Homework Assignment 5
 (Due 5pm, Feb. 2, email to daehyun@eecs.wsu.edu)

(1) [Proof, 20 points] A Boolean function can be expressed as a function of noninverted and inverted inputs, AND operations, and OR operations as follows:

$$
f\left(x_{1}, \overline{x_{1}}, x_{2}, \overline{x_{2}}, \ldots, x_{n}, \overline{x_{n}}, A N D, O R\right) .
$$

For instance, $Y=\overline{x_{1}+x_{2} \cdot x_{3}+\overline{x_{1}} \cdot x_{2} \cdot \overline{x_{4}}}$ is a Boolean function. Suppose $F=f\left(x_{1}, \overline{x_{1}}, x_{2}, \overline{x_{2}}, \ldots, x_{n}, \overline{x_{n}}, A N D, O R\right)$ is expressed in inversion-of-sum-ofproduct form, i.e.,

$$
\begin{equation*}
F=\overline{\sum_{l=1}^{s}\left(\prod_{j=1}^{p_{l}} k_{l, j}\right)} \tag{1}
\end{equation*}
$$

where Σ is a sum (OR operations), Π is a product (AND operations), s is the number of product terms, p_{i} is the number of literals (a literal is a logic variable or its complement) in the i-th product term, and $k_{i, j}$ is the j-th literal in the i-th product term $\left(k_{i, j} \in\left\{x_{1}, \overline{x_{1}}, x_{2}, \overline{x_{2}}, \ldots, x_{n}, \overline{x_{n}}\right\}\right)$.
For $Y=\overline{x_{1}+x_{2} \cdot x_{3}+\overline{x_{1}} \cdot x_{2} \cdot \overline{x_{4}}}$, for example, s is 3 (there are three product terms $\left(x_{1}, x_{2} \cdot x_{3}, \overline{x_{1}} \cdot x_{2} \cdot \overline{x_{4}}\right), \quad p_{1}=1, p_{2}=2, p_{3}=3, \quad k_{1,1}=x_{1}, k_{2,1}=$ $x_{2}, k_{2,2}=x_{3}, k_{3,1}=\overline{x_{1}}, k_{3,2}=x_{2}, k_{3,3}=\overline{x_{4}}$.
[Submit] Prove that implementing F in Equation (1) using the static CMOS design style requires maximum K NFETs and K PFETs where K is

$$
K=\sum_{i=1}^{s} p_{i} .
$$

Assume that all the non-inverted and inverted inputs are available for F.
(2) [Analysis, $\mathbf{3 0}$ points] The following figures shows the NFET network of a static CMOS logic gate. Y is the output and $A \sim H$ are the inputs of the gate. Derive a Boolean equation as a function of the inputs for the output Y. (Hint: If you want, you can use HSpice to find Y).

