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> Introduction

* Fine-grained lossy compression
* Rate-quality modeling

» Background

* Cosmology post hoc analysis
* Lossy compression for scientific data

» Designs

* Modeling error impact on post hoc analysis
* Modeling compression ratio
* Optimization strategy

» Experimental Evaluation

* Rate-quality evaluation
* Performance evaluation
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» Why Compress/Lossy Compression?
* Huge amounts of data from cosmological simulations.
« Write speed.
* Data storage.

e Much higher compression ratio compared to Lossless
Compression.

(a) Original (b) Reconstructed with (c¢) Reconstructed with
PW_REL = 0.1 PW_REL = 0.25

Jin, Sian, et al. "Understanding GPU-based lossy compression for extreme-scale cosmological simulations." 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2020.
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» Structured Data --

* Generated by mesh-based simulations

512

in ranks -
- Different ranks (data partitions) have o iy . ri . 41 .
different densities of information i--.jf S .."'\ /0\“ 2N

as
Timestep

» Previous Solution (Jin et al, IPDPS’20)

Visualization of Baryon Density in Nyx simulation under resolution of 512 x 512 x 512
* Optimize rate-quality by trail-and-error

« All partitions use same compression configuration

« Visual metrics (e.g., PSNR) are not sufficient

> Our Goals

* Guarantee domain-specific analysis quality
* In-situ compression
* Towards optimal compression ratio Pemperature Frror Bound
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> Structured Data

* Generated by mesh-based simulations
in ranks

» Different ranks (data partitions) have
different densities of information

Timestep

» Previous Solution (Jin et al, IPDPS’20)

* Optimize rate-quality by trail-and-error
« All partitions use same compression configuration

v
* Visual metrics (e.g.,, PSNR) are not sufficient / ) |
L s
- ‘
» Our Goals
. . . . P
* Guarantee domain-specific analysis quality
* In-situ compression l
* Towards optimal compression ratio Temperature Error Bound

Fine-grained lossy compression control for different data partitic
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» Fine-grained Compression

 Different configurations (error bound) for different partitions
* Different configurations (eb combination) for different time-steps

» Estimation on Analysis Quality (Loss) Error Bound Combination

* Predict post-hoc analysis error based on
error-bound combination
* Power spectrum (FFT based)
e Halo finder

» Estimation on Compression Ratio

* Predict compression ratio based on

error-bound combination
e SZ lossy compression



Our Approach *Los Alamos

EST.1943

WASHINGTON STATE
@UNIVERSIW

> Contributions

Propose an adaptive approach to select feasible error-bound combinations
for different partitions
Build theoretical models to efficiently estimate:

* Loss of post hoc post-analysis caused by lossy compression error

* Compression ratio based on each partition’s data feature
Develop an efficient optimization strategy to determine the best-fit
configuration
Improve the compression ratio by up to 73% (with only 1% performance

overhead)
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» Background

* Cosmology post hoc analysis
* Lossy compression for scientific data
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sim stats rhob

1.090
1.080 —a—-1.00 ——0.50
» Nyx Cosmological Simulation L9 | 4 s
. . L L
« AMR-based hydrodynamics code designed to model %, |
astrophysical reacting flows on HPC systems i’igzg -
* 6 3-D data fields (malnly) 1.010
1.000
0.990
» Power Spectrum 07 k 100
: : , s P lysis on b density.
* FFT-based analysis for Universe’s matter distribution ¢ SPectrum anaysis on baryon density
« Target: Ratio of P(k) on reconstructed data and LOE+06 106
original data remains within 1 + 0.01 topses 1 [T | 1.0
1.0E+04 | : S - | 102
. g 1LOE+03 | - o
> Halo Flnder §].l)|':'(ll [ I osition velocit ) - o ’é
* Find over-densities in the Mass distribution LOEROL T 1|
 Target: Minimize the halo mass change of each halo ™" || N s
1.0E-01 L . 0.94

1.0E+10 1.0E+11 1.0E+12 1.0E+13 1.0E+14 1.0E+15
halo mass

Jin, Sian, et al. "Understanding GPU-based lossy compression for extreme-scale cosmological simulations." 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1IEEE, 2020.
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1.090 sim_stats rhob

