Homework Assignment 17

(Due 4:10pm, Apr. 23, email to daehyun@eecs.wsu.edu)

1. [Timing Analysis, $\mathbf{1 5}$ points] The following shows the delay of each net and cell. Compute arrival time at each node ($\mathrm{n} 1 \sim \mathrm{n} 12$, Out $0 \sim$ Out 3) shown below.
Arrival time at each input pin is zero.

	Arrival time		Arrival time
n 1	77 ps	n 9	548 ps
n 2	90 ps	n 10	554 ps
n 3	91 ps	n 11	407 ps
n 4	80 ps	n 12	412 ps
n 5	246 ps	Out 0	601 ps
n 6	251 ps	Out 1	599 ps
n7	416 ps	Out 2	442 ps
n8	273 ps	Out 3	467 ps

2. [Timing Analysis, $\mathbf{1 5}$ points] The following shows the delay of each net and cell and the required time at each output. Compute required time at each node (n1 ~ n12, In $0 \sim$ In 3).

	Required time		Required time
n 1	738 ps	n 9	1197 ps
n 2	739 ps	n 10	1265 ps
n 3	764 ps	n 11	1185 ps
n 4	757 ps	n 12	1085 ps
n 5	895 ps	In 0	661 ps
n 6	924 ps	In 1	657 ps
n 7	1065 ps	In 2	649 ps
n 8	1051 ps	In 3	684 ps

