

EE 434 ASIC & Digital Systems

Dae Hyun Kim

EECS Washington State University

Spring 2018

Course Website

• http://eecs.wsu.edu/~ee434

Themes

- Study how to design, analyze, and test a complex applicationspecific integrated circuit (ASIC).
- At the end of this semester, you will be able to
 - Understand how a VLSI chip works.
 - Design complex digital VLSI circuits and systems both manually and automatically.
 - Understand basic theories behind VLSI.
 - Analyze VLSI circuits and systems.
 - Test VLSI circuits and systems.

Course Materials

- We will use both bottom-up and top-down approaches.
- We will not discuss much about device physics.
- We will learn more about transistor-, gate-, circuit-, and system-level issues.
- We will study
 - Transistor characteristics (logical, physical, DC, AC, power, etc.)
 - Standard cell design, analysis, and optimization
 - Interconnects (resistance, capacitance, delay, power, etc.)
 - Timing analysis
 - HDL (Verilog/VHDL)
 - Memory
 - Full-custom layout, computer-aided design (CAD)
 - Test

Schedule

- Week 1 (1/8, 10, 12): Introduction to VLSI, CMOS transistors
- Week 2 (1/17, 19): CMOS transistors, gates
- Week 3 (1/22, 24, 26): CMOS inverter, combinational logic
- Week 4 (1/29, 1/31, 2/2): CMOS sequential logic, design styles
- Week 5 (2/5, 7, 9): Characterization and performance estimation
- Week 6 (2/12, 14, 16): Characterization and performance estimation
- Week 7 (2/21, 23): Midterm 1, layout, simulation, optimization
- Week 8 (2/26, 2/28, 3/2): Interconnects, timing analysis
- Week 9 (3/5, 7, 9): HDL
- Week 10 (3/12 16): Spring break
- Week 11 (3/19, 21, 23): HDL, Memory
- Week 12 (3/26, 28, 30): Midterm 2, Synthesis, physical design
- Week 13 (4/2, 4, 6): Arithmetic units, test
- Week 14 (4/9, 11, 13): Test
- Week 15 (4/16, 18, 20): Test
- Week 16 (4/23, 25, 27): Test
- April 30: Final exam (8am 10am)

References

- FPGA-BASED System Design by Wayne Wolf, Prentice Hall, 2004, ISBN 0-13-142461-0
- Analysis and Design of Digital Integrated Circuits by Hodges, Jackson, and Saleh, 3/E, 2003, McGraw Hill, ISBN 0072283653
- CMOS VLSI Design: A Circuits and Systems Perspective by Weste and Harris, 4/E, 2010, Addison-Wesley, ISBN 0321547748
- Digital Integrated Circuits by Rabaey, Chandrakasan, and Nikolic, 2E, 2003, Prentice Hall, ISBN 0130909963
- Introduction to VLSI Circuits and Systems by Uyemura, 1E, 2001, Wiley, ISBN 0471127043
- CMOS Logic Circuit Design by Uyemura, 1999, Springer, ISBN 0387781641
- Application-Specific Integrated Circuits by Smith, 1997, Addison-Wesley, ISBN 0201500221
- Digital Systems Testing and Testable Design, 1990, IEEE Press, ISBN 0-7803-1062-4
- Extra reading materials will be supplied in the class.

Assignments

- Homework
 - Due dates will be mentioned when handed out.
 - Late submission: See the course description.
- Lab and HW are very important parts of this course.
 - Lab assignments will involve HDL coding.
 - No worries! You will learn HDL step by step.
 - You will be supposed to use several commercial design&analysis tools.
 - No worries! Detailed tutorials will be provided.
 - EME 205 is the lab for this course.
 - You will be allowed to work anytime in the lab.
 - TA will be available only in his fixed office hours.

Labs

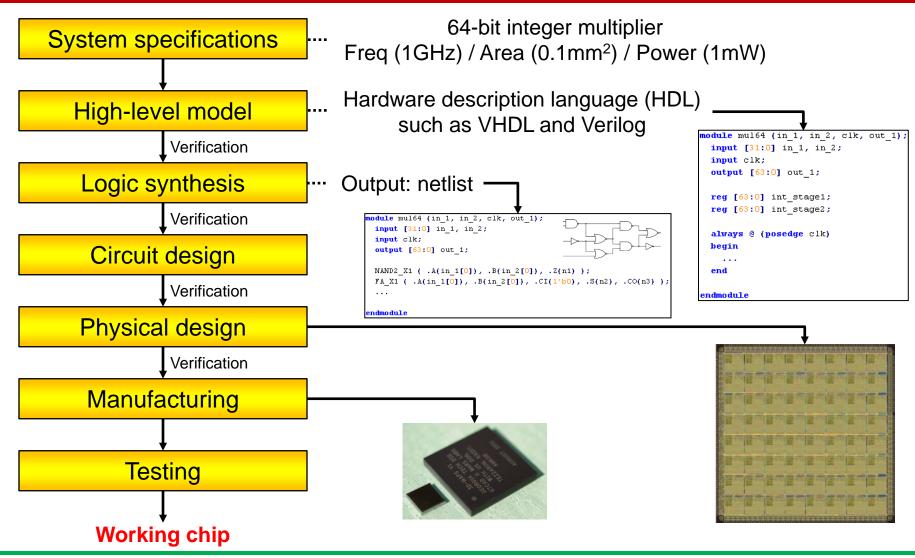
- HDL coding and simulation
- Std. cell layout, DRC, LVS, PEX, and simulation
- VLSI design and analysis
- SPICE simulation, analysis, and optimization

ASIC

- Application Specific Integrated Circuits
- Integrated circuits
 - All components are integrated on a single semiconductor substrate.
- Metrics and design specification
 - Area
 - Speed (performance)
 - Power (dynamic, leakage)

VLSI

- Very-Large-Scale Integration
- What does it integrate?
 - Transistors
 - Interconnects


• History

Name	Signification	Year	# Transistors
SSI	Small-Scale Integration	1964	1 – 10
MSI	Medium-Scale Integration	1968	10 – 500
LSI	Large-Scale Integration	1971	500 – 20K
VLSI	Very-Large-Scale Integration	1980	20K – 1M
ULSI	Ultra-Large-Scale Integration	1984	> 1M
-			

Source: https://en.wikipedia.org/wiki/Integrated_circuit#SSI.2C_MSI_and_LSI

ASIC Design Process

	Full-Custom Design	Fully-Automated
Design	Manual	Automatic
Transistors	Manually drawn	Standard-cell-based
Placement & Routing (P&R)	Manual	Automatic
Development time	Several months	A few days – weeks

