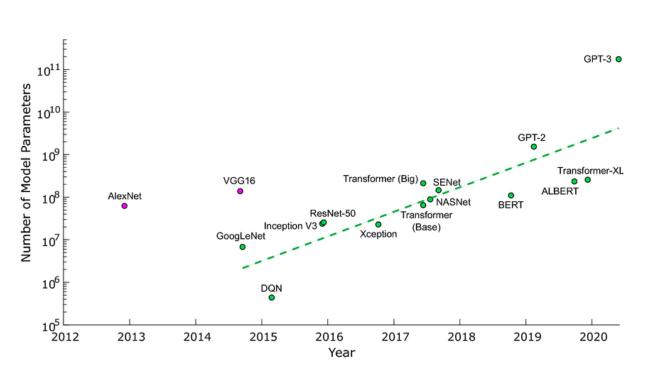
TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-Aware Tucker Decomposition

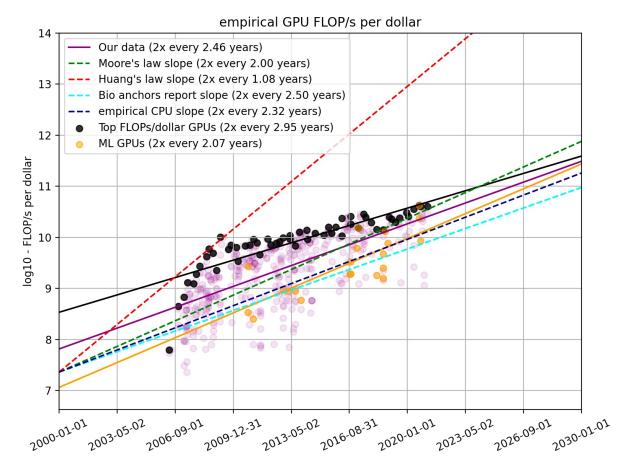
Lizhi Xiang, Miao Yin, Chengming Zhang, Aravind Sukumaran-Rajam, P. Sadayappan, Bo Yuan, Dingwen Tao

DNN Model Trend vs GPU Development



Ref: https://www.researchgate.net/publication/349044689_Fre ely_scalable_and_reconfigurable_optical_hardware_for_deep_l earning

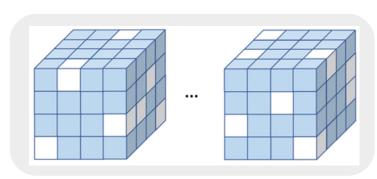
> The development of GPU is significantly behind the expanding speed of DNN model size

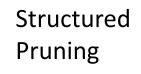


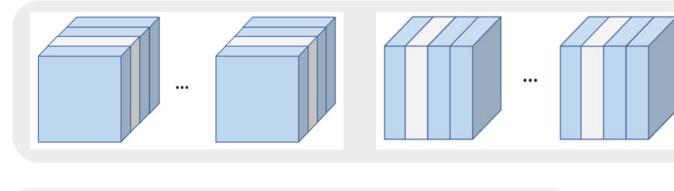
Ref: https://epochai.org/blog/trends-in-gpuprice-performance

