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1 Introduction

» What is neural network pruning?

* Pruning is to reduce the number of DNN weights.
* Pruning reduces the computation complexity.

» Why prune neural networks during training?

* Ever-increasing scale and complexity of the networks with large-scale training datasets,
leading to challenges to the cost of DNN training.
* Backward phase can consume more than 70% of the overall training FLOPs.
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Figure 1: Percentage of FLOPs in forward and backward.



1 Introduction

» Typical Training Procedure

* Tralnlng d mOdel to hlgh accuracY‘ pattern 1 pattern 2 pattern 3 pattern 4
* Pruning the well-trained model. pruned kernels
* Fine-tuning the pruned model. / ‘L .............. \
pattern 5 pattern 6 pattern 7 pattern 8 ] E{ 5 f/f/
» Non-Structured Pruning and Structured Pruning 10 0
* The non-structured pruning: heuristically prune the 314 Ry
. . . pattern 9 pattern 10 pattern 11 pattern 12 AERT : b4
redundant weights on arbitrary locations. LSV
. . convolution filter
 Structured Pruning: prune the entire filters, channels :k © -

to maintain the structural regularity:.

» Fined-Grained Pattern-Based Pruning Fig 2 Fined grained pattern-based
pruning. Gray parts are pruned.
* As shown in Fig 2, fined-grained pattern-based
Pruning: intermediate sparsity type between non-

structured pruning and structured pruning.



1 Introduction

> What we did?

* Incorporate a weight importance estimation approach to select the desired patterns from a
generated candidate pattern pool.

* Propose methods to gradually generate the candidate patterns.

* Propose a modified group-lasso regularization.

* Propose multiple system-level optimizations including fast sparse matrix format conversion,
pattern-accelerated sparse convolution, pattern-based communication optimization, and compiler-
assisted optimized code generation.

* Use pruning during training (PDT)-based method to significantly reduce the end-to-end time.

e Maintain the network architecture for high accuracy.
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2 Background

» What is pattern?

* As shown in Figure 3, weights with higher absolute values form some specific shapes
(named pattern).
* Repeatedly appears in the model.

el L DR Pl e e e

Fig 3. Heat map of convolutional layer of a VGG-16 [1].

» What is the impact of pattern on performance?

* Transform patterns to Gaussian filter
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Fig 4. Gaussian filter [1].
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2 Background

* Transform patterns to Laplacian of Gaussian filter
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Fig 5. Laplacian of Gaussian filter[1].

[1] Xiaolong Ma, et al. 2020. An Image Enhancing Pattern-based Sparsity for Real-time Inference on Mobile Devices.
arXiv preprint arXiv:2001.07710 (2020).
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3 Framework

* Asshown is fig 6. Stage 1, 2, 3 and 4 are algorithm-level design, which focus on high compress ratio and
high accuracy.
e Stage 5 is system-level supports, which focus on improve computation efficiency.
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Fig 6. Overview of framework.
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* Introduced Hyper-parameters:

Basic training hyperparameters (learning rate, etc.), compression ratio, regularized training epochs,
regularization penalty coefficient, pre-training/warm-up epochs, and hard pruning epochs.




4 Algorithm-level design

> Stage 1: Train network for N epochs. e :HH %E Competieie] N Highest
core =
: 553 (N=4)
* N is hyper-parameter. Iy e T :/\
Cantane x‘ ' " iR e anals =
° : X .es X | p) 3 =
> Stage 2: Dynamic pattern pool generate, === ...l K11 [ % FETE Eﬁ =7 # #
. . @ I 1
* @eneric pattern pool and dynamic pattern pool. o E % rir o R ol e el | E
< : 4 inalization ad B - X i 5
« First select one weight position. Finalizaion Dl [ Jr,_Candidate Pool | ynamic Pool
. ., Selected Position |_|Candidate Position
* Select the second weight position. R Posiiom to oo easarnton ||| ] e e
R d. d 1 E__ECandidatc‘Pattcrn Set - Generic Pool
Create a candidate pattern pool. +/Selected Pattern to form Dynamic Pool Pattern Pool
* Calculate important score for each pattern and finalize patterns. Fig 7. Generate pattern pool.

» Stage 3: Adaptive choose pattern for each kernel.
* (alculate important score for each pattern using importance formula.
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» Stage 4: Penalize unimportant weights using modified group lasso.
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S System-level design
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Fig 8. system level design: compiler-assisted pattern-accelerated sparse matrix-matrix multiplication for sparse convolution.

* Modern GPUs are more suitable for Matrix-Matrix multiplication.

* SpMM requires first converting dense input matrix to a sparse format such as Compressed Sparse Row
(CSR).

» Pattern sparsity facilitate the fast conversion.

e Limit all the filters in the same layer to have the same number of un-pruned (non-zero) weights.

