 x_2 x_3 x_4) = (1 \ 1 \ 1 \ 1)$ $a \text{ s-a-1: } Z_f = 1 \implies (x_1 x_2 x_3 x_4) = (0 \ 0 \ 1 \ 1) \text{ or } (0 \ 1 \ 1 \ 1) \text{ or } (1 \ 0 \ 1 \ 1)$ b s-a-0: $Z_f = x_1 x_2 \Rightarrow Z \bigoplus Z_f = (x_1 x_2 + \overline{x_3 x_4}) \bigoplus (x_1 x_2) = 1 \Rightarrow (x_1 x_2 x_3 x_4) =$ (0000) or (0100) or (1000) or (0001) or (0101) or (1001) or (0010)

or (0 1 1 0) or (1 0 1 0)

 $b \text{ s-a-1: } Z_f = 1 \implies (x_1 x_2 x_3 x_4) = (0 \ 0 \ 1 \ 1) \text{ or } (0 \ 1 \ 1 \ 1) \text{ or } (1 \ 0 \ 1 \ 1)$

- 1) Needs (1 1 1 1) to cover the 1st column.
- 2) Needs $(0\ 1\ 1\ 1)$ to cover the 2nd column. This also covers the 4th column.
- 3) Needs (1 0 1 1) to cover the 3rd column.
- 4) Needs two more vectors to cover the 5th, 6th, and 7th columns.

= (0 0 1 0) and (0 0 0 1) (there exist total 18 different minimial sets).

Notice that (1 1 1 1), (0 1 1 1), and (1 0 1 1) must be selected.