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Problem #1 (Layout + Testing, 10 points) 

The following layout consists of six primary inputs (A, B, C, D, E, F) and a primary 
output (Out). n1 is an internal node. Find all input vectors that can detect a stuck-at-0 
fault at node n1. 

 

 

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐷𝐷 + 𝐸𝐸 + 𝐹𝐹������������������������������������ = 𝐴𝐴𝐴𝐴𝐴𝐴������ ∙ (𝐷𝐷 + 𝐸𝐸 + 𝐹𝐹) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓 = 𝐷𝐷 + 𝐸𝐸 + 𝐹𝐹 

𝑂𝑂𝑂𝑂𝑂𝑂⨁𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓 = 1 →   𝐴𝐴𝐴𝐴𝐴𝐴 = 1,𝐷𝐷 + 𝐸𝐸 + 𝐹𝐹 = 1 

→ 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐸𝐸𝐹𝐹 = 111001, 111010, 111011, 111100, 111101, 111110, 111111 

 

 

 



Problem #2 (Testing, 10 points) 

A combinational logic has 𝑛𝑛 inputs (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) and an output (𝑍𝑍). 𝑍𝑍 is a Boolean 
function of the inputs, 𝑍𝑍 = 𝑔𝑔(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 𝑥𝑥1���, … , 𝑥𝑥𝑛𝑛���,𝐴𝐴𝐴𝐴𝐷𝐷,𝑂𝑂𝑂𝑂). To find input vectors that can 
detect a stuck-at-𝑣𝑣 fault 𝑓𝑓 at a node, we compute 𝑍𝑍𝑓𝑓 by setting the value of the node to 
𝑣𝑣 and solving 𝑍𝑍⨁𝑍𝑍𝑓𝑓 = 1. Let 𝑇𝑇1 be a set of all input vectors that detect fault 𝑓𝑓1 and 𝑇𝑇2 be 
a set of all input vectors that detect fault 𝑓𝑓2 (𝑓𝑓1 ≠ 𝑓𝑓2). Prove that if 𝑍𝑍𝑓𝑓1 ≠ 𝑍𝑍𝑓𝑓2, 𝑇𝑇1 cannot 
be equal to 𝑇𝑇2. 

(Example: A three-input AND gate has three inputs 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and an output 𝑍𝑍. Let 𝑓𝑓1 be a 
stuck-at-0 fault at input 𝑎𝑎 and 𝑓𝑓2 be a stuck-at-1 fault at input 𝑏𝑏. Then, 𝑍𝑍 = 𝑎𝑎 ∙ 𝑏𝑏 ∙ 𝑐𝑐,𝑍𝑍𝑓𝑓1 =
0,𝑍𝑍𝑓𝑓2 = 𝑎𝑎 ∙ 𝑐𝑐 (𝑍𝑍𝑓𝑓1 ≠ 𝑍𝑍𝑓𝑓2). In this case, 𝑇𝑇1 = {111} and 𝑇𝑇2 = {101}, so 𝑇𝑇1 ≠ 𝑇𝑇2.) 

First, we prove that if 𝑍𝑍𝑓𝑓1 = 𝑍𝑍𝑓𝑓2, 𝑇𝑇1 = 𝑇𝑇2. 

We get 𝑇𝑇1 from 𝑍𝑍 ⊕ 𝑍𝑍𝑓𝑓1 = 1 and 𝑇𝑇2 from 𝑍𝑍⨁𝑍𝑍𝑓𝑓2 = 1. Thus, if 𝑍𝑍𝑓𝑓1 = 𝑍𝑍𝑓𝑓2, 𝑇𝑇1 = 𝑇𝑇2. 