1.080 | —a—1.00 0.50
» Nyx Cosmological Simulation N\ I
 AMR-based hydrodynamics code designed to model %' |
astrophysical reacting flows on HPC systems %;:;3:) — ——n
* 6 3-D data fields (mainly) L010 _
1.000 | - = !
0.990
» Power Spectrum k 10.0
* FFT-based analysis for Universe’s matter distribution
« Target: Ratio of P(k) on reconstructed data and 1.0E:+06 1.06
original data remains within 1 + 0.01 LOE+0S | | 104
1.0E+04 ] 102
. £ 108403 1 °
> Halo Flnder §1'0E+02 i position velocity e §
oot pox { os8
* Find over-densities in the Mass distribution SR ——oom ogts "
* Target: Minimize the halo mass change of each halo ™™ [| [=mem | | ‘L' |
1.0E4:TOE+10 1.0E+11 1.0E+12 1.0E+13 1.0E+14 1.0E+:)é94
halo mass

Jin, Sian, et al. "Understanding GPU-based lossy compression for extreme-scale cosmological simulations." 2020 Halo Finder analysis on baryon denSitY'
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1IEEE, 2020.
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Quantization Code
2m-1

» Lossy Compression _

2m142

* Error-controllable lossy compression 2*Error Bound—
e Absolute error bound (ABS) S

* Power relative error bound (PW_ABS) }<— Real Value
« High compression ratio 2°Error Bound— 2
* High throughput (with GPU-based version) S

First-phase —0 2m-1
Predicted Value Error
Bound

> How SZ Works

* Each data point’s value is predicted based on its neighboring
data points by an adaptive, best-fit prediction method.

« Each floating-point weight value is converted to an integer number
by a linear-scaling quantization based on the difference between  +rorsound— amis
the real value and predicted value and a specific error bound. :

* Lossless compression is applied to reduce the data size thereafter.

2*Error Bound— 2m1-1

\
|
I
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» Designs
* Modeling error impact on post hoc analysis
* Modeling compression ratio
* Optimization strategy
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> Introduced Error Distribution £ 02w
« SZ: Uniform distribution under ABS mode O e a as 0 a1 s

Error/Error bound

* Can be adapted to other compressor with error
distribution of deterministic average and deviation Error distribution of temperature data in one Nyx dataset compressed by

SZ1 ion. iti
0SSy compression M: number of ranks/partition:s

» FFT-based Analysis

Normal distribution based on Central Limit

Theorem
Works on all 1D, 2D and 3D DFTs

N-1
Al

P27 L

N: grid size, o: deviation

X (k) = DFT[x(n)]

where x(n) is discrete
number of elements. 4

Note here eb is not a value but a distribution function. We can get |

the error distributig

N
Uz\/;"b’ u=0, (38)

where N is the number of elements in given 1-D data. Similarly,
we can further expand our equation to 2-D DFT results by central

N| In our use case, ] it : b e di ; 1d furth
X(k) = }512 % 512 X 512 in 1mit theorem, since each row 1n the ne:w 1mens¥on.w01.1 urther
3000 A L. . perform another 1-D DFT on values with error distribution shown
Estimated n1Theorem and know |* . S
- distributi in Equation 9. And so on, we can get 3-D DFT error distribution
2500 Real As of the error distri|distribution. Now w

tioned in Section 3.1, |

our normal error d

from SZ lossy compression is:

2
g 2000 - simplify Equation § N3

& 1500 A eb~U| o3p = ?eb, H3p =0, O]
3 ] E|where N is the data dimension. The same error distribution goes to
= 1000 where

500 1

T

Error/Error bound

T T T T T T T T
—20000 —15000 —10000 —5000 0 5000 10000 15000 20000

where eb is the user-
tion, f(x) is probabili
injected error to data

Then, we can get th

N-1
Oindividual = Z 1
0

EID”}T with similar analysis. As of applying various error bound to

different partitions, since the element number in each partition is
also considered a large number (e.g., 64> when cutting 5123 data

into 512 partition; I equation to:

(10)
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0.60%

5040%

> Introduced Error Distribution £ 2o
e SZ: Uniform distribution under ABS mode T T T o 1 -

Error/Error bound

 (Can be adapted to other compressor with error
distribution of deterministic average and deviation

» FFT-based Analysis

* Normal distribution based on Central Limit
Theorem

M: number of ranks/partitions
N: grid size, o: deviation

N-1

P27 L

b wom |
X(k) = DFT[x(n)][Note here eb is not a value but a distribution function. We can get |

the error distributig N
azwlzeb, u=0, (38)

where x(n) is discrete
number of elements. 4

Comparison of real and estimated FFT error distribution based on our

Works on all 1D, 2D and 3D DFTs

—20000 —15000 —10000 —-5000 0 5000
Error/Error bound

model using Nyx’s temperature field.

