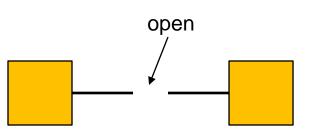
EE434 ASIC & Digital Systems

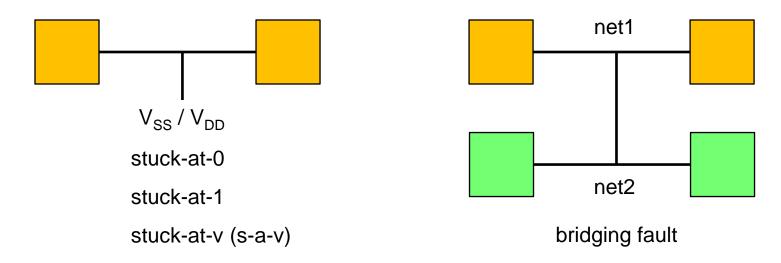
Fault Modeling

Spring 2016 Dae Hyun Kim daehyun@eecs.wsu.edu

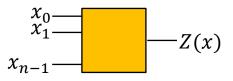
Logical Fault Models


- We will discuss permanent faults.
- Single-fault assumption

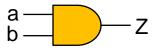
- There is at most one logical fault.


- Structural fault models
 - Components are fault-free.
 - Only interconnections are affected.

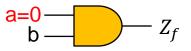
Faults


• Open

• Short



- Input: $x = x_{n-1}x_{n-2} \dots x_1 x_0$
- Output: Z(x)



- A test vector t detects a fault f iff $Z_f(t) \neq Z(t)$.
 - *t*: test input
 - Z(t): expected (correct) output
 - $Z_f(t)$: faulty output
- $Z_f(t) \neq Z(t) \Leftrightarrow Z_f(t) \oplus Z(t) = 1$

• Example

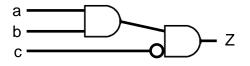
- $Z = a \cdot b$
- Stuck-at-0 fault

- $Z_f = 0 \cdot b = 0$
- $Z \oplus Z_f = 1 \Leftrightarrow (a \cdot b) \oplus 0 = 1 \Leftrightarrow a \cdot b = 1 \Leftrightarrow a = 1, b = 1$

- If we apply (a, b) = (1, 1), we can detect the stuck-at-0 fault.

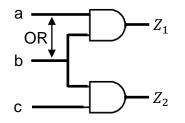
• Stuck-at-1 fault

- $Z_f = 1 \cdot b = b$
- Z ⊕ Z_f = 1 ⇔ (a ⋅ b) ⊕ b = 1 ⇔ a = 0, b = 1
 If we apply (a, b) = (0, 1), we can detect the stuck-at-1 fault at a.
- What input vector can detect a stuck-at-1 fault at input b?
 (a, b) = (1, 0)

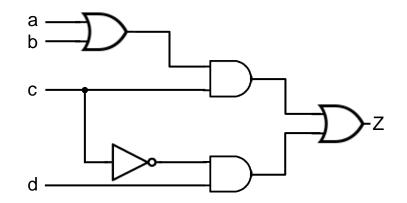

• Example

• Find input vectors that can detect stuck-at-0 faults at a and b.

• Find input vectors that can detect stuck-at-1 faults at a and b.


• Example

• Find input vectors that can detect stuck-at-0 faults at a and b.


• Find input vectors that can detect stuck-at-1 faults at a and b.

- Example
 - Find input vectors that can detect the following OR bridging fault.

- $Z_1 = a \cdot b, Z_{1f} = a + b$
- $Z_2 = b \cdot c, Z_{2f} = (a+b) \cdot c$
- $Z_1 \oplus Z_{1f} = (a \cdot b) \oplus (a + b) = 1 \Leftrightarrow abc = 01 *, 10 *$
- $Z_2 \bigoplus Z_{2f} = (b \cdot c) \bigoplus \{(a + b) \cdot c\} = 1 \Leftrightarrow abc = 101$

• Example

- Detectability
 - A fault f is *undetectable* if there is no test vector t that detects f.

•
$$Z_f(x) = Z(x)$$

- A combinational circuit that contains an undetectable stuck fault is *redundant*.
- Example
 - n-input AND gate: $Z(x) = x_0 \cdot \cdots \cdot x_{n-1}$
 - stuck-at-1 at x_0
 - $Z(x) \bigoplus Z_f(x) = (x_0 \cdot \dots \cdot x_{n-1}) \bigoplus (x_1 \cdot \dots \cdot x_{n-1}) = 1 \Leftrightarrow x = 011..1$
 - If the stuck-at-1 at x_0 is undetectable, an n-input AND gate with a constant 1 value on x_0 is logically equivalent to an (n-1)-input AND gate with input x_1, \ldots, x_{n-1} .

