ClickTrain: Efficient and Accurate End-to-End Deep Learning
Training via Fine-Grained Architecture-Preserving Pruning

Chengming Zhang Washington State University
Geng Yuan Northeastern University
Wei Niu College of William and Mary
Jiannan Tian Washington State University
Sian Jin Washington State University
Donglin Zhuang University of Sydney
Zhe Jiang University of Alabama
Yanzhi Wang Northeastern University
Bin Ren College of William and Mary
Shuaiwen Leon Song University of Sydney
Dingwen Tao Washington State University

June 14, 2021 ICS’21 Worldwide online event

WASHINGTON STATE

North THE UNIVERSITYOF THE UNIVERSITY OF
wUNIVERSITY J-] INortheastern
A 4

University WILLIAM & MARY “:" SYDNEY ALABAMA

Outline

» Introduction
* prune neural networks during training
* Fined-Grained Pattern-Based Pruning
* Contribution

» Background
* Patterns
* Impact of patterns

» Designs

* Modeling framework
* Algorithm-level design
* System-level design

» Experimental Evaluation

* Model Accuracy and Ratio Evaluation
* Single-GPU Performance Evaluation
e Multi-GPU Performance Evaluation

Outline

» Introduction
* prune neural networks during training
* Fined-Grained Pattern-Based Pruning
e Contribution

» Background
* Patterns
* Impact of patterns

» Designs

* Modeling framework
* Algorithm-level design
* System-level design

» Experimental Evaluation

* Model Accuracy and Ratio Evaluation
* Single-GPU Performance Evaluation
e Multi-GPU Performance Evaluation

1 Introduction

» What is neural network pruning?

* Pruning is to reduce the number of DNN weights.
* Pruning reduces the computation complexity.

» Why prune neural networks during training?

* Ever-increasing scale and complexity of the networks with large-scale training datasets,
leading to challenges to the cost of DNN training.
* Backward phase can consume more than 70% of the overall training FLOPs.

Forward Backward
100% -
2\1800/ —
7] 0
o
o —
L. o <t @ N~
0409, —) (e)) ;
2 40% © E ok ,g
c N N <t -
s 20% — © 0 - o
= < o o o
™ 9\ (8P 9\
I | I

0%

VGG16 ResNet18 ResNet34 ResNet50
Figure 1: Percentage of FLOPs in forward and backward.

1 Introduction

» Typical Training Procedure

* Tralnlng d mOdel to hlgh accuracY‘ pattern 1 pattern 2 pattern 3 pattern 4
* Pruning the well-trained model. pruned kernels
* Fine-tuning the pruned model. / ‘L \
pattern 5 pattern 6 pattern 7 pattern 8] E{ 5 f/f/
» Non-Structured Pruning and Structured Pruning 10 0
* The non-structured pruning: heuristically prune the 314 Ry
. . . pattern 9 pattern 10 pattern 11 pattern 12 AERT : b4
redundant weights on arbitrary locations. LSV
. . convolution filter
 Structured Pruning: prune the entire filters, channels :k © -

to maintain the structural regularity:.

» Fined-Grained Pattern-Based Pruning Fig 2 Fined grained pattern-based
pruning. Gray parts are pruned.
* As shown in Fig 2, fined-grained pattern-based
Pruning: intermediate sparsity type between non-

structured pruning and structured pruning.

1 Introduction

> What we did?

* Incorporate a weight importance estimation approach to select the desired patterns from a
generated candidate pattern pool.

* Propose methods to gradually generate the candidate patterns.

* Propose a modified group-lasso regularization.

* Propose multiple system-level optimizations including fast sparse matrix format conversion,
pattern-accelerated sparse convolution, pattern-based communication optimization, and compiler-
assisted optimized code generation.

* Use pruning during training (PDT)-based method to significantly reduce the end-to-end time.

e Maintain the network architecture for high accuracy.

