## EE434

## ASIC and Digital Systems

## Final Exam

May 5, 2015. (1pm - 3pm)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

## Name:

## WSU ID:

| Problem | Points |  |
| :---: | :---: | :--- |
| 1 | 10 |  |
| 2 | 10 |  |
| 3 | 10 |  |
| 4 | 10 |  |
| 5 | 10 |  |
| 6 | 10 |  |
| 7 | 10 |  |
| 8 | 10 |  |
| Total | 80 |  |

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches


## Problem \#1 (CMOS gates, 10 points).

What does the following circuit do? Describe the function of the circuit in as much detail as possible (D: input, Q: output, CK: clock).


When $C K$ goes to 0 (falling edge), $X$ is floating, $Y$ is $\bar{D}$, and $Q$ is $\bar{X}(=D)$.
When $C K$ goes to 1 (rising edge), $Y$ is floating, $X$ is $\bar{D}$, and $Q$ is $\bar{Y}(=D)$.
Therefore, this is a dual-edge-triggered $D$ flip flop (it captures $D$ twice per clock cycle, at rising and falling edges).

## Problem \#2 (Transistor Sizing Under Timing Constraints, 10 points).

Let's design a $k$-input NOR gate $(\mathrm{k} \geq 10)$ using the dynamic CMOS design methodology. The following shows a schematic of the $k$-input NOR gate.


Our objective is to minimize the total width, Width $=a \cdot k+b$ and satisfy given timing constraints at the same time. Two timing constraints are given to us as follows:

- Setup time: Elmore delay $\leq 4 \cdot R_{n} \cdot C_{L}$
- Hold time: Elmore delay $\geq \frac{1}{4} \cdot R_{n} \cdot C_{L}$
$R_{n}$ is the resistance of a 1 X NMOS transistor. $\mu_{n}=2 \cdot \mu_{p}$. Ignore all the parasitic capacitances. All the transistors for $x_{1} \sim x_{k}$ are upsized to aX and the transistor for $C K$ is upsized to bX ( a and b are real numbers). Find $a$ and $b$ minimizing the total width and satisfying the timing constraints.

The worst-case resistance of the pull-down network: $\frac{R_{n}}{a}+\frac{R_{n}}{b}$
The worst-case delay: $\left(\frac{R_{n}}{a}+\frac{R_{n}}{b}\right) C_{L}$
Constraints: $\frac{1}{4} R_{n} C_{L} \leq\left(\frac{R_{n}}{a}+\frac{R_{n}}{b}\right) C_{L} \leq 4 R_{n} C_{L} \Rightarrow \frac{1}{4} \leq\left(\frac{1}{a}+\frac{1}{b}\right) \leq 4$
Width: $W(a, b)=a k+b$
Let $\frac{1}{a}+\frac{1}{b}$ be $c$, then $W(a, b)=b+\frac{b k}{b c-1}$ where $\frac{1}{4} \leq c \leq 4$.
$\frac{\partial W}{\partial b}=1+\frac{k(b c-1)-b k c}{(b c-1)^{2}}=1-\frac{k}{(b c-1)^{2}}=\frac{(b c-1)^{2}-k}{(b c-1)^{2}}=0 \Rightarrow \mathrm{~b}=\frac{1}{c}(1 \pm \sqrt{k})$

| $b$ | $\frac{1}{c}(1-\sqrt{k})$ | $\frac{1}{c}(1+\sqrt{k})$ |  |
| :---: | :---: | :---: | :---: |
| $\frac{\partial W}{\partial b}$ | +0 | 0 | + |

$\mathrm{k} \geq 10, \frac{1}{4} \leq c \leq 4 \Rightarrow \frac{1}{c}(1+\sqrt{k})>1$, so W is minimized when b is $\frac{1}{c}(1+\sqrt{k})$.

