## Homework Assignment 5 (Due 5pm, Feb. 2, email to <a href="mailto:daehyun@eecs.wsu.edu">daehyun@eecs.wsu.edu</a>)

(1) [**Proof, 20 points**] A Boolean function can be expressed as a function of non-inverted and inverted inputs, AND operations, and OR operations as follows:

$$f(x_1, \overline{x_1}, x_2, \overline{x_2}, \dots, x_n, \overline{x_n}, AND, OR).$$

For instance,  $Y = \overline{x_1 + x_2 \cdot x_3 + \overline{x_1} \cdot x_2 \cdot \overline{x_4}}$  is a Boolean function. Suppose  $F = f(x_1, \overline{x_1}, x_2, \overline{x_2}, \dots, x_n, \overline{x_n}, AND, OR)$  is expressed in inversion-of-sum-of-product form, i.e.,

$$F = \overline{\sum_{l=1}^{s} \left( \prod_{j=1}^{p_l} k_{l,j} \right)} \tag{1}$$

where  $\Sigma$  is a sum (OR operations),  $\Pi$  is a product (AND operations), s is the number of product terms,  $p_i$  is the number of literals (a literal is a logic variable or its complement) in the i-th product term, and  $k_{i,j}$  is the j-th literal in the i-th product term  $(k_{i,j} \in \{x_1, \overline{x_1}, x_2, \overline{x_2}, ..., x_n, \overline{x_n}\})$ .

For  $Y=\overline{x_1+x_2\cdot x_3+\overline{x_1}\cdot x_2\cdot \overline{x_4}}$ , for example, s is 3 (there are three product terms  $(x_1,x_2\cdot x_3,\overline{x_1}\cdot x_2\cdot \overline{x_4}), \quad p_1=1,p_2=2,p_3=3, \quad k_{1,1}=x_1,k_{2,1}=x_2,k_{2,2}=x_3,k_{3,1}=\overline{x_1},k_{3,2}=x_2,k_{3,3}=\overline{x_4}.$ 

[Submit] Prove that implementing F in Equation (1) using the static CMOS design style requires maximum K NFETs and K PFETs where K is

$$K = \sum_{i=1}^{s} p_i.$$

Assume that all the non-inverted and inverted inputs are available for *F* .

(2) [Analysis, 30 points] The following figures shows the NFET network of a static CMOS logic gate. Y is the output and  $A \sim H$  are the inputs of the gate. Derive a Boolean equation as a function of the inputs for the output Y. (Hint: If you want, you can use HSpice to find Y).