Undetectable fault	Simplification
AND (NAND) input s-a-1	Remove the input
AND (NAND) input s-a-0	Remove the gate, replace by 0(1)
OR (NOR) input s-a-0	Remove the input
OR (NOR) input s-a-1	Remove the gate, replace by 1(0)

Fault Detection (Sequential Logic)

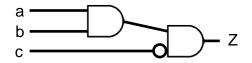
- Needs a sequence of inputs.
- A test sequence T strongly detects fault f iff the output sequences R(q,T) and R_f(q_f,T) are different for every possible pair of initial states q and q_f.
- A test sequence T *detects* fault *f* iff the output sequences R(q,T) and $R_f(q_f,T)$ are different for every possible pair of initial states *q* and q_f and for some specified vector $t_i \in T$.

Fault Equivalence

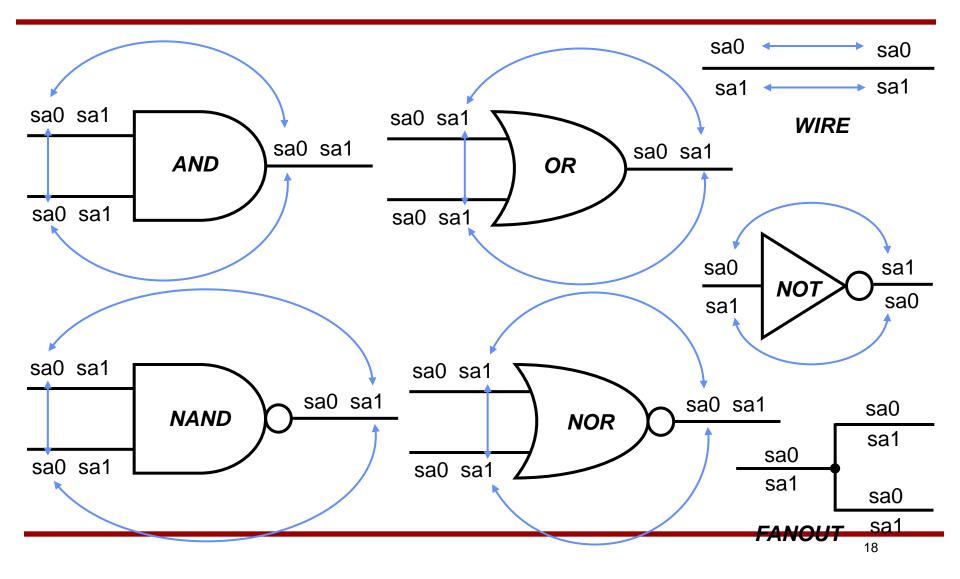
- Two faults f and g are functionally equivalent iff $Z_f(x) = Z_g(x)$.
- A test *t* is said to *distinguish* between two faults *f* and *g* if $Z_f(t) \neq Z_g(t)$. Those faults are distinguishable.
- No test can distinguish between two functionally equivalent faults.
- If a test x distinguishes between f and g, $Z_f(x) \oplus Z_g(x) = 1$.

Equivalence Fault Collapsing

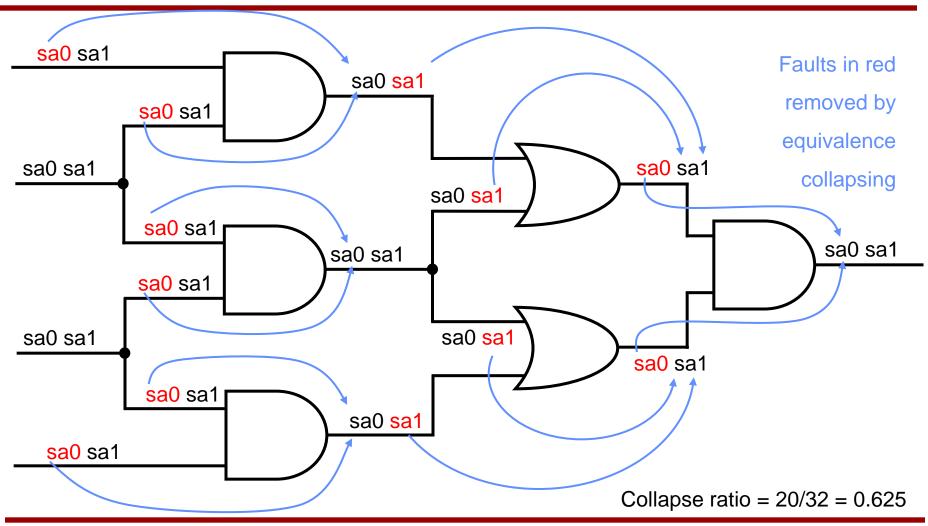
- Before collapsing
 - a
 - s-a-0, s-a-1
 - b
 - s-a-0, s-a-1
 - Z
 - s-a-0, s-a-1
- After collapsing
 - a
 - s-a-1
 - b
 - s-a-1
 - Z
 - s-a-0, s-a-1