$$
\begin{gathered}
\Rightarrow \quad \mathrm{a}=\frac{b}{b c-1}=\frac{1}{c}\left(1+\frac{1}{\sqrt{k}}\right) \\
\mathrm{W}=\mathrm{ak}+\mathrm{b}=\frac{1}{c}(k+2 \sqrt{k}+1)=\frac{(\sqrt{k}+1)^{2}}{c}
\end{gathered}
$$

We set c to 4 to minimize W .
Answer) $a=\frac{1}{4}\left(1+\frac{1}{\sqrt{k}}\right) \quad b=\frac{1}{4}(1+\sqrt{k})$

## Problem \#3 (Buffer Insertion, 10 points).



A source drives two sinks through a net and you are supposed to insert a buffer between the source and the branch point (MP) as shown in the above figure. Find an optimal location of the buffer minimizing the total delay, i.e., represent " s " as a function of the following parameters:

- Output resistance of BUF_X1: $R_{1}$
- Input capacitance of BUF_X1: $C_{1}$
- Unit wire resistance: $r(\Omega / \mu m)$
- Unit wire capacitance: $c(F / \mu m)$
- $\frac{C_{1}}{c}+L_{2}+L_{3}<L_{1}$

Delay of the first segment: $\tau_{1}=R_{1} \cdot\left(c \cdot s+C_{1}\right)+(r \cdot s) \cdot C_{1}+\frac{1}{2} \cdot r \cdot c \cdot s^{2}$
Delay of the second segment: $\tau_{2}=R_{1} \cdot\left(c \cdot\left(L_{1}-s\right)+c \cdot L_{2}+c \cdot L_{3}+2 C_{1}\right)+$ $\left(r \cdot\left(L_{1}-s\right)\right) \cdot\left(c \cdot L_{2}+c \cdot L_{3}+2 C_{1}\right)+\frac{1}{2} \cdot r \cdot c \cdot\left(L_{1}-s\right)^{2}+k$ (where k is a constant. Note that the delay of the downstream of MP is not related to the location of the buffer.)

$$
\begin{gathered}
\tau=\tau_{1}+\tau_{2} \\
\frac{\mathrm{~d} \tau}{\mathrm{ds}}=R_{1} \cdot c+r \cdot C_{1}+r \cdot c \cdot s-R_{1} \cdot c-r\left(c \cdot L_{2}+c \cdot L_{3}+2 C_{1}\right)-r \cdot c \cdot\left(L_{1}-s\right)=0
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{s}=\frac{r \cdot C_{1}+r \cdot c \cdot L_{1}+r \cdot c \cdot L_{2}+r \cdot c \cdot L_{3}}{2 \cdot r \cdot c}=\frac{C_{1}+c \cdot L_{1}+c \cdot L_{2}+c \cdot L_{3}}{2 c} \\
\therefore S=\frac{1}{2}\left(\frac{C_{1}}{c}+L_{1}+L_{2}+L_{3}\right)
\end{gathered}
$$

## Problem \#4 (Timing Analysis for Dynamic CMOS Circuits, 10 points).

The following figure shows a dynamic CMOS circuit between two pipeline stages.


- Setup time: $T_{\mathrm{s}}$
- Clock period: $T_{\text {CLK }}$
- D-F/F internal delay: $T_{\mathrm{CQ}}$
- Clock skew: 0
- NMOS logic delay: $T_{\text {logic }}$
- Inverter delay: $T_{\mathrm{v}}$
- Clock duty cycle: 50\%

When the clock goes from low to high, the F/Fs capture their input signals. At the same time, the dynamic CMOS circuit starts pre-charging the output node. When the clock goes from high to low, the dynamic CMOS circuit starts evaluating its inputs. The delay of the dynamic CMOS circuit ( $T_{\text {logic }}$ ) is actually the time spent to discharge the output node. Derive a new setup time constraint (inequality) for the dynamic CMOS circuit shown above.

