EE434

ASIC and Digital Systems

Midterm Exam 2

Mar. 31, 2017. (4:10pm - 5pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

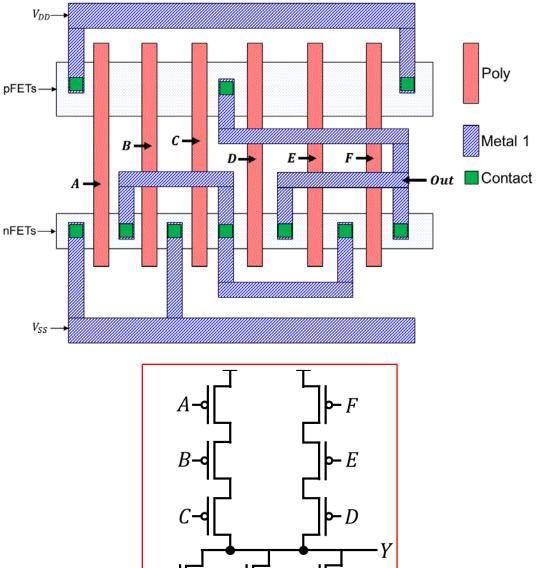
Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

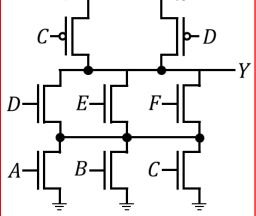
* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Layout, 10 points).

Represent Out as a Boolean function of A, B, C, D, E, F.

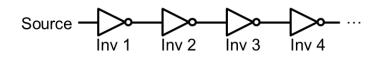




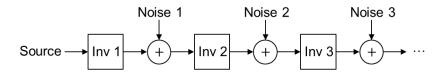
 $Y = \overline{(A + B + C) \cdot (D + E + F)}$

Problem #2 (DC Characteristics, 10 points).

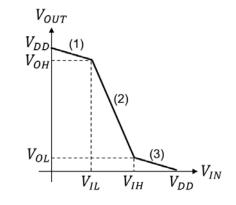
An infinite chain of inverters is defined as follows:



All the inverters are identical, i.e., have the same characteristics. The above chain is modeled as a block diagram as follows:



where *Noise* k is the k-th noise and *Source* is a signal generator and $V_{Source} = V_{DD} \cdot u(t)$ (i.e., 0 if t < 0 and V_{DD} if $t \ge 0$). $V_{DD} = 1V$. The DC characteristic of an inverter is approximated using three segments as follows (If $V_{in} \ge V_{DD}$, $V_{out} = 0$. If $V_{in} \le 0$, $V_{out} = V_{DD}$.):



1)
$$V_{out} = \frac{V_{OH} - V_{DD}}{V_{IL}} \cdot V_{in} + V_{DD}$$

2)
$$V_{out} = \frac{V_{OL} - V_{OH}}{V_{IH} - V_{IL}} \cdot (V_{in} - V_{IH}) + V_{OL}$$

3)
$$V_{out} = -\frac{V_{OL}}{V_{DD} - V_{IH}} \cdot (V_{in} - V_{DD})$$

Each noise source is an independent voltage signal and its range is as follows ($V_N > 0$):

•
$$|V_{noise}| \leq V_N$$

<u>Compute the max. value of V_N that does not cause signal inversion for the following two</u> cases (Note: Signal inversion occurs if a signal reaches 0.5V when it should be 0 or 1):

- Case 1) $V_{OL} = 0V, V_{OH} = 1V, V_{IL} = 0.4V, V_{IH} = 0.6V$
- Case 2) $V_{OL} = 0V, V_{OH} = 1V, V_{IL} = 0.4V, V_{IH} = 0.8V$

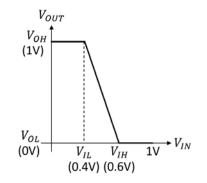
Case 1) In this case, y = -5x + 3 in Region 2. The high noise margin is 0.4V, so is the low noise margin. Suppose V_N is $(0.4 + \delta)V$ where $\delta > 0$. Let's take at a look at the worst cases.