* 1D tiling strategy and map each thread block to a 1D row tile of the output matrix.
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6 Results

» Setup and Dataset

* Neural networks:
ResNet18/32/50/101 and VGG11/13/16

* Dataset:
CIFAR10/100 [6] and ImageNet-2012

* Experiment platform
Pytorch
Frontera supercomputer at TACC
CUDA 10.1 and its default profiler




6 Results

PDT Base. Valid. Comp. Train./Inf. Hard Pr.
Method Acc. Acc. A Ratio FLOPs Epoch
PRT  93.6% —2.1% 2.2 53% / 66% N/A
ResNet32 CLK  93.6% 0£0.05% 86X  413%/85.1% 98
CLK  93.6% 0+0.07% 10.7X  43.0%/ 85.7% 95
PRT  94.2% -1.1% 2.3% 50% / 70% N/A
ResNet50 CLK  94.1% 0+£0.04% 85X  37.5%/74.3% 95 :
o
= CLK  941%  —02+0.05% 108X  41.2%/77.6% 90 PAY Base.  Valid. Comp. Total
— Method Acc. Acc. A Ratio Epochs
e PRT  92.1% —0.7% 8.1¢ 57% / 65% N/A
o VGG11 CLK  92.1% —0.140.04% 87X 41.2%/815% 9 TAS [12] 70.6%  —1.5% 1.5X 120
CLK  92.1% —0.3+0.06% 11.5X  43.9%/ 85.3% 94 ResNet-18 DCP [74] 69.6% -5.5% 3.3X well train + 60
PRT  93.9% —0.6% 8.0 56% / 63% N/A CLK 69.6%  —0.9% 4.1 20
VGG13 CLK  93.8% 00.08% 86X  413%/81.3% 95 :
GBN [65] 75.8% —0.6% 2.2X well train + 60
CLK  93.8% —0.2+0.04% 109X 42.5%/84.9% 96 :
ResNet-50 GAL [29] 76.4% -7.1% 2.5% well train + 30
PRT  71.0% -1.4% 21X 32% / 46% N/A CLK 76.2% —0.6% 4.3X 90
ResNet32 CLK  71.0% 00.05% 83X  41.7%/82.9% 95
CLK  71.0% —0.2+0.05% 104X 45.2%/ 85.6% 90 ResNet-101 RSNLIA [63] 75.27%  —2.10% 19X well train + tune
PRT  73.1% ~0.7% 1.9% 53% / 69% N/A CLK 764%  —1.2% 4.2X 90
©  ResNet50 CLK  73.1% 0+£0.04% 82X  36.7%/73.6% 96
o g
- CLK  73.1% —0.2+0.07% 9.7X  38.9%/77.3% 95 VGG-16  NeST [8] 71.6% 2.3% 6.5X N/A
< CLK 73.1% —0.8% 6.6X 90
r PRT  70.6% —1.3% 3.0% 47% 1 57% N/A
© VGG11 CLK  70.6% 0£0.1% 67X  40.1%/ 78.6% 95 - - ' _
CLK  70.6%  —0.2+0.06% 8.4X  43.1%/ 82.0% 92 Fig 12. Comparison between ClickTrain and PAT-based
PRT  741% —14% 29 42% | 52% N/A methods on ImageNet. Well-train costs about 90 epochs.
VGG13 CLK  74.1% —0.1£0.05% 74X 40.5%/79.7% 95
CLK  74.1% —0.2+0.08% 92X  41.7%/ 83.3% 96
°% PRT  76.2% —1.9% 1.6X 40% / 53% N/A
EZ%  ResNet50 CLK  76.2% ~0.6+0.07% 4.3% 36.9% / 66% 40

Fig 11. Comparison between ClickTrain (CLK) and PDT-based method PruneTrain
(PRT). FLOPs are the saved FLOPs.



6 Results
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Fig 9. CSR format conversion time.
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Fig 10. Convolution time with different methods.



6 Results
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6 Results
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6 Results
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Fig 17. Comparison of PruneTrain and ClickTrain.




7 Conclusion & Future Work

> Conclusion

Implement both algorithm-level and system-level optimizations with four stages.
1) accurate weight importance estimation to select the pattern,
11) dynamic pattern generation and finalization,
111) regularized training for fine-tuning with an enhanced group-lasso,
1v) compiler-assisted optimized training.
* Reduce the cost of PAT-based method by up to 2.3 with comparable accuracy and compression ratio.
* Improve the pruned accuracy by up to 1.8% and the compression ratio by up to 4.9 on the tested CNNs
and datasets.

* We plan to extend ClickTrain to more types of DNNSs in the future
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Thank you!

Any questions are welcome!

Contact Dingwen Tao: dingwen.tao@wsu.edu
Chengming Zhang: chengming.zhang@wsu.edu
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