# EE434 ASIC and Digital Systems

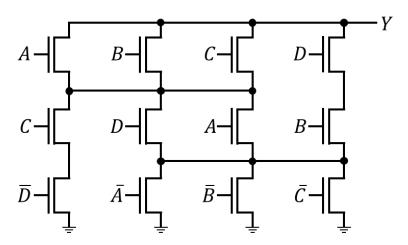
#### Midterm Exam 1

Feb. 16, 2018. (4:10pm - 5pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

#### Name:

#### **WSU ID:**


| Problem | Points |  |
|---------|--------|--|
| 1       | 10     |  |
| 2       | 10     |  |
| 3       | 10     |  |
| 4       | 10     |  |
| 5       | 10     |  |
| 6       | 10     |  |
| Total   | 60     |  |

<sup>\*</sup> Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

<sup>\*</sup> Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

## Problem #1 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. <u>Draw a PFET network</u> for the gate. Available inputs:  $A, B, C, D, \bar{A}, \bar{B}, \bar{C}, \bar{D}$ . You should <u>minimize</u> the total number of PFETs in your PFET network.



(# PFETs  $\leq$ 10: 10 points. 11 $\leq$ # PFETs $\leq$ 12: 7 points. 13 $\leq$ # PFETs $\leq$ 14: 5 points. # PFETs>12: 0 points)

### **Problem #2 (Transmission Gates, 10 points)**

<u>Design (draw a schematic) the following Boolean function using transmission gates only.</u>

$$Y = A \oplus B \oplus C$$

Available inputs:  $A, B, C, \bar{A}, \bar{B}, \bar{C}$ . You cannot use Power  $(V_{DD})$  and Ground  $(V_{SS})$ . Use the following symbols for the transmission gates.

$$\frac{\bar{S}}{\bar{S}} = -C$$

$$\frac{\bar{S}}{\bar{S}} = -C$$

$$\frac{\bar{S}}{\bar{S}} = -C$$

Design constraint: The total # transmission gates should be less than or equal to 10.

(# TGs≤10: 10 points. 11≤# TGs≤12: 7 points. 13≤# TGs≤14: 5 points. # TGs>14: 0 points)

### Problem #3 (Design, 10 points)

<u>Design (draw a schematic) a two-bit comparator using transmission gates only.</u> The following shows a truth table for the comparator:

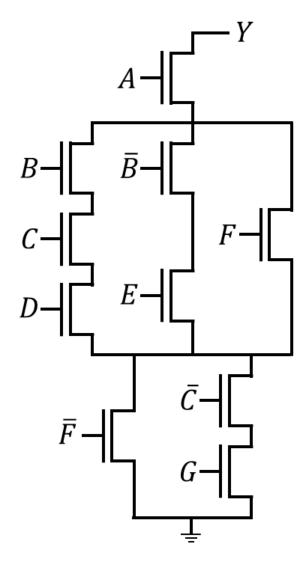
| A1 | Α0 | B1 | B0 | Y1 |
|----|----|----|----|----|
| 0  | 0  | 0  | 0  | 0  |
| 0  | 0  | 0  | 1  | 0  |
| 0  | 0  | 1  | 0  | 0  |
| 0  | 0  | 1  | 1  | 0  |
| 0  | 1  | 0  | 0  | 1  |
| 0  | 1  | 0  | 1  | 0  |
| 0  | 1  | 1  | 0  | 0  |
| 0  | 1  | 1  | 1  | 0  |
| 1  | 0  | 0  | 0  | 1  |
| 1  | 0  | 0  | 1  | 1  |
| 1  | 0  | 1  | 0  | 0  |
| 1  | 0  | 1  | 1  | 0  |
| 1  | 1  | 0  | 0  | 1  |
| 1  | 1  | 0  | 1  | 1  |
| 1  | 1  | 1  | 0  | 1  |
| 1  | 1  | 1  | 1  | 0  |

Available inputs: A1, A0, B1, B0,  $\overline{A1}$ ,  $\overline{A0}$ ,  $\overline{B1}$ ,  $\overline{B0}$ . You cannot use Power ( $V_{DD}$ ) and Ground ( $V_{SS}$ ). Use the following symbols for the transmission gates.