- Input of inverter m: 1V
- Output of inverter m: 0V
- Input of inverter (m+1): $(0.4 + \delta)V / a(n) = 0.4 + b(n)$
- Output of inverter (m+1): $(1.0 5\delta)V // -5a(n) + 3 = 1 5b(n)$
- Input of inverter (m+2): $(0.6 6\delta)V // -5a(n) + 2.6 \delta = 0.6 5b(n) \delta$
- Output of inverter (m+2): $(30\delta)V // 25a(n) 10 + 5\delta = 25b(n) + 5\delta$
- Input of inverter (m+3): $(0.4 + 31\delta)V \parallel a(n+1) = 25a(n) 9.6 + 6\delta = 0.4 + 25b(n) + 6\delta$ -> $b(n+1) = 25b(n) + 6\delta, a(n+1) = 0.4 + b(n+1)$
- ...

a(n + 1) = 0.4 + b(n + 1) and $b(n + 1) = 25b(n) + 6\delta$. Since b(n) goes to infinity as n increases, so signal inversion happens.

If V_N is 0.4V

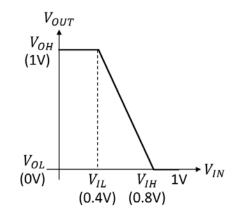
- Input of inverter m: 1V
- Output of inverter m: 0V
- Input of inverter (m+1): 0.4V
- Output of inverter (m+1): 1V
- Input of inverter (m+2): 0.6V
- Output of inverter (m+2): 0V
- Input of inverter (m+3): 0.4V
- ...



Thus, if $\delta > 0$, signal inversion will eventually occur no matter how small δ is. Thus, the maximum V_N is **0.4V** in this case.

Case 2) In this case, y = -2.5x + 2 in Region 2. When the output is 0.4V, the input voltage is 0.64V. Suppose V_N is X(V) where X is between 0.2V and 0.4V. Let's take at a look at the worst cases.

- Input of inverter m: 1V
- Output of inverter m: 0V
- Input of inverter (m+1): X(V)
- Output of inverter (m+1): 1V
- Input of inverter (m+2): (1 X)V
- Output of inverter (m+2): (-0.5 + 2.5X)V
- Input of inverter (m+3): (-0.5 + 3.5X)V



If (-0.5 + 3.5X)V is greater than 0.4V, the output voltage is less than 1V, then a positive feedback loop is formed, so we solve the following inequality:

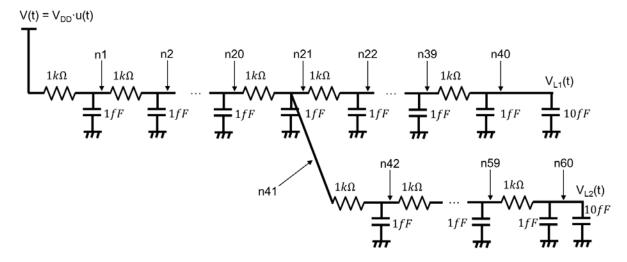
$$(-0.5+3.5X)V \leq 0.4V$$

Thus, $\underline{V}_N \approx 0.257V$.

Problem #3 (Elmore Delay, 10 points).

The RC tree shown below has two delay constraints as follows:

- The delay from the driver to V_{L1} should be less than or equal to 900ps.
- The delay from the driver to V_{L2} should be less than or equal to 6823ps.

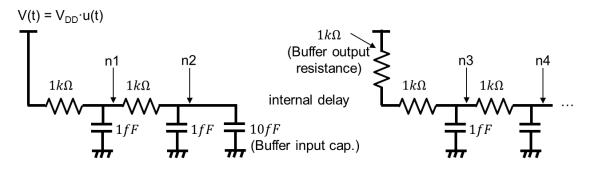


Currently, the delay at V_{L1} is $1k * 11f + 1k * 12f + \dots + 1k * 29f + 1k * 59f + 1k * 60f + \dots + 1k * 79f = 1829ps$, so is the delay at V_{L2} .