Compression Techniques

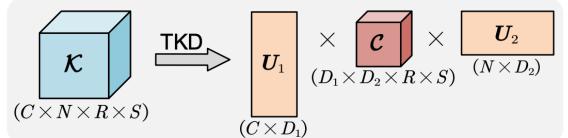
Unstructured Pruning





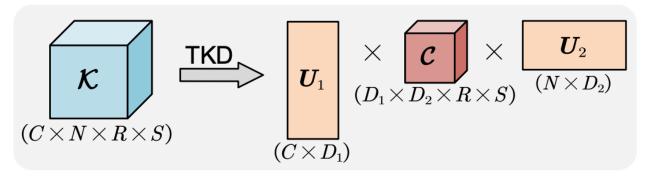


Tensor Decomposition



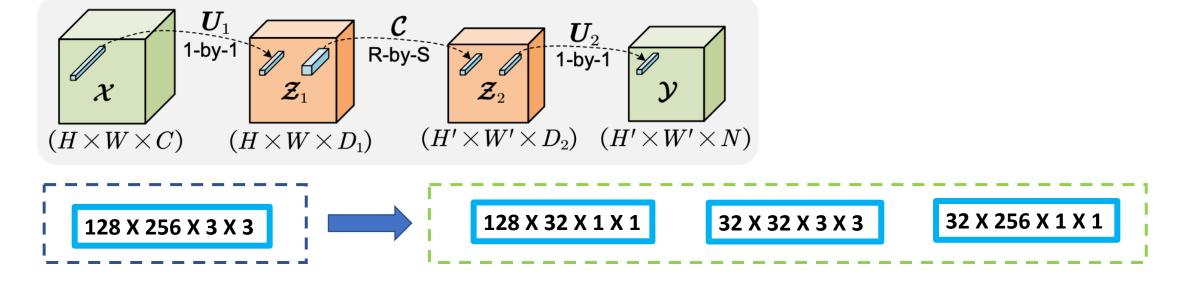
Tucker Decomposition (TKD)

> Original kernel is decomposed into three kernels:



> Tucker-format convolution (The original convolution is transformed to three small convolutions):

- Avoid complex data structure
- Able to keep the spatial information
- Adjust D1 and D2 to control the entire computational cost under a target budget



Discrepancy in Practice

01

Hard to train TKD compressed models

02

Lack of softwareaware TKD convolution algorithms for CNN acceleration

03

Lack of performancedriven frameworks for highly efficient and accurate CNN inference on GPUs

Optimized Training

> Challenges for training tucker-format models:

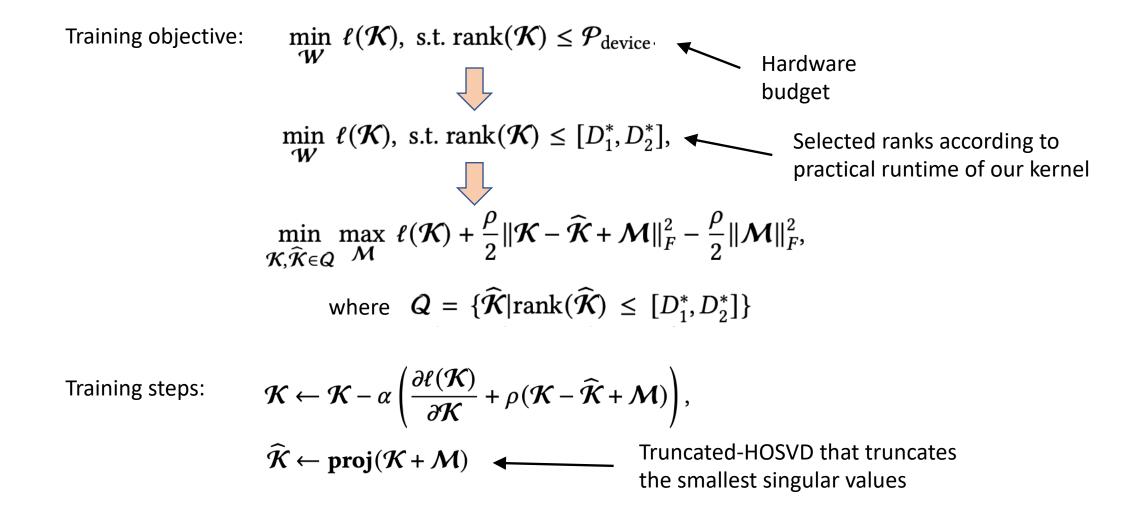
- Directly training Tucker-format models from scratch
 - Limited capacity -> accuracy degradation
- Initializing Tucker-format models from uncompressed models
 - Approximation error -> accuracy degradation

- > Why Alternating Direction Method of Multipliers (ADMM)?
- Impose low-rankness corresponding to hardware performance
- Significantly preserve task accuracy

Accuracy comparison between directly training and our ADMM-based compression for ResNet-20 on CIFAR-10:

Method	Top-1 (%)	FLOPs ↓
Baseline	91.25	N/A
Direct Compression	87.41	60%
ADMM-based	91.02	60%