 

Now, suppose there exists a case where 𝑇𝑇1 = 𝑇𝑇2 when 𝑍𝑍𝑓𝑓1 ≠ 𝑍𝑍𝑓𝑓2 (i.e., if 𝑍𝑍𝑓𝑓1 ≠ 𝑍𝑍𝑓𝑓2, then 
𝑇𝑇1 = 𝑇𝑇2). The contrapositive of this statement is “If 𝑇𝑇1 ≠ 𝑇𝑇2, then 𝑍𝑍𝑓𝑓1 = 𝑍𝑍𝑓𝑓2”. However, 
this is a contradiction because if 𝑍𝑍𝑓𝑓1 = 𝑍𝑍𝑓𝑓2, then 𝑇𝑇1 = 𝑇𝑇2 by the proof shown above. 
Thus, the original statement “if 𝑍𝑍𝑓𝑓1 ≠ 𝑍𝑍𝑓𝑓2, then 𝑇𝑇1 = 𝑇𝑇2” is also false, i.e., if 𝑍𝑍𝑓𝑓1 ≠ 𝑍𝑍𝑓𝑓2,  𝑇𝑇1 
cannot be equal to 𝑇𝑇2. 

 

 

 

 

 

 

 

 

 

 



Problem #3 (Timing Analysis, 10 points). 

● Setup time of the F/Fs: 𝑇𝑇s 
● Hold time of the F/Fs: 𝑇𝑇h 
● D-F/F internal delay: 𝑇𝑇CQ 
● Clock skew: 𝑇𝑇skew = delay from the clock source to 

D-FF2 – delay from the clock source to D-FF1 
● Logic delay: 𝑇𝑇logic 
● Clock period: 𝑇𝑇CLK 
● Buffer delay: 𝑇𝑇b 

There are five buffers between the clock source and the clock pin of D-FF1 (and D-FF2) 
as shown in the figure. Ideally, the following inequalities should be satisfied: 

• Setup time: 𝑇𝑇s ≤ 𝑇𝑇CLK + 𝑇𝑇skew − 𝑇𝑇logic − 𝑇𝑇CQ 
• Hold time: 𝑇𝑇h ≤ 𝑇𝑇CQ + 𝑇𝑇logic − 𝑇𝑇skew 

However, there exist uncertainties such as delay variations due to temperature, so we 
should incorporate those uncertainties (variations) into the setup and hold time 
inequalities. The followings show the variation sources we are going to consider: 

• 𝑇𝑇b  →  𝑇𝑇b ± 𝛿𝛿𝑏𝑏 
• 𝑇𝑇CQ  →  𝑇𝑇CQ ± 𝛿𝛿𝐶𝐶𝐶𝐶 
• 𝑇𝑇logic  →  𝑇𝑇logic ± 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
• Clock jitter: ±𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 

 

Derive a new setup time and a new hold time constraints (inequalities) that should be 
satisfied under the variations. 

Setup time constraint: 

Suppose the first clock leaves the clock source at time 0 and the second clock leaves at 
time 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 ideally. Then, the minimum arrival time of the second clock at DFF2 is 
𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 + 5𝑇𝑇𝑏𝑏 − 5𝛿𝛿𝑏𝑏 and the maximum arrival time of the first clock at DFF1 is 
𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 + 5𝑇𝑇𝑏𝑏 + 5𝛿𝛿𝑏𝑏, so the minimum skew is −2𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 − 10𝛿𝛿𝑏𝑏. The maximum logic+CQ 
delay is 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝛿𝛿𝐶𝐶𝐶𝐶. Thus, the new setup time constraint is 



𝑇𝑇𝑠𝑠 ≤ 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 2𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 − 10𝛿𝛿𝑏𝑏 − (𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝛿𝛿𝐶𝐶𝐶𝐶) 

 

Hold time constraint: 

The minimum arrival time of the first clock at DFF1 is −𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 + 5𝑇𝑇𝑏𝑏 − 5𝛿𝛿𝑏𝑏 and the 
maximum arrival time of the first clock at DFF2 is 𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 + 5𝑇𝑇𝑏𝑏 + 5𝛿𝛿𝑏𝑏, so the maximum 
skew is 2𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 + 10𝛿𝛿𝑏𝑏. The minimum logic+CQ delay is 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝛿𝛿𝐶𝐶𝐶𝐶. Thus, 
the new hold time constraint is 

𝑇𝑇ℎ ≤ �𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝛿𝛿𝐶𝐶𝐶𝐶� − (2𝛿𝛿𝐶𝐶𝐶𝐶𝐶𝐶 + 10𝛿𝛿𝑏𝑏) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #4 (Interconnect Optimization, 10 points) 

 

A buffer is composed of two inverters, so it consumes more power than an inverter. 
Thus, we can insert inverters instead of buffers to optimize a net while minimizing power 
consumption. However, only an even number of inverters can be inserted (if the inverter 
count is odd, there will be signal inversion). 