10000 15000 20000

N

X(k) = }

where eb is the user-
tion, f(x) is probabili
injected error to data

In our use case, |
512 X 512 X 512 in|

Then, we can get th

N-1

Oindividual = Z

0

where N is the number of elements in given 1-D data. Similarly,
we can further expand our equation to 2-D DFT results by central
limit theorem, since each row in the new dimension would further
perform another 1-D DFT on values with error distribution shown

—— Estimated niTheorem and know (! ¢ OB SO
Real As of th distri| distribution. Now w in Equation 9. And so on, we can get 3-D DFT error distribution
I Rea s of the error distri - P
2 tioned in Section 3.1, i our normal error d from SZ lossy compression is:
g simplify Equation § N3
& eb~ U osp = —¢b D=0, ©)
é & E|where N is the data dimension. The same error distribution goes to
where

EI ppr With similar analysis. As of applying various error bound to
different partitions, since the element number in each partition is
also considered a large number (e.g., 643 when cutting 5123 data
into 512 partition I equation to:

(10)




Modeling Error Impact

» Los Alamos WASHINGTON STATE
NATIONAL LABORATORY IVERSI’]Y
4 JOR

EST.1943

» Halo Finder

* Three key metrics:
* Number of halos
* Each halo’s location
* Each halo’s mass
* Halo’s mass depends on error bound and cell
count of mass value within a certain range

1000

o original
+—1.00E-04
w
S *—1.00E-03
= 100
= 1.00E-02
S
i *—1.00E-01
2
€ o 1.00E+00
= 10
4 ~—eo—1.00E+01

1
1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07

Halo Mass
Comparison of halo mass distribution with different error

bounds using Nyx’s baryon density field.

(@) Original data (b) SZ compressed data

Candidate cells for halo finder
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» Halo Finder

* Halo’s mass depends on error bound and To further provide an estimation of mass changes given per-
cell count of mass value within a certain partition error bound, we conduct fault cell detection estimation. To
start with T
rang.e . ; . estimatio Pfault = 1 / R M dx = 25%. (12)
* Typically normal distribution Pl fiid Bhoundary eb
Error Bound Cells Mass Mass Diff Diff per cell Note here similar to what we discussed for FFT-based post-hoc
original 5028 3.13E:c 3 B aflal)‘fsm,-we can provide the corr‘espondmg Pfault l?ased on error
1E-2 6023  3.13E+6 0 - distribution from lossy compression other than uniform distribu-
1E-1 6011  3.13E+6 -9.8E+2 81.7 where M|tion. Then we can provide the number of fault detected cells in the
1E+0 6038  3.13E+6  1.21E+3 80.7 AT given parfand result in expected total number of cells being the same as
1E+1 6041  3.13E+6  1.66E+3 92.2 tions, e, the original, while error forming into normal distribution similar
Mass difference per changed cell on a large halo. halos cell [to what we discussed in Section 3.3. However, since we focus on
. for fault-dWhere I lIcell changes of individual halos and most are small halos with
00 | under rar Ci‘?HS withllittle edge cells, the number of cell difference can be simplified to
2 250 given parfiEquation 14. For large halos, depending on their size, the estimated
&l been faulferror distribution of cell count can be given by central limit theorem
£ 150 | Fault dete|forms into normal distribution:
3 100
| (14)
0 . . . . .
0 0.2 0.4 0.6 0.8 1 1.2
Average Lrror Bound n,.: number of cells near boundary (~81.66)