The following is the setup time inequality for the single-edge F/F operation:

$$
T_{\mathrm{s}} \leq T_{\mathrm{CLK}}+T_{\text {skew }}-T_{\text {logic }}-T_{\mathrm{CQ}}
$$

As the following figure shows, when the clock goes from low to high, the D-F/Fs capture their input signals. After $T_{\mathrm{v}}, \overline{C L K}$ goes from high to low and the dynamic CMOS circuit starts pre-charging the output capacitor. When the clock goes from high to low, $\overline{C L K}$ goes from low to high after $T_{\mathrm{v}}$ and the dynamic CMOS circuits starts evaluating the
logic. The D-F/Fs will capture their input signals at the next rising edge, so the evaluation should be done at least $T_{\mathrm{s}}$ before the edge.


## Problem \#5 (Timing Analysis and Coupling in an RCA, 10 points).

Let's design a four-bit ripple carry adder (RCA) with $C_{0}$ tied to ground as shown below.


Due to some physical design constraints, only ten routing tracks are available for the eight primary input signals as follows:


You are supposed to use eight routing tracks for signal and the other two routing tracks for shielding tied to $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}}$. Wire resistance is negligible and each wire has a ground capacitor ( $C_{g}$ ) and a coupling capacitor as follows:


- Output resistance of the buffers driving the wires: $500 \Omega$
- $C_{g}: 50 f F$
- $C_{c}: 25 f F$
- Delay of a full adder (from its inputs to both its Sum and Carry-Out): 40ps
- Wire delay: $2 \cdot R \cdot C$ (where $R$ is the output resistance of the buffer driving the net and $C$ is the total capacitance of the wire).

Assign the eight primary input signals and the two shielding to the ten routing tracks and compute the delay from the primary inputs to $S_{3}$ or $C_{4}$. You should minimize the delay from the primary inputs to $S_{3}$ or $C_{4}$ when you assign the signals to the routing tracks. (See the next page for an example).

$\mathrm{ds} 0=\operatorname{MAX}(\mathrm{da0}, \mathrm{db} 0)+\varepsilon$ where $\varepsilon$ is the full adder delay.
$d s 1=\operatorname{MAX}(d a 1, d b 1, d s 0)+\varepsilon$
$\mathrm{ds} 2=\operatorname{MAX}(\mathrm{da2} 2, \mathrm{db} 2, \mathrm{ds} 1)+\varepsilon$
$\mathrm{ds} 3=\operatorname{MAX}(\mathrm{da3}, \mathrm{db} 3, \mathrm{ds} 2)+\varepsilon$

Coupling capacitance


Case 1: $\left(B_{3} A_{3} B_{2} A_{2} B_{1} A_{1} B_{0} A_{0}\right)=\left(3 C_{c}, 4,4,3,3,3,3,3\right)$

$$
\Rightarrow \text { delay }=(125,150,150,125,125,125,125,125)
$$



Case 2: $\left(B_{3} A_{3} B_{2} A_{2} B_{1} A_{1} B_{0} A_{0}\right)=\left(3 C_{c}, 4,4,4,4,3,2,2\right)$

$$
\Rightarrow \text { delay }=(125,150,150,150,150,125,100,100)
$$

Case 1: $\mathrm{ds} 0=125+40=165 \mathrm{ps} \quad \mathrm{ds} 1=165+40=205 \mathrm{ps} \quad \mathrm{ds} 2=205+40=245 \mathrm{ps}$

$$
\mathrm{ds} 3=245+40=285 \mathrm{ps}
$$

Case 2: $\mathrm{ds} 0=100+40=140 \mathrm{ps} \quad \mathrm{ds} 1=150+40=190 \mathrm{ps} \quad \mathrm{ds} 2=190+40=230 \mathrm{ps}$

$$
\mathrm{ds} 3=230+40=270 \mathrm{ps}
$$

Thus, Case 2 is the best.


Example) Suppose the following is my assignment result.