Outline

» Introduction
* prune neural networks during training
* Fined-Grained Pattern-Based Pruning
* Contribution

» Background
* Patterns
* Impact of patterns

» Designs

* Modeling framework
* Algorithm-level design
* System-level design

» Experimental Evaluation

* Model Accuracy and Ratio Evaluation
* Single-GPU Performance Evaluation
e Multi-GPU Performance Evaluation

2 Background

» What is pattern?

* As shown in Figure 3, weights with higher absolute values form some specific shapes
(named pattern).
* Repeatedly appears in the model.

el L DR Pl e e e

Fig 3. Heat map of convolutional layer of a VGG-16 [1].

» What is the impact of pattern on performance?

* Transform patterns to Gaussian filter

0 0 . 0: 9 0 O 0 O p 2p¢ pt I 2 n
()] [0] h 0] [0 -:| e [2p 4p 2p] — P2 4 2
0O 0 O O 0 O 0 0) p 2p p |- S |

n interﬁolations

Fig 4. Gaussian filter [1].

\

2 Background

* Transform patterns to Laplacian of Gaussian filter

O @ O O @ O 0 0 O O B O @ 2 " 0O 1 07"
[1 1 1] [1 1 O] [l 1 l] [O 1 l] = [p 1 p] = [P [1 1/p 1]]
0O 0 O O & O O = O O w O 0O p O 0O 1 O

n

N /

interpolations

Fig 5. Laplacian of Gaussian filter[1].

[1] Xiaolong Ma, et al. 2020. An Image Enhancing Pattern-based Sparsity for Real-time Inference on Mobile Devices.
arXiv preprint arXiv:2001.07710 (2020).

Outline

» Introduction
* prune neural networks during training
* Fined-Grained Pattern-Based Pruning
* Contribution

» Background
* Patterns
* Impact of patterns

» Designs

* Modeling framework
* Algorithm-level design
* System-level design

» Experimental Evaluation

* Model Accuracy and Ratio Evaluation
* Single-GPU Performance Evaluation
e Multi-GPU Performance Evaluation

3 Framework

* Asshown is fig 6. Stage 1, 2, 3 and 4 are algorithm-level design, which focus on high compress ratio and
high accuracy.
e Stage 5 is system-level supports, which focus on improve computation efficiency.

Unimportant |
Kernel |

Comm. Optimization

Start End
Trainin Trainin
5 stage 1 stage 2 stage 3 stage 4 stage S 2
)
Warm-up Dynamic Pattern Adaptive Pattern & Regularized Compiler-assisted
Training E> Pool Generation ::> Unimportant Kernel :> Training E> Optimized Training
| roceecn I Finalization . I =
I Etxi I e H ; |Fast SpMM Conversion
: : i =2 : mz Em : H E! L T\ : Forward Acceleration
I :ﬁ:lz> I CONYV Kernels Finalized Patterns I
B E E I \ / | ; |Backward Acceleration
I : 1 1
(I " 1

. . g Apely
= ; Regularization &7
Dynamic Pool I Pattern S
...... I Z N\

Fig 6. Overview of framework.

00
I000

-
=]
<
=

oo

7] “~Hard-Pruning Step

* Introduced Hyper-parameters:

Basic training hyperparameters (learning rate, etc.), compression ratio, regularized training epochs,
regularization penalty coefficient, pre-training/warm-up epochs, and hard pruning epochs.

4 Algorithm-level design

> Stage 1: Train network for N epochs. e :HH %E Competieie] N Highest
core =
: 553 (N=4)
* N is hyper-parameter. Iy e T :/\
Cantane x‘ ' " iR e anals =
° : X .es X | p) 3 =
> Stage 2: Dynamic pattern pool generate, === ...l K11 [% FETE Eﬁ =7 # #
. . @ I 1
* @eneric pattern pool and dynamic pattern pool. o E % rir o R ol e el | E
< : 4 inalization ad B - X i 5
« First select one weight position. Finalizaion Dl [Jr,_Candidate Pool | ynamic Pool
. ., Selected Position |_|Candidate Position
* Select the second weight position. R Posiiom to oo easarnton |||] e e
R d. d 1 E__ECandidatc‘Pattcrn Set - Generic Pool
Create a candidate pattern pool. +/Selected Pattern to form Dynamic Pool Pattern Pool
* Calculate important score for each pattern and finalize patterns. Fig 7. Generate pattern pool.