In the above figure, the driver, the sink, and the inserted inverters have the same input 
capacitance (𝐴𝐴1) and output resistance (𝑂𝑂1), so the inserted inverters should be evenly 
distributed between the source and the sink. Now, suppose the optimal number of 
inverters we find is 𝑘𝑘 where 𝑘𝑘 is odd. Since 𝑘𝑘 is odd, we have to insert either 𝑘𝑘 − 1 or 
𝑘𝑘 + 1 inverters. Which will lead to a better result (shorter delay)? 𝑘𝑘 − 1 or 𝑘𝑘 + 1? Show 
all the details about your answer. 

• Net length: L (um) 
• Inverter output resistance and input capacitance: 𝑂𝑂1, 𝐴𝐴1 
• Unit wire resistance and capacitance: 𝑟𝑟, 𝑐𝑐 
• Inverter delay: 𝑑𝑑 

Suppose we insert 𝑝𝑝 − 1 inverters and evenly distribute them. Then, the delay will be 

𝜏𝜏(𝑝𝑝 − 1) = 𝑝𝑝 ∙ �𝑂𝑂1 �
𝑐𝑐𝑐𝑐
𝑝𝑝

+ 𝐴𝐴1� +
𝑟𝑟𝑐𝑐
𝑝𝑝
𝐴𝐴1 + 0.5𝑟𝑟𝑐𝑐 �

𝑐𝑐
𝑝𝑝
�
2

� + (𝑝𝑝 − 1) ∙ 𝑑𝑑 

= 𝑂𝑂1𝑐𝑐𝑐𝑐 + 𝑟𝑟𝑐𝑐𝐴𝐴1 − 𝑑𝑑 + 𝑝𝑝𝑂𝑂1𝐴𝐴1 + 𝑝𝑝𝑑𝑑 +
0.5𝑟𝑟𝑐𝑐𝑐𝑐2

𝑝𝑝
= 𝛼𝛼 + 𝑝𝑝(𝑂𝑂1𝐴𝐴1 + 𝑑𝑑) +

0.5𝑟𝑟𝑐𝑐𝑐𝑐2

𝑝𝑝
 

(𝛼𝛼 is a constant) 

If we insert 𝑘𝑘 − 1 inverters, the delay becomes 

𝜏𝜏(𝑘𝑘 − 1) = 𝛼𝛼 + 𝑘𝑘(𝑂𝑂1𝐴𝐴1 + 𝑑𝑑) +
0.5𝑟𝑟𝑐𝑐𝑐𝑐2

𝑘𝑘
 

and if we insert 𝑘𝑘 + 1 inverters, the delay becomes 

𝜏𝜏(𝑘𝑘 + 1) = 𝛼𝛼 + (𝑘𝑘 + 2)(𝑂𝑂1𝐴𝐴1 + 𝑑𝑑) +
0.5𝑟𝑟𝑐𝑐𝑐𝑐2

𝑘𝑘 + 2
 



Thus, ∆= 𝜏𝜏(𝑘𝑘 + 1) − 𝜏𝜏(𝑘𝑘 − 1) = 2(𝑂𝑂1𝐴𝐴1 + 𝑑𝑑) + 0.5𝑟𝑟𝑐𝑐𝑐𝑐2 � 1
𝑘𝑘+2

− 1
𝑘𝑘
� 

= 2(𝑂𝑂1𝐴𝐴1 + 𝑑𝑑) −
2𝑟𝑟𝑐𝑐𝑐𝑐2

𝑘𝑘2 + 2𝑘𝑘
 

 ∆> 0 →   𝑘𝑘 > −1 + �1 + 𝑟𝑟𝑙𝑙𝐶𝐶2

(𝑅𝑅1𝐶𝐶1+𝑑𝑑)
 

Thus, if 𝑘𝑘 > −1 + �1 + 𝑟𝑟𝑙𝑙𝐶𝐶2

(𝑅𝑅1𝐶𝐶1+𝑑𝑑)
, inserting 𝑘𝑘 − 1 inverters is better. 