The following shows the total capacitance of each wire:

- $B_{3}: C_{g}+3 C_{c}$
$A_{3}: C_{g}+3 C_{c}$
$B_{2}: C_{g}+3 C_{c}$
$A_{2}: C_{g}+3 C_{c}$
- $B_{1}: C_{g}+3 C_{c}$
$A_{1}: C_{g}+4 C_{c}$
$B_{0}: C_{g}+4 C_{c}$
$A_{0}: C_{g}+3 C_{c}$

The following shows the arrival time at each node:

- $B_{3}, A_{3}, B_{2}, A_{2}, B_{1}, A_{0}: 2 R C=2 R\left(C_{g}+3 C_{c}\right)=2 \cdot(500 \Omega) \cdot(50 f F+3 \cdot 25 f F)=125 p s$
- $A_{1}, B_{0}: 2 R C=2 R\left(C_{g}+4 C_{c}\right)=2 \cdot(500 \Omega) \cdot(50 f F+4 \cdot 25 f F)=150 p s$


Thus, the delay is 310ps.

## Problem \#6 (Timing Analysis under PVT Variation, 10 points).



- Delay from the clock source to D-F/F 1 (and D-F/F 2): $c d_{1}$ (and $c d_{2}$ )
- Setup time of the F/Fs: $T_{\mathrm{s}}$
- Hold time of the F/Fs: $T_{\mathrm{h}}$
- D-F/F internal delay: $T_{\mathrm{CQ}}$
- Clock skew: $T_{\text {skew }}=c d_{2}-c d_{1}$
- Logic delay: $T_{\text {logic }}$
- Clock period: $T_{\text {CLK }}$

Ideally, the following inequalities should be satisfied:

1. Setup time: $T_{\mathrm{s}} \leq T_{\text {CLK }}+T_{\text {skew }}-T_{\text {logic }}-T_{\mathrm{CQ}}$
2. Hold time: $T_{\mathrm{h}} \leq T_{\mathrm{CQ}}+T_{\text {logic }}-T_{\text {skew }}$

Process-voltage-temperature (PVT) variation causes serious problems such as delay variation. For example, a transistor can be faster or slower than predicted due to process variation (i.e., $\mu_{p}$ and $\mu_{n}$ change) and wire delay can be increased or decreased depending on the operating temperature. The following shows variations in the timing values due to PVT variation ( $\left.\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}>0\right)$ :

- $c d_{1} \rightarrow c d_{1} \pm \Delta_{1}$
- $c d_{2} \rightarrow c d_{2} \pm \Delta_{2}$
- $T_{\mathrm{CQ}} \rightarrow T_{\mathrm{CQ}} \pm \Delta_{3}$
- $T_{\text {logic }} \rightarrow T_{\text {logic }} \pm \Delta_{4}$

Derive a new setup time and a new hold time constraints (inequalities) that should be satisfied under the PVT variations. The new inequalities should consist of the following constants and variables only:

- $T_{\mathrm{s}}, T_{\mathrm{h}}, T_{\mathrm{CQ}}, T_{\text {CLK }}, T_{\text {skew }}, T_{\text {logic }}, \Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$

The new range of $T_{\text {skew }}:\left[\left(c d_{2}-\Delta_{2}\right)-\left(c d_{1}+\Delta_{1}\right),\left(c d_{2}+\Delta_{2}\right)-\left(c d_{1}-\Delta_{1}\right)\right]$
The new range of $T_{\mathrm{CQ}}:\left[T_{\mathrm{CQ}}-\Delta_{3}, T_{\mathrm{CQ}}+\Delta_{3}\right]$
The new range of $T_{\text {logic }}$ : $\left[T_{\text {logic }}-\Delta_{4}, T_{\text {logic }}+\Delta_{4}\right]$

Setup time)
Rewrite the setup time inequality as follows: $T_{\text {logic }} \leq T_{\text {CLK }}+T_{\text {skew }}-T_{\mathrm{S}}-T_{\mathrm{CQ}}$
To derive a new setup time inequality, let's first focus on the right term. The smallest value the right term can have is $T_{r}=T_{\mathrm{CLK}}+\left\{\left(c d_{2}-\Delta_{2}\right)-\left(c d_{1}+\Delta_{1}\right)\right\}-T_{\mathrm{s}}-\left\{T_{\mathrm{CQ}}+\Delta_{3}\right\}$.

