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Problem #1 (Timing Analysis, 20 points) 

The following shows a system consisting of two D-F/Fs and two logic stages (Logic 1 
and Logic 2). 

 

• 𝐷𝐷𝑛𝑛: Delay of Logic 𝑛𝑛 
• 𝑑𝑑: Delay from the clock source to D-F/F 1 and the input of the inverter 
• 𝑘𝑘: Delay of the inverter (𝟎𝟎 < 𝒌𝒌 < 𝑻𝑻𝑪𝑪𝑪𝑪𝑪𝑪/𝟒𝟒) 
• 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶: Clock period 
• 𝑇𝑇𝑠𝑠: Setup time 
• 𝑇𝑇ℎ: Hold time 
• 𝑇𝑇𝐶𝐶𝐶𝐶: Clk-to-Q delay of a D-F/F 
• Clock duty cycle: 50% 

The following shows the waveforms of the clock at the clock input of D-F/F 1 and D-F/F 
2 for better understanding. 

 

 

 



1) Does the circuit have any setup time constraints? If yes, find all setup-time 
constraints (inequalities) for the system. If no, prove that the circuit does not have 
any setup time constraints (10 points). 

 

1) For Logic 1: 𝑑𝑑 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷1 ≤ 𝑑𝑑 + 𝑘𝑘 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶
2

− 𝑇𝑇𝑠𝑠 

𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷1 ≤
𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶

2
+ 𝑘𝑘 − 𝑇𝑇𝑠𝑠 

 

2) For Logic 2: 𝑑𝑑 + 𝑘𝑘 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶
2

+ 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷2 ≤ 𝑑𝑑 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷2 ≤
𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶

2
− 𝑘𝑘 − 𝑇𝑇𝑠𝑠 

 

 

 

 

 

 

 

 

 



 

2) Does the circuit have any hold time constraints? If yes, find all hold-time 
constraints (inequalities) for the system. If no, prove that the circuit does not have 
any hold time constraints (10 points). 

Hold time constraints for a FF are used to guarantee that the FF captures a correct, 
stable input value. If the setup time constraints for Logic 1 are satisfied, the output of 
Logic 1 is correct and stable before the next clock rising edge arrives at D-F/F 2 as 
shown in the above figure. Thus, the above circuit does not need any hold time 
constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #2 (Timing Analysis, 30 points) 

The following shows a pipelined logic. All the F/Fs are identical, i.e., they have the same 
setup time, hold time, and 𝑇𝑇𝐶𝐶𝐶𝐶. 

 

The following shows the constants used in this problem. 

• 𝑇𝑇𝑠𝑠: Setup time of a D-F/F 
• 𝑇𝑇ℎ: Hold time of a D-F/F 
• 𝑇𝑇𝐶𝐶𝐶𝐶: Clk-to-Q delay of a D-F/F 
• 𝐷𝐷𝑛𝑛: Delay of Logic 𝑛𝑛 
• 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶: Clock period 
• 𝑑𝑑: Delay from the clock source to each D F/F. 

The setup time constraint for Logic 𝑛𝑛 is as follows: 

𝑑𝑑 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷𝑛𝑛 ≤ 𝑑𝑑 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

If the delay of Logic 1 (𝐷𝐷1) is too large (i.e., 𝐷𝐷1 > 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑆𝑆 − 𝑇𝑇𝐶𝐶𝐶𝐶), it violates the setup 
time constraint of Logic 1. In this case, we can intentionally apply clock skew to the 
system so that Logic 1 has a more loose setup time constraint while some of the other 
logic stages have tighter setup time constraints. This method is called “useful skew”. 

We compare the following three methods for the useful skew. 

1) We apply clock skew to D-F/F 2 only. In this case, the delay from the clock source to 
D-F/F 2 becomes 𝑑𝑑 + 𝛼𝛼 where 𝛼𝛼 is positive. Assume 𝐷𝐷2 < 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑆𝑆 − 𝑇𝑇𝐶𝐶𝐶𝐶.  Find the 
range (minimum and maximum) of 𝛼𝛼, i.e., represent the minimum and the maximum 
values of 𝛼𝛼 as functions of the constants listed above (5 points).  

