Homework Assignment 13

(Due 4:10pm, Mar. 23, email to daehyun@eecs.wsu.edu)
(1) [Elmore Delay, 10 points] Compute the Elmore delay from the source to Sink 1.

$\tau=5 k * 6 f+3 k * 10 f+1 k * 12 f=30 p+30 p+12 p=72 p s$
(2) [Elmore Delay, 10 points] Compute the Elmore delays from the source to Sink 1 and Sink 2.

Sink 1: $\tau=5 k * 6 f+3 k * 18 f+1 k * 20 f=30 p+54 p+20 p=104 p s$
Sink 2: $\tau=7 k * 8 f+3 k * 18 f+1 k * 20 f=56 p+54 p+20 p=130 p s$
(3) [AC Analysis, 10 points] The following figure implements a three-input NAND gate. C_{1} and C_{2} are small parasitic capacitances. C_{3} is an output capacitance. Use $R_{n, A}, R_{n, B}, R_{n, C}$ for the equivalent resistance values for the NFETs connected to A, B, C, respectively, and $R_{p, A}, R_{p, B}, R_{p, C}$ for the equivalent resistance values for the PFETs connected to A, B, C, respectively. Assume that $V_{1}(t)$ and $V_{2}(t)$ are $V_{D D}$ before the inputs switch. Compute the Elmore delay (i.e., express the delay as
a function of the resistance and capacitance variables shown above) to estimate the fall delay at the output node when the input $A B C$ switches from 000 to 111.

$$
\tau=R_{n, A} C_{3}+R_{n, B}\left(C_{1}+C_{3}\right)+R_{n, C}\left(C_{1}+C_{2}+C_{3}\right)
$$

(4) [AC Analysis, 10 points, use the 3-input NAND gate schematic in Problem 3] Assume that $V_{1}(t)$ and $V_{2}(t)$ are 0 V before the inputs switch. Compute the Elmore delay to estimate the rise delay at the output node when the input $A B C$ switches from 111 to 010.

$$
\tau=\frac{R_{p, A} R_{p, C}}{R_{p, A}+R_{p, C}} C_{3}
$$

