EE434

ASIC and Digital Systems

Midterm Exam 1
 February 25, 2015. (5:10pm - 6pm)
 Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Static CMOS gates, 10 points).

Represent F as a function of a, b, c, and d.

$$
\begin{aligned}
\bar{F} & =\bar{a} d(b \bar{c}+\bar{b} c)+a \bar{d}(b \bar{c}+\bar{b} c)+\bar{a} \bar{d}(b c+\bar{b} \bar{c})+a d(b c+\bar{b} \bar{c}) \\
& =(\bar{a} d+a \bar{d})(b \bar{c}+\bar{b} c)+(\bar{a} \bar{d}+a d)(b c+\bar{b} \bar{c}) \\
& =(a \oplus d)(b \oplus c)+\overline{(a \oplus d)(b \oplus c)} \\
& =(a \oplus d) \oplus(b \oplus c)
\end{aligned}
$$

$\therefore F=a \oplus b \oplus c \oplus d$

Problem \#2 (Static CMOS gates, 10 points).

What does the following circuit do? Describe the function of the circuit in as much detail as possible.

1. $\mathrm{SN}=0 \rightarrow \mathrm{X} 6=1 \rightarrow \mathrm{Q}=1: \mathrm{SN}$ is an active-low asynchronous set.
2. $\mathrm{SN}=1, \mathrm{RN}=0 \rightarrow \mathrm{X} 7=1 \rightarrow \mathrm{X} 5=1 \rightarrow \mathrm{X} 6=0 \rightarrow \mathrm{Q}=0: \mathrm{RN}$ is an active-low synchronous reset.
3. $\mathrm{SN}=1, \mathrm{RN}=1 \rightarrow \mathrm{X} 7=0$

If $\mathrm{CK}=0 \rightarrow \mathrm{~T} 3$ is off $\rightarrow \mathrm{Q}=\mathrm{X} 6, \mathrm{X} 4=\overline{\mathrm{X} 6}, \mathrm{X} 5=\mathrm{X} 4, \mathrm{X} 6=\overline{X 5}=\overline{X 4}=\mathrm{X} 6 \rightarrow Q^{+}=Q$
If $\mathrm{CK}=1 \rightarrow \mathrm{~T} 1$ is off, T 1 captures $\mathrm{D}, \mathrm{X} 1=\bar{D} \rightarrow \mathrm{X} 2=\bar{D} \rightarrow \mathrm{X} 3=\mathrm{D}$
T 3 is $\mathrm{ON}, \mathrm{X} 4=\overline{X 3}=\bar{D} \rightarrow \mathrm{X} 5=\mathrm{X} 4 \rightarrow \mathrm{X} 6=\overline{\mathrm{X5}}=\mathrm{D} \rightarrow Q^{+}=D$
\rightarrow If $\mathrm{SN}=1$ and $\mathrm{RN}=1$, the circuit is just a positive edge-triggered $\mathrm{D} F \mathrm{FF}$.
so, this is a positive edge-triggered D-FF with asynchronous active-low set and reset signals (set dominates reset).

Problem \#3 (CMOS Logic, 10 points).

What is the functionality of the following circuit? Describe the functionality in as much detail as possible.

$$
\begin{aligned}
& \mathrm{CK}=1 \rightarrow \mathrm{X} 1=\bar{D} \rightarrow \mathrm{Q}=\overline{X 1}=\mathrm{D} \\
& \text { If } \mathrm{D}=0 \rightarrow \mathrm{X} 1=1 \rightarrow \mathrm{Q}=0 \rightarrow \mathrm{X} 1=1 \text { (no conflict) } \\
& \text { If } \mathrm{D}=1 \rightarrow \mathrm{X} 1=0 \rightarrow \mathrm{Q}=1
\end{aligned}
$$

$\mathrm{CK}=0 \rightarrow$ The PDN of the right half is off.
If $D=0 \rightarrow X 1=1 \rightarrow m p 1$ is off $\rightarrow Q$ is floating (hold)
If $D=1, Q=0 \rightarrow X 1=1 \rightarrow m p 1$ is off $\rightarrow Q$ is floating (hold)
If $D=1, Q=1 \rightarrow X 1$ is floating (hold) $\rightarrow Q$ is floating (hold)
so, this is a tri-state D-latch.

Problem \#4 (Transistor Sizing, 10 points).

Size the transistors in the following gate. R_{n} is the resistance of a 1X NMOS transistor. $\mu_{n}=2 \cdot \mu_{p}$. Ignore all the parasitic capacitances. Target time constant: $\tau_{\text {target }}=R_{n} \cdot C_{L}$. Try to minimize the total area.

Problem \#5 (Transistor Sizing, 10 points).

We want to design a k-input NOR gate. However, the static CMOS gate design methodology is not suitable for the design of the k-input NOR gate due to area overhead in the pull-up network and the body-bias effect. Therefore, we are going to design it using the dynamic CMOS design methodology. The following shows a schematic of the k-input NOR gate.

R_{n} is the resistance of a 1X NMOS transistor. $\mu_{n}=2 \cdot \mu_{p}$. Ignore all the parasitic capacitances. Target time constant: $\tau_{\text {target }}=R_{n} \cdot C_{L}$. All the transistors for $x_{1} \sim x_{k}$ are upsized to aX and the transistor for $C K$ is upsized to bX (a and b are real numbers). We $\underline{\text { minimize }}$ the total width, Width $=a \cdot k+b$. Find a and b (i.e., derive a (and b) as a function of k) minimizing the total width.