» Stage 3: Adaptive choose pattern for each kernel.
* (alculate important score for each pattern using importance formula.

_ il ¢ _ wH: S
t=Gp) OWL) 0pi Ip = T T (thxs,)

» Stage 4: Penalize unimportant weights using modified group lasso.
70 _w® o (ﬂp(f)), u® —w® o (ﬂl (f))

L [F K
E(W,D) =E(W,D) +Ap Z(Z Z Z;::)kh%i ‘g)

1=1 \fi=1k,=1

S System-level design

nInputChannel*kW*kH
45 |78 Patterns[patternl, pattem2, Temporarily store <« Dense input feature matrix (D7) e SO
61789 pattern3, ***, patternx] in CPU memory A N y P
4/5)6] |8 l - A : : GPU Thircadlide : cudnn ¥ : §
enerate =
owPe[0] 4] 8 [12]16] r———V——— . rowPir ez [0] tnsbusd ¥ I
e parse memory 2 Fast sparse & o
| Library | Generate | matrix \ \ I EEBEEEEE oy layes ool - conversion + e
collnd E : : collnd Iy » g ! Sparse ﬁ&ter matrix Dense outpllt feature matrix cudmn @1%13} optimized SpMM | | ‘7 3;
56 |89 + Com 8 =
[sl6l7[8[3[4] 5[7] [GPU e ¢ >’
Pattern 49174 1 2 + 5
1[5]6]8[9[4]5]7 8] : pool e G GPU g Conv layer n+2 Conv layer n+2 £
ol EESEASTS), | Il \ceents e]
SCUECCECOR I s 4414 2 - Mapaiead e [cudon] [Com]
————————— bee——————l @ L block to 1D tile i { I
(a) Sparse matrix and CSR format (b) Pattern-driven CSR conversion (c) Optimized SpMM library (d) Compiler-based code transformation

Fig 8. system level design: compiler-assisted pattern-accelerated sparse matrix-matrix multiplication for sparse convolution.

* Modern GPUs are more suitable for Matrix-Matrix multiplication.

* SpMM requires first converting dense input matrix to a sparse format such as Compressed Sparse Row
(CSR).

» Pattern sparsity facilitate the fast conversion.

e Limit all the filters in the same layer to have the same number of un-pruned (non-zero) weights.

* 1D tiling strategy and map each thread block to a 1D row tile of the output matrix.

Outline

» Introduction
* prune neural networks during training
* Fined-Grained Pattern-Based Pruning
* Contribution

» Background
* Patterns
* Impact of patterns

» Designs

* Modeling framework
* Algorithm-level design
* System-level design

» Experimental Evaluation

* Model Accuracy and Ratio Evaluation
* Single-GPU Performance Evaluation
e Multi-GPU Performance Evaluation

6 Results

» Setup and Dataset

* Neural networks:
ResNet18/32/50/101 and VGG11/13/16

* Dataset:
CIFAR10/100 [6] and ImageNet-2012

* Experiment platform
Pytorch
Frontera supercomputer at TACC
CUDA 10.1 and its default profiler

