Lecture 23 Design for Testability (DFT): *Full-Scan*

(Lecture 12alt in the Alternative Sequence)

- Definition
- Ad-hoc methods
- Scan design
 - Design rules
 - Scan register
 - Scan flip-flops
 - Scan test sequences
 - Overheads
 - Scan design system

Summary

Definition

 Design for testability (DFT) refers to those design techniques that make test generation and test application cost-effective.

DFT methods for digital circuits:

- Ad-hoc methods
- Structured methods:
 - Scan
 - Partial Scan
 - Built-in self-test (BIST)
 - Boundary scan
- DFT method for mixed-signal circuits:
 - Analog test bus

Ad-Hoc DFT Methods

- Good design practices learnt through experience are used as guidelines:
 - Avoid asynchronous (unclocked) feedback.
 - Make flip-flops initializable.
 - Avoid redundant gates. Avoid large fanin gates.
 - Provide test control for difficult-to-control signals.
 - Avoid gated clocks.
 - Consider ATE requirements (tristates, etc.)
- Design reviews conducted by experts or design auditing tools.
- Disadvantages of ad-hoc DFT methods:
 - Experts and tools not always available.
 - Test generation is often manual with no guarantee of high fault coverage.
 - Design iterations may be necessary.

- Circuit is designed using pre-specified design rules.
- Test structure (hardware) is added to the verified design:
 - Add a test control (TC) primary input.
 - Replace flip-flops by scan flip-flops (SFF) and connect to form one or more shift registers in the test mode.
 - Make input/output of each scan shift register controllable/observable from PI/PO.
- Use combinational ATPG to obtain tests for all testable faults in the combinational logic.
- Add shift register tests and convert ATPG tests into scan sequences for use in manufacturing test.

Scan Design Rules

- Use only clocked D-type of flip-flops for all state variables.
- At least one PI pin must be available for test; more pins, if available, can be used.
- All clocks must be controlled from PIs.
- Clocks must not feed data inputs of flip-flops.

Correcting a Rule Violation

All clocks must be controlled from PIs.

Copyright 2001, Agrawal & Bushnell VLSI Test: Lecture 23/19alt

Level-Sensitive Scan-Design Flip-Flop (LSSD-SFF)

Copyright 2001, Agrawal & Bushnell

VLSI Test: Lecture 23/19alt

Adding Scan Structure

Copyright 2001, Agrawal & Bushnell

Combinational Circuit

Combinational Circuit

Comb. Test Vectors

Sequence length = (n_{comb} + 1) n_{sff} + n_{comb} clock periods n_{comb} = number of combinational vectors *n*_{sff} = number of scan flip-flops Copyright 2001, Agrawal & Bushnell VLSI Test: Lecture 23/19alt

Testing Scan Register

- Scan register must be tested prior to application of scan test sequences.
- A shift sequence 00110011 . . . of length n_{sff}+4 in scan mode (TC=0) produces 00, 01, 11 and 10 transitions in all flip-flops and observes the result at SCANOUT output.
- Total scan test length: (n_{comb} + 2) n_{sff} + n_{comb} + 4 clock periods.
 Example: 2,000 scan flip-flops, 500 comb. vectors, total scan test length ~ 10⁶ clocks.
 Multiple scan registers reduce test length.

Multiple Scan Registers

- Scan flip-flops can be distributed among any number of shift registers, each having a separate scanin and scanout pin.
- Test sequence length is determined by the longest scan shift register.
- Just one test control (TC) pin is essential.

Copyright 2001, Agrawal & Bushnell

Scan Overheads

- IO pins: One pin necessary.
- Area overhead:
 - Gate overhead = $[4 n_{sff}/(n_g + 10 n_{sff})] \times 100\%$, where $n_g = comb. gates; n_{ff} = flip-flops;$ Example - $n_g = 100k gates, n_{sff} = 2k flip$ flops, overhead = 6.7%.
 - More accurate estimate must consider scan wiring and layout area.
- Performance overhead:
 - Multiplexer delay added in combinational path; approx. two gate-delays.
 - Flip-flop output loading due to one additional fanout; approx. 5-6%.

Hierarchical Scan

- Scan flip-flops are chained within subnetworks before chaining subnetworks.
- Advantages:
 - Automatic scan insertion in netlist
 - Circuit hierarchy preserved helps in debugging and design changes
- Disadvantage: Non-optimum chip layout.

Copyright 2001, Agrawal & Bushnell VLSI Test: Lecture 23/19alt

Copyright 2001, Agrawal & Bushnell

VLSI Test: Lecture 23/19alt

Scan Area Overhead

Linear dimensions of active area: X = (C + S) / r $X' = (C + S + \alpha S) / r$ $Y' = Y + ry = Y + Y(1 - \beta) / T$

- y = track dimension, wire width+separation
- C = total comb. cell width
- S = total non-scan FF cell width
- s = fractional FF cell area = S/(C+S)
- α = SFF cell width fractional increase
- r = number of cell rows or routing channels
- β = routing fraction in active area
- T = cell height in track dimension y

Example: Scan Layout

- 2,000-gate CMOS chip
- Fractional area under flip-flop cells, s = 0.478
- Scan flip-flop (SFF) cell width increase, α = 0.25
- **Routing area fraction**, $\beta = 0.471$
- Cell height in routing tracks, T = 10
- Calculated overhead = 17.24%
- Actual measured data:

Scan implementation	Area overhead	Normalized clock rate
None	0.0	1.00
Hierarchical	16.93%	0.87
Optimum layout	11.90%	0.91

Copyright 2001, Agrawal & Bushnell VLSI Test: Lecture 23/19alt

ATPG Example: S5378

	Original	Full-scan
Number of combinational actes	2 7 9 1	2 7 9 1
Number of combinational gates	2,701	2,701
Number of non-scan flip-flops (10 gates each)	1/9	0
Number of scan flip-flops (14 gates each)	0	1/9
Gate overhead	0.0%	15.66%
Number of faults	4,603	4,603
PI/PO for ATPG	35/49	214/228
Fault coverage	70.0%	99.1%
Fault efficiency	70.9%	100.0%
CPU time on SUN Ultra II, 200MHz processor	5,533 s	5 s
Number of ATPG vectors	414	585
Scan sequence length	414	105,662

Automated Scan Design

Copyright 2001, Agrawal & Bushnell

VLSI Test: Lecture 23/19alt

Timing and Power

- Small delays in scan path and clock skew can cause race condition.
- Large delays in scan path require slower scan clock.
- Dynamic multiplexers: Skew between TC and TC signals can cause momentary shorting of D and SD inputs.
- Random signal activity in combinational circuit during scan can cause excessive power dissipation.

Scan is the most popular DFT technique:

- Rule-based design
- Automated DFT hardware insertion
- Combinational ATPG
- Advantages:
 - Design automation
 - High fault coverage; helpful in diagnosis
 - Hierarchical scan-testable modules are easily combined into large scan-testable systems
 - Moderate area (~10%) and speed (~5%) overheads
- Disadvantages:
 - Large test data volume and long test time
 - Basically a slow speed (DC) test