If 𝑘𝑘 < −1 + �1 + 𝑟𝑟𝑙𝑙𝐶𝐶2

(𝑅𝑅1𝐶𝐶1+𝑑𝑑)
, inserting 𝑘𝑘 + 1 inverters is better. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #5 (Interconnect Optimization, 10 points). 

 

Two nets are routed as shown above. The coupling capacitance between them is 𝐴𝐴𝑙𝑙. 
You are supposed to insert buffers into the nets identically as shown above. All the 
drivers, sinks, and buffers are of the same type. The following list shows all the 
parameters and variables you should use: 

• Output resistance: 𝑂𝑂 
• Input capacitance: 𝐴𝐴 
• Total length: 𝑐𝑐 (um) 
• Unit wire resistance: 𝑟𝑟𝑤𝑤/𝑂𝑂𝑢𝑢 
• Unit wire capacitance: 𝑐𝑐𝑤𝑤/𝑂𝑂𝑢𝑢 
• Unit coupling capacitance: 𝑐𝑐𝑙𝑙/𝑂𝑂𝑢𝑢 
• Buffer delay: 𝑑𝑑 

Insert buffers into the nets optimally, i.e., find the number of buffers to insert and their 
locations to minimize the delay of the nets. 

In the worst case (i.e., the signal pattern of Source 1 is 0101… and that of Source 2 is 
1010…), the total capacitance of a segment whose length is 𝑘𝑘(𝑂𝑂𝑢𝑢) is 𝑘𝑘(𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙). 
Suppose we insert 𝑝𝑝 − 1 buffers and the length of the 𝑢𝑢-th segment is 𝑠𝑠𝑚𝑚. Then, the 
total delay is 

𝜏𝜏 = (𝑝𝑝 − 1) ∙ 𝑑𝑑 + �[𝑂𝑂 ∙ {𝑠𝑠𝑙𝑙 ∙ (𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙) + 𝐴𝐴} + 𝑠𝑠𝑙𝑙 ∙ 𝑟𝑟𝑤𝑤 ∙ 𝐴𝐴 + 0.5𝑟𝑟𝑤𝑤(𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙)𝑠𝑠𝑙𝑙2]
𝑝𝑝

𝑙𝑙=1

 

= (𝑝𝑝 − 1) ∙ 𝑑𝑑 + 𝑂𝑂 ∙ (𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙) ∙ 𝑐𝑐 + 𝑝𝑝𝑂𝑂𝐴𝐴 + 𝑟𝑟𝑤𝑤 ∙ 𝑐𝑐 ∙ 𝐴𝐴 + 0.5𝑟𝑟𝑤𝑤(𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙) ∙ �𝑠𝑠12 + ⋯+ 𝑠𝑠𝑝𝑝2� 

𝜕𝜕𝜏𝜏
𝜕𝜕𝑠𝑠𝑙𝑙

= 0.5𝑟𝑟𝑤𝑤(𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙)�2𝑠𝑠𝑙𝑙 − 2𝑠𝑠𝑝𝑝� = 0 →   𝑠𝑠1 = 𝑠𝑠2 = ⋯ = 𝑠𝑠𝑝𝑝 



∴ 𝜏𝜏 = (𝑝𝑝 − 1) ∙ 𝑑𝑑 + 𝑂𝑂 ∙ (𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙) ∙ 𝑐𝑐 + 𝑝𝑝𝑂𝑂𝐴𝐴 + 𝑟𝑟𝑤𝑤 ∙ 𝑐𝑐 ∙ 𝐴𝐴 + 0.5𝑟𝑟𝑤𝑤(𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙) ∙
𝑐𝑐2

𝑝𝑝
 

𝑑𝑑𝜏𝜏
𝑑𝑑𝑝𝑝

= 𝑑𝑑 + 𝑂𝑂𝐴𝐴 −
𝑟𝑟𝑤𝑤(𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙)𝑐𝑐2

2𝑝𝑝2
= 0 →   𝑝𝑝 = �

𝑟𝑟𝑤𝑤(𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙)𝑐𝑐2

2(𝑂𝑂𝐴𝐴 + 𝑑𝑑)
 