Logic 1: 𝑑𝑑 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷1 ≤ 𝑑𝑑 + 𝛼𝛼 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

Logic 2: 𝑑𝑑 + 𝛼𝛼 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷2 ≤ 𝑑𝑑 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

∴ 𝐷𝐷1 + 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑇𝑇𝑠𝑠 ≤ 𝛼𝛼 ≤ −𝐷𝐷2 − 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 



2) We apply the same clock skew to D-F/F 2, D-F/F 3, D-F/F 4, and D-F/F 5. In this 
case, the delay from the clock source to the four D-F/Fs (D-F/F 2, 3, 4, 5) becomes 
𝑑𝑑 + 𝛽𝛽 where 𝛽𝛽 is positive. Assume 𝐷𝐷𝑛𝑛 < 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑆𝑆 − 𝑇𝑇𝐶𝐶𝐶𝐶 for 𝑛𝑛 = 2,3,4,5. Find the 
minimum and the maximum values of 𝛽𝛽, i.e., represent the minimum and the maximum 
values of 𝛽𝛽 as functions of the constants listed above (10 points). 

Logic 1: 𝑑𝑑 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷1 ≤ 𝑑𝑑 + 𝛽𝛽 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

Logic 𝑛𝑛 (𝑛𝑛 = 2,3,4): 𝑑𝑑 + 𝛽𝛽 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷𝑛𝑛 ≤ 𝑑𝑑 + 𝛽𝛽 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

 

∴ 𝐷𝐷1 + 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑇𝑇𝑠𝑠 ≤ 𝛽𝛽 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3) We apply different clock skews to D-F/F 2, D-F/F 3, D-F/F 4, and D-F/F 5. In this 
case, the delay from the clock source to D-F/F 𝑚𝑚 (where 𝑚𝑚 = 2,3,4,5) becomes 𝑑𝑑 + ∆𝑚𝑚 
where ∆𝑚𝑚 is positive and ∆5 is given (∆5 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝐷𝐷4 > 0). Find the minimum 
and the maximum values of ∆2, i.e., represent the minimum and the maximum values of 
∆2 as functions of the constants listed above (𝑇𝑇𝑠𝑠,𝑇𝑇ℎ,𝑇𝑇𝐶𝐶𝐶𝐶,𝐷𝐷1,𝐷𝐷2,𝐷𝐷3,𝐷𝐷4,𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶,∆5) (15 
points). 

Logic 1: 𝑑𝑑 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷1 ≤ 𝑑𝑑 + ∆2 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

Logic 𝑛𝑛 (𝑛𝑛 = 2,3,4): 𝑑𝑑 + ∆𝑛𝑛 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝐷𝐷𝑛𝑛 ≤ 𝑑𝑑 + ∆𝑛𝑛+1 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

The three inequalities for 𝑛𝑛 = 2,3,4 are represented as follows: 

∆2 − ∆3≤ 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝐷𝐷2 

∆3 − ∆4≤ 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝐷𝐷3 

∆4 − ∆5≤ 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝐷𝐷4 

To maximize ∆2, we should maximize ∆3, for which we should maximize ∆4. 

From the last inequality, the maximum value of ∆4 is ∆5 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝐷𝐷4. 

Then, the maximum value of ∆3 is ∆5 + 2𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 2𝑇𝑇𝑠𝑠 − 2𝑇𝑇𝐶𝐶𝐶𝐶 − 𝐷𝐷3 − 𝐷𝐷4. 

Then, the maximum value of ∆2 is ∆5 + 3𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 3𝑇𝑇𝑠𝑠 − 3𝑇𝑇𝐶𝐶𝐶𝐶 − 𝐷𝐷2 − 𝐷𝐷3 − 𝐷𝐷4. 

