EE434

ASIC and Digital Systems

Midterm Exam 1

February 25, 2015. (5:10pm - 6pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Static CMOS gates, 10 points).

Represent F as a function of a, b, c, and d.

$$\overline{F} = \underline{\overline{ad}(b\overline{c} + \overline{b}c)} + \underline{ad}(b\overline{c} + \overline{b}c) + \underline{\overline{ad}(bc + \overline{b}c)} + \underline{ad}(bc + \overline{b}c)$$

$$= (\overline{ad} + a\overline{d})(b\overline{c} + \overline{b}c) + (\overline{ad} + ad)(bc + \overline{b}c)$$

$$= (\underline{a \oplus d})(\underline{b \oplus c}) + \overline{(\underline{a \oplus d})(\underline{b \oplus c})}$$

$$= \overline{(\underline{a \oplus d}) \oplus (\underline{b \oplus c})}$$

 $\therefore F = a \oplus b \oplus c \oplus d$

Problem #2 (Static CMOS gates, 10 points).

What does the following circuit do? Describe the function of the circuit in as much detail as possible.

1. SN=0 \rightarrow X6=1 \rightarrow Q=1: SN is an active-low asynchronous set.

2. SN=1, RN=0 \rightarrow X7=1 \rightarrow X5=1 \rightarrow X6=0 \rightarrow Q=0: RN is an active-low synchronous reset.

3. SN=1, RN=1 \rightarrow X7=0

If CK=0 \rightarrow T3 is off \rightarrow Q=X6, X4= $\overline{X6}$, X5=X4, X6= $\overline{X5}$ = $\overline{X4}$ =X6 \rightarrow Q⁺ = Q

If CK=1 \rightarrow T1 is off, T1 captures D, X1= $\overline{D} \rightarrow$ X2= $\overline{D} \rightarrow$ X3=D

T3 is ON, $X4=\overline{X3}=\overline{D} \rightarrow X5=X4 \rightarrow X6=\overline{X5}=D \rightarrow Q^+ = D$

 \rightarrow If SN=1 and RN=1, the circuit is just a positive edge-triggered D FF.

so, this is a positive edge-triggered D-FF with asynchronous active-low set and reset signals (set dominates reset).

Problem #3 (CMOS Logic, 10 points).

What is the functionality of the following circuit? Describe the functionality in as much detail as possible.

CK=1 → X1= \overline{D} → Q= $\overline{X1}$ =D If D=0 → X1=1 → Q=0 → X1=1 (no conflict) If D=1 → X1=0 → Q=1

- CK=0 \rightarrow The PDN of the right half is off.
 - If D=0 \rightarrow X1=1 \rightarrow mp1 is off \rightarrow Q is floating (hold)
 - If D=1, Q=0 \rightarrow X1=1 \rightarrow mp1 is off \rightarrow Q is floating (hold)
 - If D=1, Q=1 \rightarrow X1 is floating (hold) \rightarrow Q is floating (hold)

so, this is a **tri-state D-latch**.

Problem #4 (Transistor Sizing, 10 points).

Size the transistors in the following gate. R_n is the resistance of a 1X NMOS transistor. $\mu_n = 2 \cdot \mu_p$. Ignore all the parasitic capacitances. Target time constant: $\tau_{target} = R_n \cdot C_L$. Try to minimize the total area.

Problem #5 (Transistor Sizing, 10 points).

We want to design a *k*-input NOR gate. However, the static CMOS gate design methodology is not suitable for the design of the *k*-input NOR gate due to area overhead in the pull-up network and the body-bias effect. Therefore, we are going to design it using the dynamic CMOS design methodology. The following shows a schematic of the *k*-input NOR gate.

 R_n is the resistance of a 1X NMOS transistor. $\mu_n = 2 \cdot \mu_p$. Ignore all the parasitic capacitances. Target time constant: $\tau_{target} = R_n \cdot C_L$. All the transistors for $x_1 \sim x_k$ are upsized to aX and the transistor for *CK* is upsized to bX (a and b are *real* numbers). We *minimize* the total width, $Width = a \cdot k + b$. Find a and b (i.e., derive a (and b) as a function of k) minimizing the total width.

Constraint:
$$\left(\frac{R_n}{a} + \frac{R_n}{b}\right) C_L = R_n C_L \implies \frac{1}{a} + \frac{1}{b} = 1$$

 $W = ak + b = ak + \frac{a}{a-1}$
1) $W' = k + \frac{(a-1)-a}{(a-1)^2} = k - \frac{1}{(a-1)^2} = 0 \implies a = 1 + \frac{1}{\sqrt{k}} \implies b = 1 + \sqrt{k}$

2) ak + b = c => Two functions, b = -ak + c and $b = \frac{a}{a-1}$, should meet at a single point (confirm this by drawing their graphs).