You are supposed to insert <u>only one buffer</u> in the RC tree to satisfy the delay constraints at both V_{L1} and V_{L2} . You can insert the buffer only into one of the designated nodes (n1 ~ n60). The buffer has the following characteristics:

- Input capacitance: 10 fF
- Internal delay: 20ps
- Output resistance: $1k\Omega$

When you insert a buffer into a node, the RC tree before and after the buffer are separated as follows (assuming the buffer is inserted into n2 in the figure above):



In this case (inserting a buffer into n2), the delay at V_{L1} is $[1k * 11f + 1k * 12f + \dots + 1k * 29f + 1k * 59f + 1k * 60f + \dots + 1k * 77f + 1k * 77f] + [20ps] + [1k * 11f + 1k * 12f] = (1749 + 20 + 23)ps = 1792ps$, so is the delay at V_{L2} . As you see, the delay is reduced from 1829ps to 1792ps.

Insert a buffer into one of the nodes ($n1 \sim n60$) so that it satisfies the delay constraints at both V_{L1} and V_{L2} . Then, compute the Elmore delay at V_{L1} .

(Help: The sum of a, a + 1, a + 2, ..., n is $\frac{(n+a)(n-a+1)}{2}$. For example, $5 + 6 + \dots + 10 = \frac{(10+5)(10-5+1)}{2} = 45$.)

If I insert a buffer into node n21, the delay at V_{L1} is

$$(1k * 11f + 1k * 12f + \dots + 1k * 29f + 1k * 29f) + (20ps) + (1k * 40f + 1k * 41f + \dots + 1k * 60f) = (380ps + 29ps) + (20ps) + (1050ps) = 1479ps$$

If I insert a buffer into node n41, the delay at V_{L1} is

$$(1k * 11f + 1k * 12f + \dots + 1k * 29f) + (1k * 40f + 1k * 41f + \dots + 1k * 60f) = (380ps) + (1050ps) = 1430ps$$

If I insert a buffer into node n20, the delay at V_{L1} is

$$\begin{aligned} (1k*11f + 1k*12f + \dots + 1k*29f) + (1k*59f) + (1k*59f) + (20ps) \\ &+ (1k*11f + 1k*12f + \dots + 1k*30f) \\ &= (380ps) + (59ps) + (59ps) + (20ps) + (410ps) = \textbf{869ps} \end{aligned}$$

If I insert a buffer into node n19, the delay at V_{L1} is

$$(1k * 11f + 1k * 12f + \dots + 1k * 29f) + (1k * 59f) + (1k * 60f) + (1k * 60f) + (20ps) + (1k * 11f + 1k * 12f + \dots + 1k * 29f) = (380ps) + (59ps) + (60ps) + (20ps) + (380ps) = 899ps$$

Node: n20 or n19

Elmore delay at V_{L1} : 869ps or 899ps

Problem #4 (Pseudo-nMOS, 10 points).

Draw a pseudo-nMOS schematic for $Y = \overline{A \cdot B \cdot C + (D + E) \cdot F}$ and properly size the nFETs to achieve the following output level for logic output 0:

•
$$V_{out} \leq 0.1 V_{DD}$$

Use the following parameters:

- Resistance of a 1 × nFET = Resistance of a 2 × pFET
- The size of the pFET: $4 \times$
- Do not use the transistor-mode-based computation for sizing. You can just use the resistance values for sizing.
- Do not oversize the nFETs.

The resistance of the pFET is $R_n/2$ where the resistance of a 1X nFET is R_n . Suppose the resistance of an nFET path is R_k . Then, $\frac{R_k}{\binom{R_n}{2} + R_k} \leq 0.1$, so $R_k \leq \frac{1}{18}R_n$.