 

∴ 𝐷𝐷1 + 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑇𝑇𝑠𝑠 ≤ ∆2≤ ∆5 + 3(𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝐶𝐶𝐶𝐶) − 𝐷𝐷2 − 𝐷𝐷3 − 𝐷𝐷4 

 

 

 

 

 

 

 

 



Problem #3 (Sequential Logic & Transistor Sizing, 20 points) 

 

<Chang, JSSC’96> 

The above figure shows a negative edge-triggered D-F/F: However, some of the 
transistors should be properly sized, otherwise it won’t work correctly. Find all 
inequalities and/or equations required to guarantee that the circuit shown above works 
as a negative edge-triggered D-F/F. Use the following variables/constants. (Do not care 
about the sampling frequency, i.e., the clock period is sufficiently long). 

• 𝐷𝐷: Data input of the F/F 
• 𝐶𝐶𝐶𝐶: Clock input 
• 𝑄𝑄�: Inverted data output 
• 𝑅𝑅𝑚𝑚: ON resistance of transistor 𝑇𝑇𝑚𝑚 
• 𝑉𝑉𝐷𝐷𝐷𝐷: Supply voltage 
• 𝑉𝑉𝑡𝑡𝑛𝑛: Threshold voltage of an NFET 
• 𝑉𝑉𝑡𝑡𝑡𝑡: Threshold voltage of a PFET 
• If 𝑄𝑄� is driven by a ratioed logic, 𝑄𝑄� should be less than or equal to 0.1𝑉𝑉𝐷𝐷𝐷𝐷 for 

logical output 0 and greater than or equal to 0.9𝑉𝑉𝐷𝐷𝐷𝐷 for logical output 1. 
• If a node is floating, assume that the node holds its previous value (no leakage). 

1) 𝐷𝐷 = 0,𝑄𝑄� = 0,𝐶𝐶𝐶𝐶 ↓ (𝑄𝑄� should become 1) 

𝑋𝑋 = 1. 𝑇𝑇4: OFF. When 𝐶𝐶𝐶𝐶 was 1, 𝑇𝑇5 was ON, so 𝑌𝑌 was 0. When 𝐶𝐶𝐶𝐶 switches to 0, 𝑇𝑇5 is 
turned OFF, so 𝑌𝑌 is still 0. 𝑇𝑇7 is OFF, so 𝑇𝑇6 charges the output and 𝑄𝑄� becomes 1. 

2) 𝐷𝐷 = 1,𝑄𝑄� = 1,𝐶𝐶𝐶𝐶 ↓ (𝑄𝑄� should become 0) 

When 𝐷𝐷 and 𝐶𝐶𝐶𝐶 are 1, 𝑋𝑋 is 0. 𝑇𝑇4: ON. 𝑇𝑇5: ON. When 𝐶𝐶𝐶𝐶 switches to 0, 𝑋𝑋 becomes a 
floating node (so 𝑋𝑋 is still 0 and 𝑇𝑇4 is still ON) and 𝑇𝑇5 is turned OFF, so 𝑌𝑌 becomes 1 
and 𝑇𝑇7 is ON. Since 𝐶𝐶𝐶𝐶 is also 0, 𝑇𝑇6 is turned ON, so the output is determined by the 
ratioed logic composed of 𝑇𝑇6 and 𝑇𝑇7. Since 𝑄𝑄� should be 0 in this case, the following 
inequality should be satisfied: 



𝑅𝑅7
𝑅𝑅6 + 𝑅𝑅7

≤ 0.1 

3) 𝐷𝐷 = 0,𝑄𝑄� = 0,𝐶𝐶𝐶𝐶 ↓, then 𝐷𝐷 switches arbitrarily (𝑄𝑄� should stay at 1) 

In this case, 𝑇𝑇7 should always be OFF, otherwise 𝑄𝑄� will be 1 due to the inequality in 2). 
Previously, 𝑇𝑇4 was OFF and 𝑌𝑌 was 0. In this case, even if 𝐷𝐷 switches to 1 or 0, 𝑋𝑋 will be 
1, so 𝑇𝑇4 is always OFF, so 𝑌𝑌 is always 0.  