=> $-ak + c = \frac{a}{a-1}$ should have a single root. => $ka^2 - (k + c - 1)a + c = 0$ has a single root. => $(k + c - 1)^2 - 4kc = 0$ => $(k - c - 1)^2 = 0$ => $c = k + 1 \pm 2\sqrt{k}$ => $a = 1 \pm \frac{1}{\sqrt{k}}$ => a > 1, so $a = 1 \pm \frac{1}{\sqrt{k}}$ => $b = 1 + \sqrt{k}$

Problem #6 (Elmore Delay, 10 points).

6-1. Compute Elmore delay at LOAD1 and LOAD2, i.e., represent the delay at LOAD1 (and LOAD2) as a function of $R_1 \sim R_4$, C_1 , C_2 , C_{LOAD1} , and C_{LOAD2} .

At LOAD1: $R_1(C_1 + C_2 + C_{LOAD1} + C_{LOAD2}) + R_2(C_2 + C_{LOAD1}) + R_3C_{LOAD1}$ At LOAD2: $R_1(C_1 + C_2 + C_{LOAD1} + C_{LOAD2}) + R_4C_{LOAD2}$

6-2. Compute Elmore delay at LOAD1 for $R_1 = R_2 = R_3 = 1k\Omega$, $C_1 = C_2 = C_{LOAD1} = 10fF$, $R_4 = 0$. **1** $k\Omega$, and $C_{LOAD2} = 1pF$. Then, compute Elmore delay at LOAD1 for $R_1 = R_2 = R_3 = 1k\Omega$, $C_1 = C_2 = C_{LOAD1} = 10fF$, $R_4 = 10M\Omega$, and $C_{LOAD2} = 1pF$. This result is called "resistive shielding". Discuss a limitation of the Elmore delay model in terms of the resistive shielding effect.

At LOAD1: 1k(10f+10f+10f+1p) + 1k(10f+10f) + 1k(10f)=(1k*1030f) + (1k*20f) + (1k*10f)= 1030ps + 20ps + 10ps = 1060ps

The Elmore delay at LOAD1 is not affected by R_4 . If R_4 is sufficiently small, the Elmore delay at LOAD1 should include C_{LOAD2} . However, if R_4 is sufficiently large, we can assume that the Load2 branch does not exist, so the Elmore delay at LOAD1 should not include C_{LOAD2} . The Elmore delay model does not distinguish these two cases.

Problem #7 (Dynamic CMOS, 10 points).

Compare the following implementations for a dynamic-CMOS *k*-input NOR gate. Are there any problems in (a)? in (b)?

(a) does not have any charge sharing problem. When CK=0, the PMOS transistor charges the output capacitor and X1 (if any x_i is 1).

(b) suffers from charge sharing. When CK=0, the PMOS transistor charges the output capacitor only. When CK=1 and $x_1=...=x_k=0$, charge sharing happens between the output capacitor and the parasitic capacitor at X2.

Problem #8 (DC Characteristics, 10 points).

The following circuit is called "pseudo-PMOS". Sketch a DC characteristic curve of the pseudo-PMOS inverter and properly split the curve into regions. In each region, show the status (cut-off, linear, saturation) of each transistor (m_n and m_p).

1)
$$m_n: V_{gs} - V_t = V_{DD} - V_{tn} > 0 (always), V_{ds} = V_{out}$$

i) $V_{gs} - V_t < V_{ds} \implies V_{DD} - V_{tn} < V_{out} \implies saturation$
ii) $V_{DD} - V_{tn} > V_{out} \implies linear$
2) $m_p: |V_{gs}| - |V_t| = V_{DD} - V_{in} - |V_{tp}|, |V_{ds}| = V_{DD} - V_{out}$
i) $|V_{gs}| - |V_t| < 0 \implies V_{in} > V_{DD} - |V_{tp}| \implies cut - off$
ii) $V_{gs} - V_t < V_{ds} \implies V_{out} < V_{in} + |V_{tp}| \implies saturation$
iii) $V_{gs} - V_t > V_{ds} \implies V_{out} > V_{in} + |V_{tp}| \implies linear$

*) Depending on the size of the NMOS and PMOS transistors, the highest output voltage might be less than $V_{DD} - V_{tn}$. In this case, the NMOS transistor is in the linear mode even when V_{in} is close to 0.