Homework Assignment 8

(Due 4:10pm, Feb. 12, email to daehyun@eecs.wsu.edu)
(1) [Design, 10 points] Solve Problem \#4 of the EE434 2015 Spring Midterm Exam 1.

(2) [Design, 10 points] Solve Problem \#4 of the EE434 2016 Spring Midterm Exam 1.

The worst-case path: (a-e-f-g) or (a-e-d-h) or (a-c-f-g) or (a-c-d-h), so we upsize all these transistors by 4 X . Path (a-b-h) needs to be R_{n}, so b can be 2 X .
a, c, d, e, f, g, h: 4X
b: 2X
(3) [Design, 10 points] Solve Problem \#3 of the EE434 2017 Spring Midterm Exam 1.

The longest path is b-d-e-f. Each of them is upsized to $4 X$. Then, we get $\mathrm{a}=\mathrm{c}=\mathrm{h}=\mathrm{i}=8 / 3$.
a: $8 / 3 X$
b: 4X
c: $8 / 3 \mathrm{X}$
d: 4X
e: 4 X
f: 4X
g: 4X
h: $8 / 3 X$
i: $8 / 3 X$
j: 4X
Total width: $(34+2 / 3) X$
(If we upsize $a-c-f$ first, $a=c=h=i=f=j=3 X$. Then, $b=d=e=g=4.5 X$. Total width $=36 X$, which is worse than the above one.)
(4) [Design, 20 points] Solve Problem \#5 of the EE434 2015 Spring Midterm Exam 1.

Constraint: $\left(\frac{R_{n}}{a}+\frac{R_{n}}{b}\right) C_{L}=R_{n} C_{L}=>\frac{1}{a}+\frac{1}{b}=1$

$$
W=a k+b=a k+\frac{a}{a-1}
$$

1) $W^{\prime}=k+\frac{(a-1)-a}{(a-1)^{2}}=k-\frac{1}{(a-1)^{2}}=0=>a=1+\frac{1}{\sqrt{k}}=>\quad b=1+\sqrt{k}$
2) $a k+b=c=>$ Two functions, $b=-a k+c$ and $b=\frac{a}{a-1}$, should meet at a single point (confirm this by drawing their graphs).
$=>-a k+c=\frac{a}{a-1}$ should have a single root. $=>k a^{2}-(k+c-1) a+$ $c=0$ has a single root. $=>(k+c-1)^{2}-4 k c=0 \Rightarrow(k-c-1)^{2}=0$ => $c=k+1 \pm 2 \sqrt{k}=>$
$a=1 \pm \frac{1}{\sqrt{k}}=>a>1$, so $a=1+\frac{1}{\sqrt{k}} \Rightarrow>b=1+\sqrt{k}$