4) 𝐷𝐷 = 0,𝑄𝑄� = 0,𝐶𝐶𝐶𝐶 ↓, then 𝐷𝐷 switches arbitrarily and 𝐶𝐶𝐶𝐶 goes to 1 (𝑄𝑄� should stay at 1) 

If 𝐶𝐶𝐶𝐶 switches to 1, 𝑇𝑇5 is turned ON. If 𝐷𝐷 is 0, 𝑋𝑋 is 1 and 𝑇𝑇4 is OFF, so 𝑌𝑌 will always be 
0, so 𝑇𝑇7 is OFF and 𝑄𝑄� does not change. If 𝐷𝐷 is 1, however, 𝑋𝑋 becomes 0, so 𝑇𝑇4 is turned 
ON and 𝑌𝑌 is determined by the ratioed logic composed of 𝑇𝑇4 and 𝑇𝑇5. If 𝑌𝑌 is sufficiently 
high, 𝑇𝑇7 will be turned on and 𝑄𝑄� will become 0 due to the inequality in 2), which should 
not happen. Thus, even when 𝑇𝑇4 and 𝑇𝑇5 are turned on at the same time, 𝑇𝑇7 should be 
turned OFF, so the following inequality should be satisfied:  

�
𝑅𝑅5

𝑅𝑅4 + 𝑅𝑅5
�𝑉𝑉𝐷𝐷𝐷𝐷 ≤ 𝑉𝑉𝑡𝑡𝑛𝑛 

5) 𝐷𝐷 = 1,𝑄𝑄� = 1,𝐶𝐶𝐶𝐶 ↓, then 𝐷𝐷 switches arbitrarily (𝑄𝑄� should stay at 0) 

Since 𝑄𝑄� should stay at 0, 𝑇𝑇7 should always be ON. For that, 𝑌𝑌 should always be 1. 
Since 𝐶𝐶𝐶𝐶 becomes 0, 𝑇𝑇5 is OFF. Since 𝑌𝑌 was 1 due to the inequality in 4), 𝑌𝑌 will always 
be 1 no matter how 𝐷𝐷 changes. 

6) 𝐷𝐷 = 1,𝑄𝑄� = 1,𝐶𝐶𝐶𝐶 ↓, then 𝐷𝐷 switches arbitrarily and 𝐶𝐶𝐶𝐶 goes to 1 (𝑄𝑄� should stay at 0) 

When 𝐶𝐶𝐶𝐶 switches back to 1, 𝑇𝑇5 is turned ON, so no matter whether 𝑇𝑇4 is turned ON or 
not, 𝑌𝑌 will be 0 (if 𝑇𝑇4 is ON, 𝑌𝑌 is close to 0 due to the inequality in 4)). Thus, 𝑇𝑇7 is OFF, 
but 𝑇𝑇6 is turned OFF too, so 𝑄𝑄� does not change. 

 

 

 

 

 

 

 



Problem #4 (Memory, 20 points) 

The following figure shows a 6T SRAM cell. However, it uses an NFET and a PFET for 
the access transistors as shown in the figure. The wordline (𝑊𝑊𝑊𝑊) is set to 1 to access 
the cell and 0 to forbid accessing the cell. Notice that 𝑊𝑊𝑊𝑊����� is connected to the gate of the 
PFET access transistor. The length of each TR is set to the minimum length 𝑙𝑙. 

 

Assume that 𝐵𝐵 = 0 (𝐵𝐵� = 1) is stored in the SRAM cell. Derive all inequalities and/or 
equations for the widths of the six transistors to write 1 to the SRAM cell (in this case, 
𝐵𝐵𝑊𝑊 and 𝐵𝐵𝑊𝑊���� are set to 1 and 0, respectively, and 𝑊𝑊𝑊𝑊 and 𝑊𝑊𝑊𝑊����� are set to 1 and 0, 
respectively, to access the cell and write 1 into the cell). Use the following 
variables/constants. 