$$-\frac{\overline{S}}{S} = -C$$

$$-\frac{C}{S} = -C$$

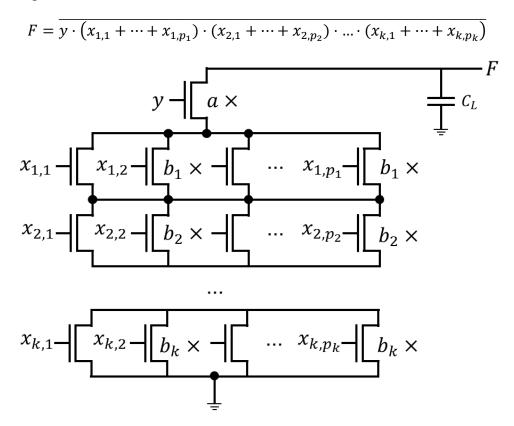
$$\overline{S}$$


$$\overline{S}$$

Design constraint: The total # transmission gates should be less than or equal to 12.

(# TGs≤12: 10 points. 13≤# TGs≤14: 7 points. 15≤# TGs≤16: 5 points. # TGs>16: 0 points)

## **Problem #4 (Transistor Sizing, 10 points)**


Size the transistors in the following pull-down network.  $R_n$  is the resistance of a 1X NMOS transistor. Ignore parasitic capacitances. Target time constant:  $\tau_{target} \leq R_n \cdot C_L$ . Try to minimize the total area.

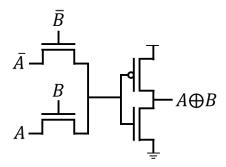


(Total width W≤48X: 10 points. W≤50X: 8 points. W≤52X: 5 points. W>52X: 3 points)

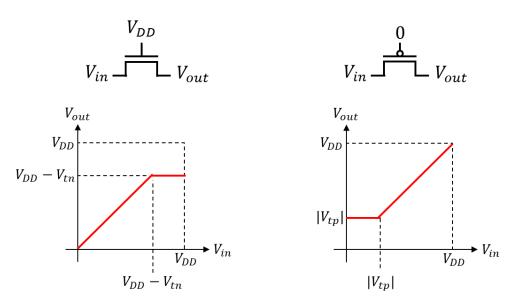
#### **Problem #5 (Transistor Sizing, 10 points)**

The following shows an NFET network of

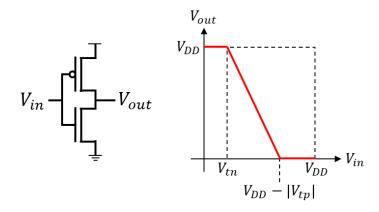



Notice that  $k, p_1, ..., p_k$  are constants. The fall delay should be less than or equal to  $R_n C_L$  where  $R_n$  is the resistance of a  $1 \times NFET$ . The NFET y is upsized to  $a \times and$  each NFET connected to  $x_{i,j}$  is upsized to  $b_i \times .$  We minimize the total width

$$W = a + b_1 \cdot p_1 + b_2 \cdot p_2 + \dots + b_k \cdot p_k.$$


Find a (the size of the NFET connected to input y) that minimizes the total width (i.e., represent a as a function of  $p_1, p_2, ..., p_k$ .

## **Problem #6 (Pass Transistor, 10 points)**


The following schematic implements an XOR gate using pass transistors.



The inverter at the output restores the signal so that the output swing can be  $[0, V_{DD}]$ . The following plots show the  $V_{DS}$  characteristic of the NFET when its gate voltage is  $V_{DD}$  and the  $V_{DS}$  characteristic of the PFET when its gate voltage is 0.



The following plot shows the input-output characteristic of the inverter.



 $V_{tn}$  and  $|V_{tp}|$  are the threshold voltages of the NFET and the PFET, respectively.  $A, B, \bar{A}, \bar{B}$  are either 0V (for 0) or  $V_{DD}$  (for 1). The swing of the final output  $A \oplus B$  should be  $[0, V_{DD}]$ , i.e., 0V if  $A \oplus B = 0$  and  $V_{DD}$  if  $A \oplus B = 1$ . Find all inequalities for the full output swing. (Hint: The inequalities might consist of  $V_{DD}, V_{tn}$ , and  $|V_{tp}|$ .)