For A=B=C=1:

$$3 \cdot R = \frac{1}{18}R_n \implies R = \frac{1}{54}R_n \implies A = B = C = 54 \times C$$

For F=1 and (D or E=1):

$$2 \cdot R = \frac{1}{18}R_n \implies R = \frac{1}{36}R_n \implies D = E = F = 36 \times$$

$$0 - 4X = \frac{R_n}{2}$$

$$A - 54X$$

$$F - 36X$$

$$B - 54X$$

$$C - 54X$$

$$D - 36X$$

$$E - 36X$$

$$E - 36X$$

$$E - 36X$$

Problem #5 (Capacitive Coupling, 10 points).

The following figure models the coupling effect between two adjacent wires.

$$V_{s}(t) = V_{DD} \cdot u(t) \underbrace{\bigcap_{\prime \prime \prime \prime}}_{\prime \prime \prime \prime} \underbrace{C \frac{1}{1}}_{\prime \prime \prime \prime} V_{c} \underbrace{\frac{1}{1}}_{\prime \prime \prime \prime} C_{L}$$

 $V_1(t)$ is an aggressor and $V_2(t)$ is a victim. $V_2(t)$ is as follows:

$$V_{2}(t) = \frac{V_{DD}}{2} \left[e^{-\frac{t}{\tau_{1}}} - e^{-\frac{t}{\tau_{2}}} \right] u(t)$$

where

•
$$\tau_1 = R(C + C_L + 2C_C)$$

•
$$\tau_2 = R(C + C_L)$$

In this case, the max. value of $V_2(t)$ is found by differentiating $V_2(t)$ with respect to t. The max. value occurs when t is

$$t_{max} = \frac{R(C + C_L)(C + C_L + 2C_C)}{2} \cdot \ln \frac{C + C_L + 2C_C}{C + C_L}$$

and the max. value of $V_2(t)$ is

$$V_{2,max} = \frac{V_{DD}}{2} \cdot \left(1 - \frac{\tau_2}{\tau_1}\right) \cdot \left(\frac{\tau_2}{\tau_1}\right)^{\frac{\tau_2}{2RC_c}}$$

Answer the following questions (Hint: Use the above formula or your intuition to solve this problem):

- If C_c increases, V_{2,max} increases. (True/False)
- If C increases, V_{2,max} increases. (True/False)
- If C_L increases, V_{2,max} increases. (True/False)
- If *R* increases, *V*_{2,max} increases. (True/False)
- The max. value of $V_2(t)$ can be greater than $V_{DD}/2$. (True/False)

(Hint:
$$\lim_{x \to \infty} \left(\frac{1}{x}\right)^{\frac{1}{x}} = 1$$
. $\lim_{x \to \infty} \left(\frac{x}{x+c}\right)^{\frac{x}{c}} = e$. $\left(\frac{x}{x+c}\right)^{\frac{x}{c}} > 1$. (when $c > 0$))

$$V_{2,max} = \frac{V_{DD}}{2} \cdot \left(1 - \frac{C + C_L}{C + C_L + 2C_C}\right) \cdot \left(\frac{C + C_L}{C + C_L + 2C_C}\right)^{\frac{C + C_L}{2C_C}}$$

 $\left(1-\frac{c+c_L}{c+c_L+2c_c}\right)=a, \frac{c+c_L}{c+c_L+2c_c}=b, \text{ and } \frac{c+c_L}{2c_c}=d.$

- If C_c increases, *a* approaches 1 and *b* and *d* approach 0, so b^d approaches 1. Thus, $V_{2,max}$ increases (approaches $\frac{V_{DD}}{2}$).
- If *C* increases, *a* approaches 0 and *b*^{*d*} approaches *e*, so *V*_{2,max} decreases (approaches 0).
- C_L and C are interchangeable, so if C_L increases, V_{2,max} decreases (approaches 0).
- $V_{2,max}$ does not include R, so it does not increase even if R increases.
- *a* is less than 1. b^d is less than 1. Thus, $V_{2,max}$ is less than $V_{DD}/2$.