The new logic delay should be less than or equal to $T_{r}$.

$$
\begin{gathered}
{\left[T_{\text {logic }}-\Delta_{4}, T_{\text {logic }}+\Delta_{4}\right] \leq T_{r}} \\
\therefore T_{\text {logic }} \leq T_{\mathrm{CLK}}+\left\{\left(c d_{2}-\Delta_{2}\right)-\left(c d_{1}+\Delta_{1}\right)\right\}-T_{\mathrm{s}}-\left\{T_{\mathrm{CQ}}+\Delta_{3}\right\}-\Delta_{4} \\
T_{\text {logic }} \leq\left(T_{\mathrm{CLK}}+T_{\text {skew }}-T_{\mathrm{s}}-T_{\mathrm{CQ}}\right)-\left(\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}\right)
\end{gathered}
$$

Hold time)
Rewrite the hold time inequality as follows: $T_{\text {logic }} \geq T_{\mathrm{h}}-T_{\mathrm{CQ}}+T_{\text {skew }}$
To derive a new hold time inequality, let's first focus on the right term. The largest value the right term can have is $T_{r}=T_{\mathrm{h}}-\left\{T_{\mathrm{CQ}}-\Delta_{3}\right\}+\left\{\left(c d_{2}+\Delta_{2}\right)-\left(c d_{1}-\Delta_{1}\right)\right\}$.

The new logic delay should be greater than or equal to $T_{r}$.

$$
\begin{gathered}
{\left[T_{\text {logic }}-\Delta_{4}, T_{\text {logic }}+\Delta_{4}\right] \geq T_{r}} \\
\therefore T_{\text {logic }} \geq T_{\mathrm{h}}-\left\{T_{\mathrm{CQ}}-\Delta_{3}\right\}+\left\{\left(c d_{2}+\Delta_{2}\right)-\left(c d_{1}-\Delta_{1}\right)\right\}+\Delta_{4} \\
T_{\text {logic }} \geq\left(T_{\mathrm{h}}-T_{\mathrm{CQ}}+T_{\text {skew }}\right)+\left(\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}\right)
\end{gathered}
$$

## Problem \#7 (High-Speed Adder, 10 points).

Compute the sum of $A$ and $B$ and $C i n$ using the conditional sum adder.

- $A=65534$ (11111111111111110)
- $B=13421$ (0011010001101101)
- $\mathrm{Cin}=1$


Carry out: 1

## Problem \#8 (Testing, 10 points).

We want to detect stuck-at-0 and stuck-at-1 faults at all the primary inputs, $x_{1}, x_{2}, x_{3}, x_{4}$, and the two internal nodes, $a, b$. Computation of $Z_{f}$ to detect a stuck-at-0/1 fault at an internal node can be done by setting the value of the node to constant 0 (for stuck-at-0 faults) or 1 (for stuck-at-1 faults). Find a minimal set of test vectors that can detect all the s-a-0 and s-a-1 faults at $x_{1}, x_{2}, x_{3}, x_{4}, a$, and $b$.


