EE434

ASIC and Digital Systems

Midterm Exam 2
 Mar. 28, 2018. (4:10pm - 5pm)
 Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	20	
5	5	
6	15	
Total	70	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Layout, 10 points)

Represent Out as a Boolean function of A, B, C, D.

Problem \#2 (Layout, 10 points)

Draw a transistor-level schematic (netlist) for the following layout. Input ports: A, B, C, D. Inout (input/output) ports: E, F, G, H.

Problem \#3 (DC Analysis, 10 points)

The following schematic implements $F=\overline{A(B+C D)}$.

The following shows a DC characteristic graph of the logic above. Currently, the DC characteristic of the above logic follows the curve (1).

1) If μ_{n} (the electron mobility) increases, the DC characteristic of the logic will move from (1) to (2). (True/False)
2) If β_{p} of all the PFETs increases, the DC characteristic of the logic will move from (1) to (3). (True/False)
3) If β_{n} of the NFET connected to input C increases, the DC characteristic of the logic will move from (1) to (3). (True/False)
4) If the threshold voltages of all the NFETs increase (due to the body-bias effect), the DC characteristic of the logic will move from (1) to (2). (True/False)
5) If the length of the PFET connected to input B increases, the DC characteristic of the logic will move from (1) to (2). (True/False)

Problem \#4 (DC Analysis, 20 points)

An infinite chain of inverters is defined as follows:

All the inverters are identical, i.e., have the same characteristics. The above chain is modeled as a block diagram as follows:

where Noise k is the k-th noise and Source is a signal generator and $V_{\text {Source }}=V_{D D} \cdot u(t)$ (i.e., 0 if $t<0$ and $V_{D D}$ if $t \geq 0$). $V_{D D}=1 V$. The signal source is either 0 V (for logic 0) or 1 V (for logic 1). All the noise sources are independent. For example, if the range of the value of each noise source is [-0.1V, 0.1 V], the value of noise source 1 could be 0.05 V while the value of noise source 2 is 0.07 V and the value of noise source 3 is -0.03 V .

1) The following shows the DC characteristics of the inverters. V_{C} is between 0 V and 1 V . If the range of the value of each noise source is $[0,0.3 \mathrm{~V}]$ (i.e, $0 \mathrm{~V} \leq$ noise $\leq 0.3 \mathrm{~V}$), what is the minimum value of $V_{\mathcal{C}}$ that does not lead to signal inversion? (5 points)

2) Assume that all the inverters follow the $D C$ characteristic curve shown above. If the range of the value of each noise source is $[-0.1 \mathrm{~V}, 0.2 \mathrm{~V}]$ (i.e, $-0.1 \mathrm{~V} \leq$ noise $\leq 0.2 \mathrm{~V}$), what is the minimum value of $V_{\mathcal{C}}$ that does not lead to signal inversion? (5 points) What is the maximum value of $V_{\mathcal{C}}$ that does not lead to signal inversion? (5 points)
3) Draw a DC characteristic curve for the following buffer circuit. (5 points)

- $V_{t n}$: Threshold voltage of the NFET.
- $V_{t p}$: Threshold voltage of the PFET.
- You don't need to derive equations or formulas to draw it. Just a rough sketch will be accepted.
- However, you should show the output values for $V_{i n}=0$ and $V_{i n}=V_{D D}$.

Problem \#5 (Elmore Delay, 5 points)

Compute the Elmore delay at node K.

Problem \#6 (DC Analysis, 15 points)

The following shows the DC characteristic curve of an inverter.

Draw a DC characteristic curve between the input and the output of the following inverter chain composed of three inverters whose DC characteristics follow the graph shown above. Note: The DC curve you draw should be very accurate, i.e., show all the important values such as x-intercepts, y-intercepts, etc.

