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AI is 
Everywhere



DNN Model Trend vs GPU Development

> The development of GPU is significantly behind the 
expanding speed of DNN model size

Ref: https://epochai.org/blog/trends-in-gpu-
price-performance

Ref: https://www.researchgate.net/publication/349044689_Fre
ely_scalable_and_reconfigurable_optical_hardware_for_deep_l
earning



Compression Techniques

Unstructured 
Pruning

Structured 
Pruning

Tensor 
Decomposition



Tucker Decomposition (TKD)
> Original kernel is decomposed into three kernels:

> Tucker-format convolution (The original convolution is 
transformed to three small convolutions):

• Avoid complex data structure
• Able to keep the spatial information
• Adjust D1 and D2 to control the 

entire computational cost under a 
target budget

128 X 256 X 3 X 3 128 X 32 X 1 X 1 32 X 32 X 3 X 3 32 X 256 X 1 X 1



Discrepancy in Practice

Hard to train TKD 
compressed models

01
Lack of software-
aware TKD 
convolution 
algorithms for CNN 
acceleration

02
Lack of performance-
driven frameworks 
for highly efficient 
and accurate CNN 
inference on GPUs
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Optimized Training

> Why Alternating Direction Method 
of Multipliers (ADMM)?
• Impose low-rankness corresponding to 

hardware performance 
• Significantly preserve task accuracy

Accuracy comparison between directly training and our 
ADMM-based compression for ResNet-20 on CIFAR-10:

> Challenges for training tucker-format models:
• Directly training Tucker-format models from scratch

• Limited capacity -> accuracy degradation
• Initializing Tucker-format models from uncompressed models

• Approximation error -> accuracy degradation



Training objective:

where

Hardware 
budget

Selected ranks according to 
practical runtime of our kernel 

Training steps:

Truncated-HOSVD that truncates 
the smallest singular values

Optimized Training(ADMM-based Training)



TDC: Convolution Kernel Design

Hard to translate flops reduction to 
actual performance improvement.

• Irregular convolution shape.

• Compute resource under-utilization.



TDC: Convolution Kernel Design

Shared memory buffer

Threads level
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TW
TC



Analytical Modeling

• 𝑛𝑢𝑚_𝑏𝑙𝑘𝑠 = 𝐻/𝑇𝐻 × 𝑊/𝑇𝑊 × 𝐶/𝑇𝐶
• 𝑤𝑎𝑣𝑒𝑠 = 𝑐𝑒𝑖𝑙 ( (𝑚𝑎𝑥_𝑡ℎ𝑠 × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)/(𝑛𝑢𝑚_𝑏𝑙𝑘𝑠 × 𝑏𝑙𝑘_𝑑𝑖𝑚))

• 𝑏𝑙𝑘𝑠_𝑤𝑎𝑣𝑒 = (𝑚𝑎𝑥_𝑡ℎ𝑠 × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)/𝑏𝑙𝑘_𝑑𝑖𝑚
• 𝑓𝑙𝑜𝑝𝑠_𝑏𝑙𝑘 = 2 ×𝑇𝐻 ×𝑇𝑊 ×𝑇𝐶 × 𝑁
• 𝑓 𝑙𝑜𝑝𝑠_𝑤𝑎𝑣𝑒 = 𝑏𝑙𝑘𝑠_𝑤𝑎𝑣𝑒 × 𝑓 𝑙𝑜𝑝𝑠_𝑏𝑙𝑘
• 𝑡𝑖𝑚𝑒_𝑤𝑎𝑣𝑒 = 𝑓𝑙𝑜𝑝𝑠_𝑤𝑎𝑣𝑒/(𝑐𝑜𝑚𝑝_𝑡ℎ𝑟 × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)

• 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒_𝑤𝑎𝑣𝑒 × 𝑤𝑎𝑣𝑒𝑠

Remove tiling 
configurations with 
high computation-

latency

All tiling configurations

11

Pick the one with the 
lowest data movement



Hardware-aware Rank Determination

> Proposed rank search strategy:> Importance of rank D1 and D2:

• Task accuracy
• Practical speedup
• Overall computational cost



TDC Framework

> Overview of our TDC framework for generating TKD-compressed CNN models with high-
performance inference code on GPUs:



Experiments

• 0.05% accuracy loss on Resnet-18

• 0.29% accuracy increment on Resnet-50

• 0.03% accuracy increment on Vgg-16

• 1.90% accuracy increment on Densenet-121

• 0.04% accuracy increment on Densenet-201

Accuracy summary

Accuracy table



Experiments
Layer-wise TDC kernel performance evaluation(On A100)



Experiments
End2end speedup comparison(On A100)
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Thank you!
Any questions are welcome
Contacts: Lizhi Xiang: u0814474@umail.utah.edu

Yinmiao: miao.yin@rutgers.edu