• 𝑤𝑤𝑚𝑚: The width of the transistor 𝑤𝑤𝑚𝑚 
• 𝑉𝑉𝐷𝐷𝐷𝐷: Supply voltage 
• 𝑉𝑉𝑡𝑡𝑛𝑛: Threshold voltage of an NFET 
• 𝑉𝑉𝑡𝑡𝑡𝑡: Threshold voltage of a PFET 

Note: You can use the transistor current formula or the voltage-divider formula. You 
don’t need to simplify the inequalities or equations, but you should mention exactly what 
conditions should be satisfied to be able to write 1 to the SRAM cell. 

B: B is driven to 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑡𝑡𝑛𝑛 by 𝐵𝐵𝑊𝑊 and to 0 by 𝑤𝑤6. 𝑉𝑉𝐵𝐵 is determined by the following 
equation: 

𝐼𝐼1 =
1
2
𝜇𝜇𝑛𝑛𝑐𝑐𝑜𝑜𝑜𝑜

𝑤𝑤1
𝑙𝑙

(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐵𝐵 − 𝑉𝑉𝑡𝑡𝑛𝑛)2 = 𝐼𝐼6 = 𝜇𝜇𝑛𝑛𝑐𝑐𝑜𝑜𝑜𝑜
𝑤𝑤6
𝑙𝑙
�(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑡𝑡𝑛𝑛)𝑉𝑉𝐵𝐵 −

1
2
𝑉𝑉𝐵𝐵2� 



because 𝑤𝑤1 is in saturation mode and 𝑤𝑤6 is in linear mode. 𝑉𝑉𝐵𝐵 should satisfy the 
following inequality: 

𝑉𝑉𝐵𝐵 > 𝑉𝑉𝑡𝑡𝑛𝑛 

to turn on 𝑤𝑤4. 

If we use a simplified voltage-divider model, 𝑉𝑉𝐵𝐵 = 𝑅𝑅6
𝑅𝑅1+𝑅𝑅6

𝑉𝑉𝐷𝐷𝐷𝐷 > 𝑉𝑉𝑡𝑡𝑛𝑛. 

 

𝐵𝐵� : 𝐵𝐵�  is driven to �𝑉𝑉𝑡𝑡𝑡𝑡� by 𝐵𝐵𝑊𝑊���� and to 1 by 𝑤𝑤3. 𝑉𝑉𝐵𝐵�  is determined by the following equation: 

𝐼𝐼2 =
1
2
𝜇𝜇𝑡𝑡𝑐𝑐𝑜𝑜𝑜𝑜

𝑤𝑤2
𝑙𝑙
�𝑉𝑉𝐵𝐵� − |𝑉𝑉𝑡𝑡𝑡𝑡|�2 = 𝐼𝐼3 = 𝜇𝜇𝑡𝑡𝑐𝑐𝑜𝑜𝑜𝑜

𝑤𝑤3
𝑙𝑙
��𝑉𝑉𝐷𝐷𝐷𝐷 − |𝑉𝑉𝑡𝑡𝑡𝑡|�(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐵𝐵�) −

1
2

(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐵𝐵�)2� 

because 𝑤𝑤2 is in saturation mode and 𝑤𝑤3 is in linear mode. 𝑉𝑉𝐵𝐵�  should satisfy the 
following inequality: 

𝑉𝑉𝐵𝐵� < 𝑉𝑉𝐷𝐷𝐷𝐷 − |𝑉𝑉𝑡𝑡𝑡𝑡| 

to turn on 𝑤𝑤5. 

If we use a simplified voltage-divider model, 𝑉𝑉𝐵𝐵� = 𝑅𝑅2
𝑅𝑅3+𝑅𝑅2

𝑉𝑉𝐷𝐷𝐷𝐷 < 𝑉𝑉𝐷𝐷𝐷𝐷 − �𝑉𝑉𝑡𝑡𝑡𝑡�. 