$$
\mathrm{Z}=x_{1} x_{2}+\overline{x_{3} x_{4}}
$$

$x_{1} \mathrm{~s}-\mathrm{a}-\mathrm{O}: Z_{f}=\overline{x_{3} x_{4}} \Rightarrow \mathrm{Z} \oplus Z_{f}=\left(x_{1} x_{2}+\overline{x_{3} x_{4}}\right) \oplus \overline{x_{3} x_{4}}=1 \quad \Rightarrow \quad\left(x_{1} x_{2} x_{3} x_{4}\right)=$ (1111)
$x_{1} \mathrm{~s}-\mathrm{a}-1: Z_{f}=x_{2}+\overline{x_{3} x_{4}} \Rightarrow \mathrm{Z} \oplus Z_{f}=\left(x_{1} x_{2}+\overline{x_{3} x_{4}}\right) \oplus\left(x_{2}+\overline{x_{3} x_{4}}\right)=1$
$\Rightarrow \quad\left(x_{1} x_{2} x_{3} x_{4}\right)=\left(\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right)$
$x_{2} \mathrm{~s}-\mathrm{a}-0: Z_{f}=\overline{x_{3} x_{4}} \quad \Rightarrow \quad\left(x_{1} x_{2} x_{3} x_{4}\right)=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$
$x_{2} \mathrm{~s}-\mathrm{a}-1: Z_{f}=x_{1}+\overline{x_{3} x_{4}} \quad \Rightarrow \quad\left(\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right)=\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$
$x_{3}$ s-a-0:
$Z_{f}=1 \Rightarrow \mathrm{Z} \oplus Z_{f}=\left(x_{1} x_{2}+\overline{x_{3} x_{4}}\right) \oplus 1=1 \Rightarrow\left(x_{1} x_{2} x_{3} x_{4}\right)=$ (0011) or (0111) or (1011)

$$
x_{3} \mathrm{~s}-\mathrm{a}-1: Z_{f}=x_{1} x_{2}+\overline{x_{4}} \Rightarrow \mathrm{Z} \oplus Z_{f}=\left(x_{1} x_{2}+\overline{x_{3} x_{4}}\right) \oplus\left(x_{1} x_{2}+\overline{x_{4}}\right)=1 \Rightarrow
$$

$$
\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array} x_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right) \text { or }\left(\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right) \text { or }\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)
$$

$x_{4} \mathrm{~s}-\mathrm{a}-\mathrm{O}: Z_{f}=1 \Rightarrow\left(x_{1} x_{2} x_{3} x_{4}\right)=\left(\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right)$ or $\left(\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right)$ or $\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$
$x_{4}$ s-a-1: $Z_{f}=x_{1} x_{2}+\overline{x_{3}} \Rightarrow\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array} x_{4}\right)=\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right)$ or $\left(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right)$ or $\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)$
$a \mathrm{~s}-\mathrm{a}-0: Z_{f}=\overline{x_{3} x_{4}} \Rightarrow\left(x_{1} x_{2} x_{3} x_{4}\right)=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$
$a \mathrm{~s}-\mathrm{a}-1: Z_{f}=1 \Rightarrow\left(x_{1} x_{2} x_{3} x_{4}\right)=\left(\begin{array}{llll}0 & 1 & 1\end{array}\right)$ or $(01111)$ or $(1011)$
$b \mathrm{~s}-\mathrm{a}-\mathrm{O}: Z_{f}=x_{1} x_{2} \Rightarrow \mathrm{Z} \oplus Z_{f}=\left(x_{1} x_{2}+\overline{x_{3} x_{4}}\right) \oplus\left(x_{1} x_{2}\right)=1 \Rightarrow\left(x_{1} x_{2} x_{3} x_{4}\right)=$ (0000) or (0 100 ) or ( 1000 ) or ( 0001 ) or ( 0101 ) or (1001) or (0 010 )

$$
\text { or }\left(\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right) \text { or }\left(\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right)
$$

$b \mathrm{~s}-\mathrm{a}-1: Z_{f}=1 \Rightarrow\left(x_{1} x_{2} x_{3} x_{4}\right)=\left(\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right)$ or $\left(0 \begin{array}{llll}0 & 1 & 1\end{array}\right)$ or $\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$


1) Needs (1 10111 ) to cover the $1^{\text {st }}$ column.
2) Needs ( $0 \begin{array}{lll}1 & 1 & 1\end{array}$ 1) to cover the $2^{\text {nd }}$ column. This also covers the $4^{\text {th }}$ column.
3) Needs (10 0
4) Needs two more vectors to cover the $5^{\text {th }}, 6^{\text {th }}$, and $7^{\text {th }}$ columns.

$$
\Rightarrow>\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right) \text { and }\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right) \text { (there exist total } 18 \text { different minimial sets). }
$$

Notice that (1 111 1), (0 111 1), and (1 0