6 Results

PDT Base. Valid. Comp. Train./Inf. Hard Pr.
Method Acc. Acc. A Ratio FLOPs Epoch
PRT 93.6% —2.1% 2.2 53% / 66% N/A
ResNet32 CLK 93.6% 0£0.05% 86X 413%/85.1% 98
CLK 93.6% 0+0.07% 10.7X 43.0%/ 85.7% 95
PRT 94.2% -1.1% 2.3% 50% / 70% N/A
ResNet50 CLK 94.1% 0+£0.04% 85X 37.5%/74.3% 95 :
o
= CLK 941% —02+0.05% 108X 41.2%/77.6% 90 PAY Base. Valid. Comp. Total
— Method Acc. Acc. A Ratio Epochs
e PRT 92.1% —0.7% 8.1¢ 57% / 65% N/A
o VGG11 CLK 92.1% —0.140.04% 87X 41.2%/815% 9 TAS [12] 70.6% —1.5% 1.5X 120
CLK 92.1% —0.3+0.06% 11.5X 43.9%/ 85.3% 94 ResNet-18 DCP [74] 69.6% -5.5% 3.3X well train + 60
PRT 93.9% —0.6% 8.0 56% / 63% N/A CLK 69.6% —0.9% 4.1 20
VGG13 CLK 93.8% 00.08% 86X 413%/81.3% 95 :
GBN [65] 75.8% —0.6% 2.2X well train + 60
CLK 93.8% —0.2+0.04% 109X 42.5%/84.9% 96 :
ResNet-50 GAL [29] 76.4% -7.1% 2.5% well train + 30
PRT 71.0% -1.4% 21X 32% / 46% N/A CLK 76.2% —0.6% 4.3X 90
ResNet32 CLK 71.0% 00.05% 83X 41.7%/82.9% 95
CLK 71.0% —0.2+0.05% 104X 45.2%/ 85.6% 90 ResNet-101 RSNLIA [63] 75.27% —2.10% 19X well train + tune
PRT 73.1% ~0.7% 1.9% 53% / 69% N/A CLK 764% —1.2% 4.2X 90
© ResNet50 CLK 73.1% 0+£0.04% 82X 36.7%/73.6% 96
o g
- CLK 73.1% —0.2+0.07% 9.7X 38.9%/77.3% 95 VGG-16 NeST [8] 71.6% 2.3% 6.5X N/A
< CLK 73.1% —0.8% 6.6X 90
r PRT 70.6% —1.3% 3.0% 47% 1 57% N/A
© VGG11 CLK 70.6% 0£0.1% 67X 40.1%/ 78.6% 95 - - ' _
CLK 70.6% —0.2+0.06% 8.4X 43.1%/ 82.0% 92 Fig 12. Comparison between ClickTrain and PAT-based
PRT 741% —14% 29 42% | 52% N/A methods on ImageNet. Well-train costs about 90 epochs.
VGG13 CLK 74.1% —0.1£0.05% 74X 40.5%/79.7% 95
CLK 74.1% —0.2+0.08% 92X 41.7%/ 83.3% 96
°% PRT 76.2% —1.9% 1.6X 40% / 53% N/A
EZ% ResNet50 CLK 76.2% ~0.6+0.07% 4.3% 36.9% / 66% 40

Fig 11. Comparison between ClickTrain (CLK) and PDT-based method PruneTrain
(PRT). FLOPs are the saved FLOPs.

6 Results

20T H__H\OM\O\O
150
100 k —O0— Ours —&— cuSPARSE

Time (us)

50 + K—@——@—@-—“@« ®- H‘W

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 150
Sparsity Ratio

Fig 9. CSR format conversion time.

unl @ —O— Pattern Sparsity (Ours)
2k Pattern Sparsity (cuSPARSE)
20 F @ @@, ®:---- Random Sparsity (cuSPARSE)
18 k 9 - «A - ldeal

o 16 F L . " - %= Dense (cuBLAS)

Eur —.—- Conv (cuDNN)

o 12 F

E 10}

= 8 F
6 -
4
2 F
0 F

05 055 0.6 065 07 075 08 08 09 095 1.0
Sparsity Ratio

Fig 10. Convolution time with different methods.

6 Results

7/ Forward mmBackward Forward (opt conv) 2\ Backward (opt conv)

120.0
100.0
80.0
60.0

40.0

Time per iteration (ms)

20.0

ResNet18

ResNet50 VGG16

0.0 -
ResNet32

(a) CIFAR

~77ZForward N Backward Forward (opt conv) N\ Backward (opt conv)
300.0
250.0
200.0
150.0

100.0

50.0 &

0.0 “Lllesiaito]
ResNet32 ResNet50

Time per iteration (ms)

ResNet101 VGG16

(b) ImageNet

Fig 13. Average forward and backward time per iteration.