 

More accurately speaking, we use the following equations: 

𝐼𝐼1 =
1
2
𝜇𝜇𝑛𝑛𝑐𝑐𝑜𝑜𝑜𝑜

𝑤𝑤1
𝑙𝑙

(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐵𝐵 − 𝑉𝑉𝑡𝑡𝑛𝑛)2 = 𝐼𝐼6 = 𝜇𝜇𝑛𝑛𝑐𝑐𝑜𝑜𝑜𝑜
𝑤𝑤6
𝑙𝑙
�(𝑉𝑉𝐵𝐵� − 𝑉𝑉𝑡𝑡𝑛𝑛)𝑉𝑉𝐵𝐵 −

1
2
𝑉𝑉𝐵𝐵2� 

𝐼𝐼2 =
1
2
𝜇𝜇𝑡𝑡𝑐𝑐𝑜𝑜𝑜𝑜

𝑤𝑤2
𝑙𝑙
�𝑉𝑉𝐵𝐵� − |𝑉𝑉𝑡𝑡𝑡𝑡|�2 = 𝐼𝐼3

= 𝜇𝜇𝑡𝑡𝑐𝑐𝑜𝑜𝑜𝑜
𝑤𝑤3
𝑙𝑙
��𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐵𝐵 − |𝑉𝑉𝑡𝑡𝑡𝑡|�(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐵𝐵�) −

1
2

(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐵𝐵�)2� 

 

Once 𝑤𝑤4 and 𝑤𝑤5 are turned on, there will be a positive feedback between the two 
inverters. 

 

 

 



Problem #5 (Carry Look-Ahead Adder, 20 points) 

The max. fanout is 4. The delay of an AND (OR) gate is ∆ and the delay of a two-level 
(sum-of-product) logic is 2∆.  We are designing a 1024-bit carry look-ahead adder. 

1) Represent 𝑐𝑐62 hierarchically using group-generated and group-propagated 
carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘) and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 
𝑐𝑐62 assuming all the primary input signals are available at time 0 (10 points). 

𝑐𝑐62 = 𝑔𝑔61 + 𝑝𝑝61 ∙ 𝑔𝑔60 + 𝑝𝑝61 ∙ 𝑝𝑝60 ∙ 𝑐𝑐60 

𝑐𝑐60 = 𝑔𝑔59:56 + 𝑝𝑝59:56 ∙ 𝑔𝑔55:52 + 𝑝𝑝59:56 ∙ 𝑝𝑝55:52 ∙ 𝑔𝑔51:48 + 𝑝𝑝59:56 ∙ 𝑝𝑝55:52 ∙ 𝑝𝑝51:48 ∙ 𝑐𝑐48 

𝑐𝑐48 = 𝑔𝑔47:32 + 𝑝𝑝47:32 ∙ 𝑔𝑔31:16 + 𝑝𝑝47:32 ∙ 𝑝𝑝31:16 ∙ 𝑔𝑔15:0 + 𝑝𝑝47:32 ∙ 𝑝𝑝31:16 ∙ 𝑝𝑝15:0 ∙ 𝑐𝑐0 

Delay computation 

𝑔𝑔𝑖𝑖 ,𝑝𝑝𝑖𝑖: ∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−3: ∆ + 2∆= 3∆ 

𝑔𝑔, 𝑝𝑝𝑖𝑖:𝑖𝑖−15: 3∆ + 2∆= 5∆ 

𝑐𝑐48: 5∆ + 2∆= 7∆ 

𝑐𝑐60: 7∆ + 2∆= 9∆ 

𝑐𝑐62: 9∆ + 2∆= 11∆ 

Thus, the delay is 11∆. 

 

 

 

 

 

 

 

 

 



2) Represent 𝑐𝑐827 hierarchically using group-generated and group-propagated 
carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘) and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 
𝑐𝑐827 assuming all the primary input signals are available at time 0 (10 points). 

