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1 Introduction

Ø Why prune neural networks during training?
• Ever-increasing scale and complexity of the networks with large-scale training datasets, 

leading to challenges to the cost of DNN training.
• Backward phase can consume more than 70% of the overall training FLOPs.

Ø What is neural network pruning?
• Pruning is to reduce the number of DNN weights. 
• Pruning reduces the computation complexity.

Figure 1: Percentage of FLOPs in forward and backward.



1 Introduction

Ø Typical Training Procedure 
• Training a model to high accuracy.
• Pruning the well-trained model.
• Fine-tuning the pruned model.

Ø Non-Structured Pruning and Structured Pruning
• The non-structured pruning: heuristically prune the 
redundant weights on arbitrary locations.
• Structured Pruning: prune the entire filters, channels
to maintain the structural regularity.

Ø Fined-Grained Pattern-Based Pruning

• As shown in Fig 2, fined-grained pattern-based 
Pruning: intermediate sparsity type between non-
structured pruning and structured pruning.

Fig 2. Fined grained pattern-based 
pruning. Gray parts are pruned.



1 Introduction

Ø What we did?

• Incorporate a weight importance estimation approach to select the desired patterns from a 
generated candidate pattern pool. 

• Propose methods to gradually generate the candidate patterns.
• Propose a modified group-lasso regularization.
• Propose multiple system-level optimizations including fast sparse matrix format conversion, 

pattern-accelerated sparse convolution, pattern-based communication optimization, and compiler-
assisted optimized code generation.

• Use pruning during training (PDT)-based method to significantly reduce the end-to-end time. 
• Maintain the network architecture for high accuracy.
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2 Background

Ø What is pattern?

• As shown in Figure 3, weights with higher absolute values form some specific shapes
(named pattern).

• Repeatedly appears in the model.

Ø What is the impact of pattern on performance?

• Transform patterns to Gaussian filter

Fig 3. Heat map of convolutional layer of a VGG-16 [1].

Fig 4. Gaussian filter [1].



2 Background

• Transform patterns to Laplacian of Gaussian filter

Fig 5. Laplacian of Gaussian filter[1].

[1] Xiaolong Ma, et al. 2020. An Image Enhancing Pattern-based Sparsity for Real-time Inference on Mobile Devices. 
arXiv preprint arXiv:2001.07710 (2020).
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3 Framework

• As shown is fig 6. Stage 1, 2, 3 and 4 are algorithm-level design, which focus on high compress ratio and 
high accuracy. 

• Stage 5 is system-level supports, which focus on improve computation efficiency.

• Introduced Hyper-parameters:
Basic training hyperparameters (learning rate, etc.), compression ratio, regularized training epochs, 
regularization penalty coefficient, pre-training/warm-up epochs, and hard pruning epochs.

Fig 6. Overview of framework. 



4 Algorithm-level design

Ø Stage 1: Train network for N epochs.

Ø Stage 3: Adaptive choose pattern for each kernel.

Ø Stage 2: Dynamic pattern pool generate.

Ø Stage 4: Penalize unimportant weights using modified group lasso.

• N is hyper-parameter.

• Generic pattern pool and dynamic pattern pool.
• First select one weight position.
• Select the second weight position.
• Create a candidate pattern pool.
• Calculate important score for each pattern and finalize patterns.

• Calculate important score for each pattern using importance formula.

Fig 7. Generate pattern pool. 



5 System-level design

Fig 8. system level design: compiler-assisted pattern-accelerated sparse matrix-matrix multiplication for sparse convolution.

• Modern GPUs are more suitable for Matrix-Matrix multiplication. 
• SpMM requires first converting dense input matrix to a sparse format such as Compressed Sparse Row 

(CSR).
• Pattern sparsity facilitate the fast conversion.
• Limit all the filters in the same layer to have the same number of un-pruned (non-zero) weights. 
• 1D tiling strategy and map each thread block to a 1D row tile of the output matrix.



Outline

Ø Introduction
• prune neural networks during training
• Fined-Grained Pattern-Based Pruning
• Contribution

Ø Background
• Patterns
• Impact of patterns

Ø Designs
• Modeling framework
• Algorithm-level design
• System-level design

• Model Accuracy and Ratio Evaluation 
• Single-GPU Performance Evaluation
• Multi-GPU Performance Evaluation

Ø Experimental Evaluation 



6 Results

• Neural networks:
ResNet18/32/50/101 and VGG11/13/16

• Dataset:
CIFAR10/100 [6] and ImageNet-2012 

• Experiment platform
Pytorch
Frontera supercomputer at TACC
CUDA 10.1 and its default profiler

Ø Setup and Dataset 



6 Results

Fig 11. Comparison between ClickTrain (CLK) and PDT-based method PruneTrain
(PRT). FLOPs are the saved FLOPs.

Fig 12. Comparison between ClickTrain and PAT-based 
methods on ImageNet. Well-train costs about 90 epochs.



6 Results

Fig 9. CSR format conversion time.

Fig 10. Convolution time with different methods.



6 Results

Fig 13. Average forward and backward time per iteration. Fig 14. Total training time on CIFAR and ImageNet (single-
GPU). 



6 Results

Fig 15. Total time of distributed training. Fig 16. Total time of communication time.



6 Results

Fig 17. Comparison of PruneTrain and ClickTrain. 



7 Conclusion & Future Work

Ø Conclusion

• Implement both algorithm-level and system-level optimizations with four stages.
i) accurate weight importance estimation to select the pattern, 
ii) dynamic pattern generation and finalization, 
iii) regularized training for fine-tuning with an enhanced group-lasso, 
iv) compiler-assisted optimized training. 

• Reduce the cost of PAT-based method by up to 2.3× with comparable accuracy and compression ratio. 
• Improve the pruned accuracy by up to 1.8% and the compression ratio by up to 4.9× on the tested CNNs 

and datasets.
• We plan to extend ClickTrain to more types of DNNs in the future



Thank you!
Any questions are welcome!

Contact Dingwen Tao: dingwen.tao@wsu.edu
Chengming Zhang: chengming.zhang@wsu.edu