o: deviation
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» Halo Finder

* Halo’s mass depends on error bound and To further provide an estimation of mass changes given per-
cell count of mass value within a certain partition error bound, we conduct fault cell detection estimation. To
start with T
rang.e . ; . estimatio Pfault = 1 / R M dx = 25%. (12)
* Typically normal distribution Shat Gt Bhoundary eb
Error Bound Cells Mass Mass Diff Diff per cell Note here similar to what we discussed for FFT-based post-hoc
original 6023 3.13E+6 ) ) aTlal)"sm,'we can provide the corr‘espondmg Pfault l?ased on error
1E-2 6023  3.13E+6 0 . distribution from lossy compression other than uniform distribu-
1E-1 6011  3.13E+6 -9.8E+2 81.7 where M|tion. Then we can provide the number of fault detected cells in the
1E+0 6038  3.13E+6  1.21E+3 80.7 AT given parfand result in expected total number of cells being the same as
1E+1 6041  3.13E+6  1.66E+3 92.2 tions, e, the original, while error forming into normal distribution similar
halos cell to what we discussed in Section 3.3. However, since we focus on
- for fault-dWhere I Icell changes of individual halos and most are small halos with
w00 | under rar C(‘?HS withllittle edge cells, the number of cell difference can be simplified to
% 550 | . given parfiEquation 14. For large halos, depending on their size, the estimated
&l o been faulferror distribution of cell count can be given by central limit theorem
gm0 | * = Fault detelforms into normal distribution:
2 100 )
Tl e o (14
® [ ]
0 . . . . .
0 02 0.4 0.6 0.8 1 12
Average Error Bound n,.: number of cells near boundary (~81.66)
Number of candidate cells changed with different error bounds o: deviation
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» SZ Lossy Compression 20
* Empirical model
 Two main sections, critical point at bit rate of 2
« All partitions forms in similar shape g
* Use mean value as parameter, can also use ;‘:
: &
entropy but result higher performance cost
2.5 1.5
ol & o ) 0.02
g1} 0.1 1 10 100 1000 10000 100000
%"5 i g ) . Error Bound
2 .1l = o
' Zos | Bit rate with different error bounds using SZ lossy
05 | compression. Different lines represent for different
, S , . . partitions.
0 0.5 1 1.5 2 25 0 0.5 1 1.5
Predict C Predicted Bit Rate
(a) Relative C; Estimation (b) Compression Ratio Consistency
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» Optimization Strategy

1. Parameter extraction (estimate compression ratio)
* Mean value of given partition o
« Mean value of overall dataset "3 I5.0e+03
2. Build Rate-Quality Model N y. 1
« EB-quality model f\_' | 20
e EB-rate model &)
3. Per-partition error bound optimization s s
* Derivatives of rate-quality curves are balanced for ‘ : [
all partitions e
Temperature Error Bound

4. For baryon density
« Perform power-spectrum optimization first Fine-grained lossy compression control for different data partitions.

* Perform halo-finder optimization if not satisfied
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» Experimental Evaluation

* Rate-quality evaluation
* Performance evaluation
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» Setup And Dataset

* Evaluation with modified Foresight
* Open-source toolkit used to evaluate, analyze, and visualize
lossy compressors for extreme-scale cosmological
simulations
* Nyx dataset provided by the Nyx development team at
Lawrence Berkeley National Laboratory (LBNL)
* Experiment platforms
* Cori system at NERSC
* Frontera system at TACC

Dimension Size | Field Value Range
Baryon Density (0, 10%)

512X 512 X% 512 6.6 GB X 4
Dark Matter Density (0, 10%)

1024 x 1024 x 1024 52 GB 2 .
Temperature (104, 10")

2048 x 2048 x 2048 352 GB . 3 8
Velocity (—-10°, 10°)

Details of Nyx Dataset Used in Experiments.

Foresight: https://github.com/lanl/VizAly-Foresight
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» Rate-quality

e Higher quality under similar bitrate | _gruarciitional
« Lower bitrate (higher ratio) under similar quality ¢ Target Optimized

=]
=
. 2}
* Smoother rate-quality balance across all ‘E,
partitions g 13
21
» Power Spectrum g
0.5
102%
Traditional 0 I : : : I l '
0 64 128 192 256 320 384 448 512
Ours Data Partitions / Ranks

101% |
Comparison of bit-quality ratios using traditional and our
methods on all partitions.

100% | 1

P(k) Ratio to Original

999,
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» Rate-quality

3
e Higher quality under similar bitrate | R —
e Target Optimized

« Lower bitrate (higher ratio) under similar quality =

. ] 2|
* Smoother rate-quality balance across all o
partitions 51-5 |
21
» Power Spectrum g
0.5
102%
—o— Traditional 0 ' ) ) ) ) )
0 64 128 192 256 320 384 448 512
Data Partitions / Ranks

101%

100% |

P(k) Ratio to Original

99%

Power spectrum analysis on Nyx’s baryon density field.
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» Rate-quality
e Higher quality under similar bitrate ol praditional
* Lower bitrate (higher ratio) under similar quality ¢ Target Optimized
* Smoother rate-quality balance across all ’
partitions

> Halo Finder

* Number of effective cells varies
* Result in higher error bound than power-

spectrum-based optimization
120

10

[y
7]

Rate-Quality Ra

e
n

(=]

64 128 192 256 320 384 448 512
Data Partitions / Ranks

(]

£ 2 2 2

Histogram of effective cell count from all 512 data
partitions of 1024x1024x1024 baryon density data.