𝑐𝑐827 = 𝑔𝑔826 + 𝑝𝑝826 ∙ 𝑔𝑔825 + 𝑝𝑝826 ∙ 𝑝𝑝825 ∙ 𝑔𝑔824 + 𝑝𝑝826 ∙ 𝑝𝑝825 ∙ 𝑝𝑝824 ∙ 𝑐𝑐824 

𝑐𝑐824 = 𝑔𝑔823:820 + 𝑝𝑝823:820 ∙ 𝑔𝑔819:816 + 𝑝𝑝823:820 ∙ 𝑝𝑝819:816 ∙ 𝑐𝑐816 

𝑐𝑐816 = 𝑔𝑔815:800 + 𝑝𝑝815:800 ∙ 𝑔𝑔799:784 + 𝑝𝑝815:800 ∙ 𝑝𝑝799:784 ∙ 𝑔𝑔783:768 + 𝑝𝑝815:800 ∙ 𝑝𝑝799:784 ∙ 𝑝𝑝783:768
∙ 𝑐𝑐768 

𝑐𝑐768 = 𝑔𝑔767:512 + 𝑝𝑝767:512 ∙ 𝑔𝑔511:256 + 𝑝𝑝767:512 ∙ 𝑝𝑝511:256 ∙ 𝑔𝑔255:0 + 𝑝𝑝767:512 ∙ 𝑝𝑝511:256 ∙ 𝑝𝑝255:0
∙ 𝑐𝑐0 

𝑝𝑝255:0 = 𝑝𝑝255:192 ∙ 𝑝𝑝191:128 ∙ 𝑝𝑝127:64 ∙ 𝑝𝑝63:0 

𝑝𝑝63:0 = 𝑝𝑝63:48 ∙ 𝑝𝑝47:32 ∙ 𝑝𝑝31:16 ∙ 𝑝𝑝15:0 

𝑝𝑝15:0 = 𝑝𝑝15:12 ∙ 𝑝𝑝11:8 ∙ 𝑝𝑝7:4 ∙ 𝑝𝑝3:0 

𝑝𝑝3:0 = 𝑝𝑝3 ∙ 𝑝𝑝2 ∙ 𝑝𝑝1 ∙ 𝑝𝑝0 

Delay computation 

𝑔𝑔𝑖𝑖 ,𝑝𝑝𝑖𝑖: ∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−3: ∆ + 2∆= 3∆ 

𝑔𝑔, 𝑝𝑝𝑖𝑖:𝑖𝑖−15: 3∆ + 2∆= 5∆ 

𝑔𝑔, 𝑝𝑝𝑖𝑖:𝑖𝑖−63: 5∆ + 2∆= 7∆ 

𝑔𝑔, 𝑝𝑝𝑖𝑖:𝑖𝑖−255: 7∆ + 2∆= 9∆ 

𝑐𝑐768: 9∆ + 2∆= 11∆ 

𝑐𝑐816: 11∆ + 2∆= 13∆ 

𝑐𝑐824: 13∆ + 2∆= 15∆ 

𝑐𝑐827: 15∆ + 2∆= 17∆ 

Thus, the delay is 17∆. 

 

 



Problem #6 (Prefix Adder, 20 points) 

The delay of an AND (OR) gate is ∆ and the delay of a two-level (sum-of-product) logic 
is 2∆. We are designing a 1024-bit Kogge-Stone adder. 

1) Represent 𝑐𝑐52 hierarchically using group-generated and group-propagated 
carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘) and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 
𝑐𝑐52 assuming all the primary input signals are available at time 0 (10 points). 

𝑐𝑐52 = 𝑔𝑔51:𝑖𝑖𝑛𝑛 = 𝑔𝑔51:20 + 𝑝𝑝51:20 ∙ 𝑔𝑔19:𝑖𝑖𝑛𝑛 

𝑔𝑔19:𝑖𝑖𝑛𝑛 = 𝑔𝑔19:4 + 𝑝𝑝19:4 ∙ 𝑔𝑔3:𝑖𝑖𝑛𝑛 

𝑔𝑔3:𝑖𝑖𝑛𝑛 = 𝑔𝑔3:0 + 𝑝𝑝3:0 ∙ 𝑐𝑐0 

Delay computation 

𝑔𝑔𝑖𝑖: ∆,  𝑝𝑝𝑖𝑖: 2∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−1 = 2∆ + 2∆= 4∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−3 = 4∆ + 2∆= 6∆ 

