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Ø Why Compress/Lossy Compression?
• Huge amounts of data from cosmological simulations.

• Write speed.
• Data storage.

• Much higher compression ratio compared to Lossless
Compression.

Introduction

Jin, Sian, et al. "Understanding GPU-based lossy compression for extreme-scale cosmological simulations." 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020.



Introduction

Ø Structured Data
• Generated by mesh-based simulations
in ranks

• Different ranks (data partitions) have
different densities of information

Visualization of Baryon Density in Nyx simulation under resolution of 512 × 512 × 512

Fine-grained lossy compression control for different data partitions.

Ø Previous Solution (Jin et al., IPDPS’20)
• Optimize rate-quality by trail-and-error
• All partitions use same compression configuration
• Visual metrics (e.g., PSNR) are not sufficient

Ø Our Goals
• Guarantee domain-specific analysis quality
• In-situ compression
• Towards optimal compression ratio
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Our Approach

Ø Estimation on Analysis Quality (Loss)
• Predict post-hoc analysis error based on
error-bound combination
• Power spectrum (FFT based)
• Halo finder

Ø Fine-grained Compression
• Different configurations (error bound) for different partitions
• Different configurations (eb combination) for different time-steps

Ø Estimation on Compression Ratio
• Predict compression ratio based on
error-bound combination
• SZ lossy compression



Our Approach

Ø Contributions
• Propose an adaptive approach to select feasible error-bound combinations
for different partitions

• Build theoretical models to efficiently estimate:
• Loss of post hoc post-analysis caused by lossy compression error
• Compression ratio based on each partition’s data feature

• Develop an efficient optimization strategy to determine the best-fit
configuration

• Improve the compression ratio by up to 73% (with only 1% performance
overhead)
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Background

Ø Nyx Cosmological Simulation
• AMR-based hydrodynamics code designed to model
astrophysical reacting flows on HPC systems

• 6 3-D data fields (mainly)

Ø Power Spectrum
• FFT-based analysis for Universe’s matter distribution
• Target: Ratio of P(k) on reconstructed data and
original data remains within 1 ± 0.01

Ø Halo Finder
• Find over-densities in the Mass distribution
• Target: Minimize the halo mass change of each halo

Power spectrum analysis on baryon density.

Halo Finder analysis on baryon density.Jin, Sian, et al. "Understanding GPU-based lossy compression for extreme-scale cosmological simulations." 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020.
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Ø Lossy Compression
• Error-controllable lossy compression

• Absolute error bound (ABS)
• Power relative error bound (PW_ABS)

• High compression ratio
• High throughput (with GPU-based version)

Ø How SZ Works
• Each data point’s value is predicted based on its neighboring
data points by an adaptive, best-fit prediction method.

• Each floating-point weight value is converted to an integer number
by a linear-scaling quantization based on the difference between
the real value and predicted value and a specific error bound.

• Lossless compression is applied to reduce the data size thereafter.

Background
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Modeling Error Impact

Ø FFT-based Analysis
• Normal distribution based on Central Limit

Theorem
• Works on all 1D, 2D and 3D DFTs

Error distribution of temperature data in one Nyx dataset compressed by
SZ lossy compression.

Ø Introduced Error Distribution
• SZ: Uniform distribution under ABS mode
• Can be adapted to other compressor with error

distribution of deterministic average and deviation

Comparison of real and estimated FFT error distribution based on our
model using Nyx’s temperature field.

M: number of ranks/partitions
N: grid size, σ: deviation
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Modeling Error Impact

Ø Halo Finder
• Three key metrics:

• Number of halos
• Each halo’s location
• Each halo’s mass

• Halo’s mass depends on error bound and cell
count of mass value within a certain range

Comparison of halo mass distribution with different error
bounds using Nyx’s baryon density field.

Candidate cells for halo finder



Modeling Error Impact

Ø Halo Finder
• Halo’s mass depends on error bound and

cell count of mass value within a certain
range

• Typically normal distribution

Mass difference per changed cell on a large halo.

Number of candidate cells changed with different error bounds
nbc: number of cells near boundary (~81.66)
σ: deviation
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Modeling Compression Ratio

Bit rate with different error bounds using SZ lossy
compression. Different lines represent for different
partitions.

Ø SZ Lossy Compression
• Empirical model
• Two main sections, critical point at bit rate of 2
• All partitions forms in similar shape
• Use mean value as parameter, can also use
entropy but result higher performance cost



Modeling Compression Ratio

Ø Optimization Strategy
1. Parameter extraction (estimate compression ratio)

• Mean value of given partition
• Mean value of overall dataset

2. Build Rate-Quality Model
• EB-quality model
• EB-rate model

3. Per-partition error bound optimization
• Derivatives of rate-quality curves are balanced for

all partitions
4. For baryon density

• Perform power-spectrum optimization first
• Perform halo-finder optimization if not satisfied

Fine-grained lossy compression control for different data partitions.
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Evaluation

Ø Setup And Dataset
• Evaluation with modified Foresight

• Open-source toolkit used to evaluate, analyze, and visualize
lossy compressors for extreme-scale cosmological
simulations

• Nyx dataset provided by the Nyx development team at
Lawrence Berkeley National Laboratory (LBNL)

• Experiment platforms
• Cori system at NERSC
• Frontera system at TACC

Details of Nyx Dataset Used in Experiments.

Foresight: https://github.com/lanl/VizAly-Foresight

https://github.com/lanl/VizAly-Foresight


Evaluation

Comparison of bit-quality ratios using traditional and our
methods on all partitions.

Ø Rate-quality
• Higher quality under similar bitrate
• Lower bitrate (higher ratio) under similar quality
• Smoother rate-quality balance across all
partitions

Ø Power Spectrum

Power spectrum analysis on Nyx’s baryon density field.
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Evaluation

Comparison of bit-quality ratios using traditional and our
methods on all partitions.

Ø Rate-quality
• Higher quality under similar bitrate
• Lower bitrate (higher ratio) under similar quality
• Smoother rate-quality balance across all
partitions

Ø Halo Finder
• Number of effective cells varies
• Result in higher error bound than power-
spectrum-based optimization

Histogram of effective cell count from all 512 data
partitions of 1024×1024×1024 baryon density data.



Evaluation

Compression ratio comparison between our and traditional methods
on all 6 Nyx fields.

Ø Compression Ratio Improvement
• Up to 1.73x, 1.56x overall improvement
• Capable across time steps
• Works best with smaller partitions
• Capable across simulation with different
resolutions

Compression ratio comparison between our and traditional methods
on multiple redshifts’ data using baryon density field. Compression ratio improvement with different partition sizes.
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Comparison of our optimized error bounds on the data with larger
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Evaluation

Compression efficiency improvement with different data
sizes.

Ø Compression Ratio Improvement

Ø Performance
• Little overhead, as low as 1%
• Only extract features of mean value and
effective cell count

• Up to 1.73x, 1.56x overall improvement
• Capable across time steps
• Works best with smaller partitions
• Capable across simulation with different
resolutions



Conclusion

• Applications and metrics able to establish theoretical analysis for post-hoc analysis

• Adaptive approach to select feasible error-bound combinations for
different partitions

• Theoretical-based models to efficiently estimate:
• Loss of post hoc post-analysis caused by lossy compression error
• Compression ratio based on each partition’s data feature

• efficient optimization strategy to determine the best-fit configuration
• Improve the compression ratio by up to 73% (with only 1%
performance overhead)

Ø Our Approach

Ø Future Work



Thank you!
Any questions are welcome!

Contact Dingwen Tao: dingwen.tao@wsu.edu
Sian Jin: sian.jin@wsu.edu