Constraint: $\left(\frac{R_{n}}{a}+\frac{R_{n}}{b}\right) C_{L}=R_{n} C_{L}=>\frac{1}{a}+\frac{1}{b}=1$
$W=a k+b=a k+\frac{a}{a-1}$

1) $W^{\prime}=k+\frac{(a-1)-a}{(a-1)^{2}}=k-\frac{1}{(a-1)^{2}}=0=>a=1+\frac{1}{\sqrt{k}}=>\quad b=1+\sqrt{k}$
2) $a k+b=c=>$ Two functions, $b=-a k+c$ and $b=\frac{a}{a-1}$, should meet at a single point (confirm this by drawing their graphs).
$\Rightarrow-a k+c=\frac{a}{a-1}$ should have a single root. $=>k a^{2}-(k+c-1) a+c=0$ has a single root. $=>(k+c-1)^{2}-4 k c=0 \Rightarrow(k-c-1)^{2}=0 \Rightarrow c=k+1 \pm 2 \sqrt{k} \Rightarrow$ $a=1 \pm \frac{1}{\sqrt{k}} \Rightarrow a>1$, so $a=1+\frac{1}{\sqrt{k}}=>b=1+\sqrt{k}$

Problem \#6 (Elmore Delay, 10 points).

6-1. Compute Elmore delay at LOAD1 and LOAD2, i.e., represent the delay at LOAD1 (and LOAD2) as a function of $R_{1} \sim R_{4}, C_{1}, C_{2}, C_{L O A D 1}$, and $C_{L O A D 2}$.

At LOAD1: $R_{1}\left(C_{1}+C_{2}+C_{L O A D 1}+C_{L O A D 2}\right)+R_{2}\left(C_{2}+C_{L O A D 1}\right)+R_{3} C_{L O A D 1}$
At LOAD2: $R_{1}\left(C_{1}+C_{2}+C_{L O A D 1}+C_{L O A D 2}\right)+R_{4} C_{L O A D 2}$

6-2. Compute Elmore delay at LOAD1 for $R_{1}=R_{2}=R_{3}=1 \mathrm{k} \Omega, C_{1}=C_{2}=C_{L O A D 1}=$ $10 f F, R_{4}=\mathbf{0} .1 \mathbf{k} \Omega$, and $C_{L O A D 2}=1 p F$. Then, compute Elmore delay at LOAD1 for $R_{1}=R_{2}=R_{3}=1 \mathrm{k} \Omega, C_{1}=C_{2}=C_{L O A D 1}=10 f F, R_{4}=10 \mathrm{M} \Omega$, and $C_{L O A D 2}=1 \mathrm{pF}$. This result is called "resistive shielding". Discuss a limitation of the Elmore delay model in terms of the resistive shielding effect.

At LOAD1: $1 k(10 f+10 f+10 f+1 p)+1 k(10 f+10 f)+1 k(10 f)=(1 k * 1030 f)+(1 k * 20 f)+(1 k * 10 f)$ $=1030 p s+20 p s+10 p s=1060 p s$

The Elmore delay at LOAD1 is not affected by R_{4}. If R_{4} is sufficiently small, the Elmore delay at LOAD1 should include C COAD2. However, if R_{4} is sufficiently large, we can assume that the Load2 branch does not exist, so the Elmore delay at LOAD1 should not include Cload2. The Elmore delay model does not distinguish these two cases.

Problem \#7 (Dynamic CMOS, 10 points).

Compare the following implementations for a dynamic-CMOS k-input NOR gate. Are there any problems in (a)? in (b)?

(a) does not have any charge sharing problem. When CK=0, the PMOS transistor charges the output capacitor and X 1 (if any x_{i} is 1).
(b) suffers from charge sharing. When CK=0, the PMOS transistor charges the output capacitor only. When $C K=1$ and $x_{1}=\ldots=x_{k}=0$, charge sharing happens between the output capacitor and the parasitic capacitor at X 2 .

Problem \#8 (DC Characteristics, 10 points).

The following circuit is called "pseudo-PMOS". Sketch a DC characteristic curve of the pseudo-PMOS inverter and properly split the curve into regions. In each region, show the status (cut-off, linear, saturation) of each transistor (m_{n} and m_{p}).

1) $\mathrm{m}_{\mathrm{n}}: V_{g s}-V_{t}=V_{D D}-V_{t n}>0$ (always),$V_{d s}=V_{\text {out }}$
i) $V_{g s}-V_{t}<V_{d s}=>V_{D D}-V_{t n}<V_{\text {out }}=>$ saturation
ii) $V_{D D}-V_{\text {tn }}>V_{\text {out }}=>$ linear
2) $\mathrm{m}_{\mathrm{p}}:\left|V_{g s}\right|-\left|V_{t}\right|=V_{D D}-V_{i n}-\left|V_{t p}\right|,\left|V_{d s}\right|=V_{D D}-V_{o u t}$
i) $\left|V_{g s}\right|-\left|V_{t}\right|<0=>V_{\text {in }}>V_{D D}-\left|V_{t p}\right|=>$ cut - off
ii) $V_{g s}-V_{t}<V_{d s}=>V_{\text {out }}<V_{\text {in }}+\left|V_{t p}\right|=>$ saturation
iii) $V_{g s}-V_{t}>V_{d s}=>V_{\text {out }}>V_{\text {in }}+\left|V_{t p}\right|=>$ linear
*) Depending on the size of the NMOS and PMOS transistors, the highest output voltage might be less than $V_{D D}-V_{t n}$. In this case, the NMOS transistor is in the linear mode even when $V_{i n}$ is close to 0 .
