
ClickTrain: Efficient and Accurate End-to-End Deep Learning
Training via Fine-Grained Architecture-Preserving Pruning

Chengming Zhang Washington State University
Geng Yuan Northeastern University

Wei Niu College of William and Mary
Jiannan Tian Washington State University

Sian Jin Washington State University
Donglin Zhuang University of Sydney

Zhe Jiang University of Alabama
Yanzhi Wang Northeastern University

Bin Ren College of William and Mary
Shuaiwen Leon Song University of Sydney

Dingwen Tao Washington State University

June 14, 2021 ICS’21 Worldwide online event

Outline

Ø Introduction
• prune neural networks during training
• Fined-Grained Pattern-Based Pruning
• Contribution

Ø Background
• Patterns
• Impact of patterns

Ø Designs
• Modeling framework
• Algorithm-level design
• System-level design

• Model Accuracy and Ratio Evaluation
• Single-GPU Performance Evaluation
• Multi-GPU Performance Evaluation

Ø Experimental Evaluation

Outline

Ø Introduction
• prune neural networks during training
• Fined-Grained Pattern-Based Pruning
• Contribution

Ø Background
• Patterns
• Impact of patterns

Ø Designs
• Modeling framework
• Algorithm-level design
• System-level design

• Model Accuracy and Ratio Evaluation
• Single-GPU Performance Evaluation
• Multi-GPU Performance Evaluation

Ø Experimental Evaluation

1 Introduction

Ø Why prune neural networks during training?
• Ever-increasing scale and complexity of the networks with large-scale training datasets,

leading to challenges to the cost of DNN training.
• Backward phase can consume more than 70% of the overall training FLOPs.

Ø What is neural network pruning?
• Pruning is to reduce the number of DNN weights.
• Pruning reduces the computation complexity.

Figure 1: Percentage of FLOPs in forward and backward.

1 Introduction

Ø Typical Training Procedure
• Training a model to high accuracy.
• Pruning the well-trained model.
• Fine-tuning the pruned model.

Ø Non-Structured Pruning and Structured Pruning
• The non-structured pruning: heuristically prune the
redundant weights on arbitrary locations.
• Structured Pruning: prune the entire filters, channels
to maintain the structural regularity.

Ø Fined-Grained Pattern-Based Pruning

• As shown in Fig 2, fined-grained pattern-based
Pruning: intermediate sparsity type between non-
structured pruning and structured pruning.

Fig 2. Fined grained pattern-based
pruning. Gray parts are pruned.

1 Introduction

Ø What we did?

• Incorporate a weight importance estimation approach to select the desired patterns from a
generated candidate pattern pool.

• Propose methods to gradually generate the candidate patterns.
• Propose a modified group-lasso regularization.
• Propose multiple system-level optimizations including fast sparse matrix format conversion,

pattern-accelerated sparse convolution, pattern-based communication optimization, and compiler-
assisted optimized code generation.

• Use pruning during training (PDT)-based method to significantly reduce the end-to-end time.
• Maintain the network architecture for high accuracy.

Outline

Ø Introduction
• prune neural networks during training
• Fined-Grained Pattern-Based Pruning
• Contribution

Ø Background
• Patterns
• Impact of patterns

Ø Designs
• Modeling framework
• Algorithm-level design
• System-level design

• Model Accuracy and Ratio Evaluation
• Single-GPU Performance Evaluation
• Multi-GPU Performance Evaluation

Ø Experimental Evaluation

2 Background

Ø What is pattern?

• As shown in Figure 3, weights with higher absolute values form some specific shapes
(named pattern).

• Repeatedly appears in the model.

Ø What is the impact of pattern on performance?

• Transform patterns to Gaussian filter

Fig 3. Heat map of convolutional layer of a VGG-16 [1].

Fig 4. Gaussian filter [1].

2 Background

• Transform patterns to Laplacian of Gaussian filter

Fig 5. Laplacian of Gaussian filter[1].

[1] Xiaolong Ma, et al. 2020. An Image Enhancing Pattern-based Sparsity for Real-time Inference on Mobile Devices.
arXiv preprint arXiv:2001.07710 (2020).