DN

1 GPU training time(hour)

1 GPU training time(hour)

Fig 14. Total training time on CIFAR and ImageNet (single-
GPU).

150 -

== Ours (w/o opt conv)
=3 Ours (w/ opt conv)
=3 Pruning after training
=3 Baseline (w/o pruning)

ResNet18

250=y == Ours (w/o opt conv)

=3 Ours (w/ opt conv)

200= =3 Pruning after training

=3 Baseline (w/o prunin

17

ResNet32

(a) CIFAR10

AL

SONNNNNNNNY

ResNet50

27

N

.6

(/L

///

ResNet32

ResNet50

(b) ImageNet

T
ResNet101

6 Results

=3 4 GPUs baseline =@ 4 GPUs w/ optconv =@ 4 GPUs w/ opt conv & comm
=3 8 GPUs baseline =3 8 GPUs w/ opt conv =3 8 GPUs w/ opt conv & comm

: —— ResNet50 —=— ResNet50 w/ opt comm
:?5_16 GPUs baselinem@™ 16 GPUs w/ opt conveel 16 GPUs w/ opt conv & comm —+— ResNet101 —+ ResNet101 w/ opt comm
_§40- g35- —— VGG16 ~—o— VGG16 w/ optcomm .
= 25-F 10UV 717 5 20 //
© | 5 AV ’ ©
= 504 AF MU N1 o
-,-_:,20 1V ‘,’\‘ ’/\T c 15= P—-M,'—'
e 15-[1 1/ TNNNNE AN R S
- 717K [,’t\\ ’f\\\ E1O- o
;[,Q\‘ ,’ N N ’/\\\ u . —
2 TUUHUNNR TAANNNA e HARNNNT £ 5 - —y—
,,,Enﬂﬂp,“n i ,M\\ S o
R e e s i e e e e A : : 2 16
4 8 16 4 8 16 4 8 16 Number of GPUs
ResNet50 ResNet101 VGG16

Fig 15. Total time of distributed training. Fig 16. Total time of communication time.

6 Results

94.6

Accuracy
(o] (o) 0
4 o P
o (o)] o
| 1 |

CR of ClickTraina
Acc of ClickTraine

YAcc of PruneTrain

m CR of PruneTrain

—-12

| | |
»n 0o -
o

|
S
Compression ratio

-

92.6

1 | 1 I

22 23 24 26 26 27

Training time(hour)

(a) Train ResNet50 on cifar10

Accuracy

75.6- 4
CR of ClickTraina

75.4- Acc of ClickTrain® [4-0 3
-3.5 ¢

75.2- §
-3.0 9

75.0- o
—-2.5 g—

74.8- m CR of PruneTrain 20 8

¥ Acc of PruneTrain
74.6 J T T T 1.5

23 24 25 26 27 28
Training time(hour)
(b) Train ResNet50 on imagenet

Fig 17. Comparison of PruneTrain and ClickTrain.

7 Conclusion & Future Work

> Conclusion

Implement both algorithm-level and system-level optimizations with four stages.
1) accurate weight importance estimation to select the pattern,
11) dynamic pattern generation and finalization,
111) regularized training for fine-tuning with an enhanced group-lasso,
1v) compiler-assisted optimized training.
* Reduce the cost of PAT-based method by up to 2.3 with comparable accuracy and compression ratio.
* Improve the pruned accuracy by up to 1.8% and the compression ratio by up to 4.9 on the tested CNNs
and datasets.

* We plan to extend ClickTrain to more types of DNNSs in the future

S International Conference
on Supercomputing 2021

June 14 - 18, 2021. Worldwide online event

Thank you!

Any questions are welcome!

Contact Dingwen Tao: dingwen.tao@wsu.edu
Chengming Zhang: chengming.zhang@wsu.edu

=CP TRV

EXASCALE COMPUTING PROJECT