Number of Partitions

1 10 100 1000
Number of Effective Cells in Given Partition
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» Compression Ratio Improvement

 Up to 1.73x, 1.56x overall improvement
« Capable across time steps

* Works best with smaller partitions

« Capable across simulation with different

resolutions : : :
baryon dark matter temperature velocity x velocity y velocity z
density density
_110%
- oy
% 100% | . . . - ZTraditional mOurs
g 90% | Compression ratio comparison between our and traditional methods
z .
S s | on all 6 Nyx fields.
£ 0% | -
; 512
= 0% | g
= =}
E 50% | ©— Ours (adaptive) g 256
'E- Ours (static) a
£ 0% r Traditional g 128
O 30% &
56 52 48 44 40 64
Redshift 0 0.5 1 1.5 2

Compression Ratio Improvement
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» Compression Ratio Improvement [ ‘
 Up to 1.73x, 1.56x overall improvement o
« Capable across time steps :
* Works best with smaller partitions )
« Capable across simulation with different o
resolutions .

00e+00

110%

=) Comparison of our optimized error bounds on the data with larger
<L . . . . . .
N 100% | - ® ® ® redshift (left, early in simulation) and the data with lower redshift
E . o :
E %% e ‘ A (right, late in simulation)
Z 80% | — =
=}
£ 0% |
) o= —— — —o g 512
= 60% | Z
% 50% | | —@Ours (adaptive) g 256
‘;‘5’. . —#—Qurs (static) A
g 4% I | —o—Traditional g 128
S 30% : P o

56 52 48 44 40 &

Redshift 0 0.5 1 15 2
Compression ratio comparison between our and traditional methods Compression Ratio Improvement

on multiple redshifts’ data using baryon density field.

Compression ratio improvement with different partition sizes.
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» Compression Ratio Improvement
 Up to 1.73x, 1.56x overall improvement .
e Capable across time steps ‘
 Works best with smaller partitions
« Capable across simulation with different
resolutions
_110%
'g
s 100% |
E 90% |
i 80% |
E 70% ;
% 60% | -é 312
% s00% | ©— Ours (adaptive) 2256
e ) Ours (static) Q
g 0% Traditional g 128
S 30% o
56 52 48 44 40 Eb 64
Redshift 0 05 1 15 2

Compression Ratio Improvement

Compression ratio improvement with different partition sizes.




JLosAlamos  VVASHINGTON STATE

Evaluatlon NATIONAELSTL;A:‘;)RATORY @UNIVERSI]Y
’////////////////////////////////////////
> Compression Ra tio Improvemen t VLSS LSS LSS LSS S S 7 LSS LSS LSS LSS LSS LSS LSS LSS LSS S LSS LSS LSS S S S S S S S S S
. 72 Traditional
« Up to 1.73x, 1.56x overall improvement 2 sz | = ous
e Capable across time steps z
[ [ - .°
 Works best with smaller partitions g
. . . . =
* Capable across simulation with different g
re SOlutIOH S @ 1024 ’/////////////4//////
0 0.5 1 1.5 2
» Performance Bit Rate
e Little overhead, as low as 1% C.ompression efficiency improvement with different data
S1Zes.

* Only extract features of mean value and
effective cell count
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» Our Approach

« Adaptive approach to select feasible error-bound combinations for
different partitions
* Theoretical-based models to efficiently estimate:
* Loss of post hoc post-analysis caused by lossy compression error
* Compression ratio based on each partition’s data feature
« efficient optimization strategy to determine the best-fit configuration
* Improve the compression ratio by up to 73% (with only 1%
performance overhead)

> Future Work

« Applications and metrics able to establish theoretical analysis for post-hoc analysis
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Thank you!

Any questions are welcome!

Contact Dingwen Tao: dingwen.tao@wsu.edu
Sian Jin: sian.jin@wsu.edu
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