Outline

Ø Introduction
• prune neural networks during training
• Fined-Grained Pattern-Based Pruning
• Contribution

Ø Background
• Patterns
• Impact of patterns

Ø Designs
• Modeling framework
• Algorithm-level design
• System-level design

• Model Accuracy and Ratio Evaluation
• Single-GPU Performance Evaluation
• Multi-GPU Performance Evaluation

Ø Experimental Evaluation

3 Framework

• As shown is fig 6. Stage 1, 2, 3 and 4 are algorithm-level design, which focus on high compress ratio and
high accuracy.

• Stage 5 is system-level supports, which focus on improve computation efficiency.

• Introduced Hyper-parameters:
Basic training hyperparameters (learning rate, etc.), compression ratio, regularized training epochs,
regularization penalty coefficient, pre-training/warm-up epochs, and hard pruning epochs.

Fig 6. Overview of framework.

4 Algorithm-level design

Ø Stage 1: Train network for N epochs.

Ø Stage 3: Adaptive choose pattern for each kernel.

Ø Stage 2: Dynamic pattern pool generate.

Ø Stage 4: Penalize unimportant weights using modified group lasso.

• N is hyper-parameter.

• Generic pattern pool and dynamic pattern pool.
• First select one weight position.
• Select the second weight position.
• Create a candidate pattern pool.
• Calculate important score for each pattern and finalize patterns.

• Calculate important score for each pattern using importance formula.

Fig 7. Generate pattern pool.

5 System-level design

Fig 8. system level design: compiler-assisted pattern-accelerated sparse matrix-matrix multiplication for sparse convolution.

• Modern GPUs are more suitable for Matrix-Matrix multiplication.
• SpMM requires first converting dense input matrix to a sparse format such as Compressed Sparse Row

(CSR).
• Pattern sparsity facilitate the fast conversion.
• Limit all the filters in the same layer to have the same number of un-pruned (non-zero) weights.
• 1D tiling strategy and map each thread block to a 1D row tile of the output matrix.

Outline

Ø Introduction
• prune neural networks during training
• Fined-Grained Pattern-Based Pruning
• Contribution

Ø Background
• Patterns
• Impact of patterns

Ø Designs
• Modeling framework
• Algorithm-level design
• System-level design

• Model Accuracy and Ratio Evaluation
• Single-GPU Performance Evaluation
• Multi-GPU Performance Evaluation

Ø Experimental Evaluation

6 Results

• Neural networks:
ResNet18/32/50/101 and VGG11/13/16

• Dataset:
CIFAR10/100 [6] and ImageNet-2012

• Experiment platform
Pytorch
Frontera supercomputer at TACC
CUDA 10.1 and its default profiler

Ø Setup and Dataset

6 Results

Fig 11. Comparison between ClickTrain (CLK) and PDT-based method PruneTrain
(PRT). FLOPs are the saved FLOPs.

Fig 12. Comparison between ClickTrain and PAT-based
methods on ImageNet. Well-train costs about 90 epochs.

6 Results

Fig 9. CSR format conversion time.

Fig 10. Convolution time with different methods.

6 Results

Fig 13. Average forward and backward time per iteration. Fig 14. Total training time on CIFAR and ImageNet (single-
GPU).

6 Results

Fig 15. Total time of distributed training. Fig 16. Total time of communication time.

6 Results

Fig 17. Comparison of PruneTrain and ClickTrain.

7 Conclusion & Future Work

Ø Conclusion

• Implement both algorithm-level and system-level optimizations with four stages.
i) accurate weight importance estimation to select the pattern,
ii) dynamic pattern generation and finalization,
iii) regularized training for fine-tuning with an enhanced group-lasso,
iv) compiler-assisted optimized training.

• Reduce the cost of PAT-based method by up to 2.3× with comparable accuracy and compression ratio.
• Improve the pruned accuracy by up to 1.8% and the compression ratio by up to 4.9× on the tested CNNs

and datasets.
• We plan to extend ClickTrain to more types of DNNs in the future

Thank you!
Any questions are welcome!

Contact Dingwen Tao: dingwen.tao@wsu.edu
Chengming Zhang: chengming.zhang@wsu.edu