Dominance Fault Collapsing

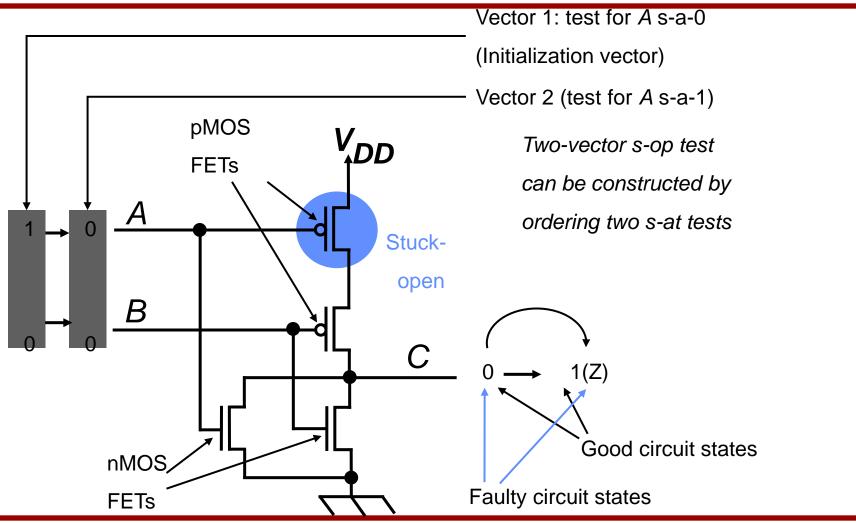
- Before collapsing
 - a
 - s-a-0, s-a-1
 - b
 - s-a-0, s-a-1
 - Z
 - s-a-0, s-a-1
- After collapsing
 - a
 - s-a-1
 - b
 - s-a-1
 - Z
 - s-a-1

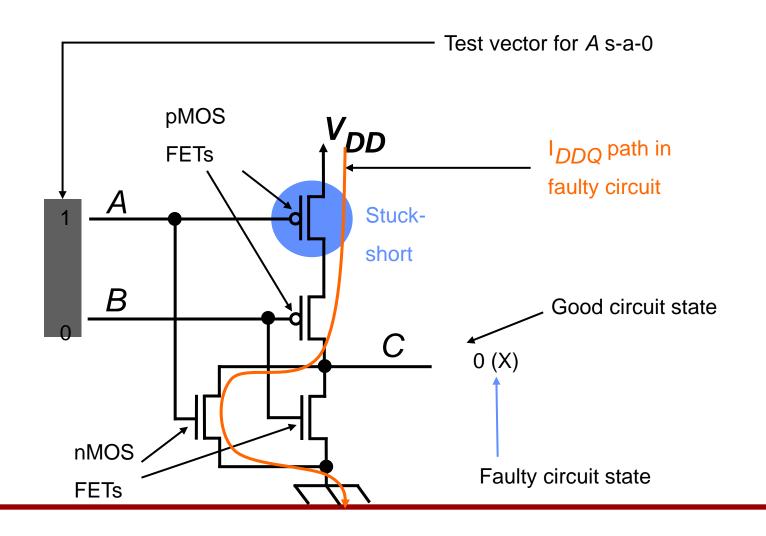


Equivalence Fault Collapsing & Dominance Fault Collapsing


• Example

Equivalence Rules


Equivalence Example


Transistor (Switch) Faults

- MOS transistor is considered an ideal switch and two types of faults are modeled:
 - Stuck-open: a single transistor is permanently stuck in the open state.
 - Stuck-short: a single transistor is permanently shorted irrespective of its gate voltage.
- Detection of a stuck-open fault requires two vectors.
- Detection of a stuck-short fault requires the measurement of quiescent current (I_{DDQ}).

Stuck-Open Example

Stuck-Short Example