𝑔𝑔3:𝑖𝑖𝑛𝑛: 6∆ + 2∆= 8∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−7 = 6∆ + 2∆= 8∆ 

𝑔𝑔, 𝑝𝑝𝑖𝑖:𝑖𝑖−15 = 8∆ + 2∆= 10∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−31 = 10∆ + 2∆= 12∆ 

𝑔𝑔19:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(10∆,8∆) + 2∆= 12∆ 

𝑔𝑔51:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(12∆,12∆) + 2∆= 14∆ 

Thus, the delay is 14∆. 

 

 

 

 

 

 



2) Represent 𝑐𝑐987 hierarchically using group-generated and group-propagated 
carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘) and 𝑐𝑐0 (primary carry-in) , then compute the delay to compute 
𝑐𝑐52 assuming all the primary input signals are available at time 0 (10 points). 

𝑐𝑐987 = 𝑔𝑔986:𝑖𝑖𝑛𝑛 = 𝑔𝑔986:475 + 𝑝𝑝986:475 ∙ 𝑔𝑔474:𝑖𝑖𝑛𝑛 

𝑔𝑔474:𝑖𝑖𝑛𝑛 = 𝑔𝑔474:219 + 𝑝𝑝474:219 ∙ 𝑔𝑔218:𝑖𝑖𝑛𝑛 

𝑔𝑔218:𝑖𝑖𝑛𝑛 = 𝑔𝑔218:91 + 𝑝𝑝218:91 ∙ 𝑔𝑔90:𝑖𝑖𝑛𝑛 

𝑔𝑔90:𝑖𝑖𝑛𝑛 = 𝑔𝑔90:27 + 𝑝𝑝90:27 ∙ 𝑔𝑔26:𝑖𝑖𝑛𝑛 

𝑔𝑔26:𝑖𝑖𝑛𝑛 = 𝑔𝑔26:11 + 𝑝𝑝26:11 ∙ 𝑔𝑔10:𝑖𝑖𝑛𝑛 

𝑔𝑔10:𝑖𝑖𝑛𝑛 = 𝑔𝑔10:3 + 𝑝𝑝10:3 ∙ 𝑔𝑔2:𝑖𝑖𝑛𝑛 

𝑔𝑔2:𝑖𝑖𝑛𝑛 = 𝑔𝑔2:1 + 𝑝𝑝2:1 ∙ 𝑔𝑔0:𝑖𝑖𝑛𝑛 

𝑔𝑔0:𝑖𝑖𝑛𝑛 = 𝑔𝑔0 + 𝑝𝑝0 ∙ 𝑐𝑐0 

𝑔𝑔𝑖𝑖: ∆,  𝑝𝑝𝑖𝑖: 2∆ 

𝑔𝑔0:𝑖𝑖𝑛𝑛: 4∆ 

𝑔𝑔2:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(4∆,4∆) + 2∆= 6∆ 

𝑔𝑔10:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(8∆,6∆) + 2∆= 10∆ 

𝑔𝑔26:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(10∆,10∆) + 2∆= 12∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−63 = 12∆ + 2∆= 14∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−127 = 14∆ + 2∆= 16∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−255 = 16∆ + 2∆= 18∆ 

𝑔𝑔,𝑝𝑝𝑖𝑖:𝑖𝑖−511 = 18∆ + 2∆= 20∆ 

𝑔𝑔90:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(14∆,12∆) + 2∆= 16∆ 

𝑔𝑔218:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(16∆,16∆) + 2∆= 18∆ 

𝑔𝑔474:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(18∆,18∆) + 2∆= 20∆ 

𝑔𝑔986:𝑖𝑖𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑋𝑋(20∆,20∆) + 2∆= 22∆ 

Thus, the delay is 22∆. 