∴ # 𝑏𝑏𝑂𝑂𝑓𝑓𝑓𝑓𝑏𝑏𝑟𝑟𝑠𝑠 =  �
𝑟𝑟𝑤𝑤(𝑐𝑐𝑤𝑤 + 2𝑐𝑐𝑙𝑙)𝑐𝑐2

2(𝑂𝑂𝐴𝐴 + 𝑑𝑑) − 1 

(and we evenly distribute the buffers). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #6 (Interconnect Optimization, 10 points). 

 

Two nets (net 1 and net 2) are coupled as shown above and you are supposed to insert 
a repeater (inverter or buffer) into each of the designated locations (L1 ~ L6). For 
instance, the following figure shows a repeater insertion solution (its delay and area are 
12𝑑𝑑 and 20𝑆𝑆, respectively): 

 

The following list shows the parameters used in this problem: 

• Area of an inverter: 𝑆𝑆 
• Area of a buffer: 2𝑆𝑆 
• Delay of a net segment whose total capacitance is 𝐴𝐴𝑙𝑙: 𝑑𝑑 
• Delay of a net segment whose total capacitance is 𝐴𝐴𝑙𝑙 + 𝐴𝐴𝑙𝑙: 1.5𝑑𝑑 
• Delay of a net segment whose total capacitance is 𝐴𝐴𝑙𝑙 + 2𝐴𝐴𝑙𝑙: 2𝑑𝑑 
• Input pattern of net 1: 010101… 
• Input pattern of net 2: 101010… 
• Signal inversion at the sinks is not allowed. 

The goal is to optimally insert repeaters to minimize the sum of the delay values of the 
nets. However, you should also minimize the total area. Find an optimal solution that 
minimizes the sum of the delay values and the total area. Notice that minimizing the 
total delay has a higher priority. Thus, if there exists only one solution that minimizes the 
total delay, find it. If there exist multiple solutions that minimize the total delay, find the 
smallest-area solution among them. 

Let the k-th repeater of net 1 be 𝑂𝑂1,𝑘𝑘 and the k-th repeater of net 2 be 𝑂𝑂2,𝑘𝑘. 

Minimization of the sum of the delays requires aligning the polarities of the signals. 
Thus, let 𝑂𝑂1,1 be an inverter and 𝑂𝑂2,1 be a buffer. Then, the signals are aligned after the 
first repeater. Now, we insert inverters after them to reduce the total area, i.e., 
𝑂𝑂1,2,𝑂𝑂1,3,𝑂𝑂1,4,𝑂𝑂1,5, 𝑂𝑂2,2,𝑂𝑂2,3,𝑂𝑂2,4,𝑂𝑂2,5 are inverters. To satisfy the signal inversion 
constraint, 𝑂𝑂1,6 should be an inverter and 𝑂𝑂2,6 should be a buffer. Then, the sum of the 
delays of net 1 is 2𝑑𝑑 + 5 ∗ 𝑑𝑑 + 2𝑑𝑑 = 9𝑑𝑑 and the total delay is 14𝑆𝑆. 



Problem #7 (CMOS Gates, 10 points). 

 

What does the above circuit do? Describe the function of the circuit in as much detail as 
possible (A, B, C: input, Out: output). 

If 𝐴𝐴 = 0, the output is floating (tri-state). 

Suppose 𝐴𝐴 = 1. If 𝐴𝐴 = 0, input 𝐴𝐴 is blocked and 𝐴𝐴 holds the last value of input 𝐴𝐴. 

If 𝐴𝐴 = 1 and 𝐴𝐴 = 1, input 𝐴𝐴 is transferred to the output. 

Thus, this is a tri-state active-low D latch. 

 

 

 

 

 

 

 

 

 

 



Problem #8 (Adder, 10 points). 

Draw a gate-level schematic of a four-bit conditional sum adder (use full adders and 
muxes). Input: A[3:0], B[3:0], CI. Output: S[3:0], CO. 

 

 