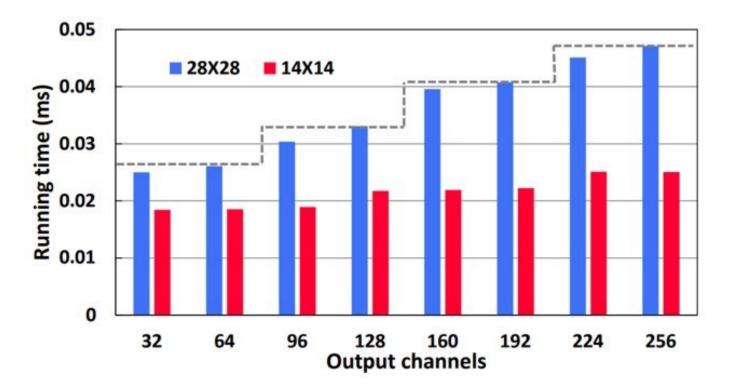
Optimized Training(ADMM-based Training)



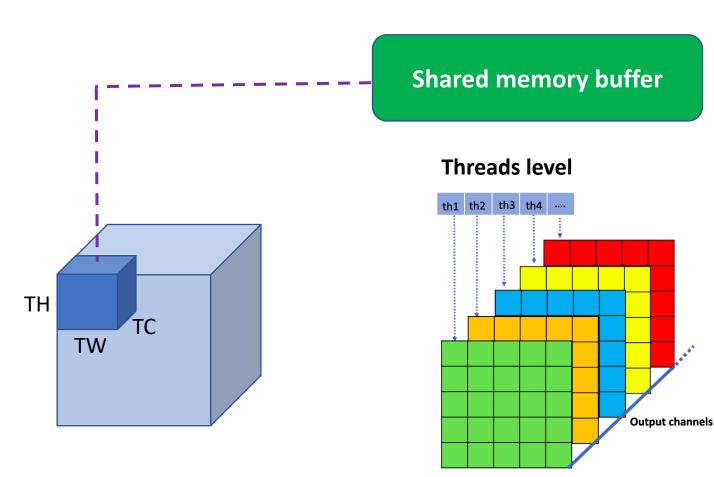
TDC: Convolution Kernel Design

Hard to translate flops reduction to actual performance improvement.

- Irregular convolution shape.
- Compute resource under-utilization.

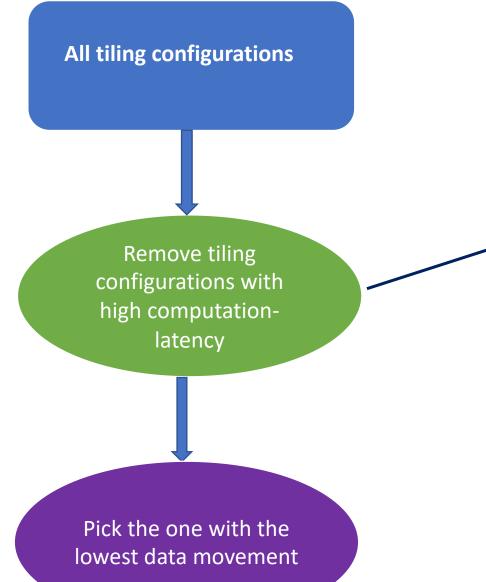


TDC: Convolution Kernel Design



//Input: Input tensor X, Conv kernel $\mathcal K$ //Output: Output tensor **y** shared input_tile[TC][(TH+R-1)*(TW+S-1)] float temp_result[TH][TW], kernel[R][S] unsigned int tile_tc_id = blockId / (H/TH * W/TW) **unsigned int** tile_id = blockId%(H/TH * W/TW) **unsigned int** tile_h_id = tile_id / (W/TW) **unsigned int** tile_w_id = tile_id %(W/TW) **unsigned** int output_n = threadIdx.x //copy tiled input tensor from global to shared $copy(input_tile, X)$ syncthreads () // synchronize all threads in a thread block for c = 0 to TC: copy(kernel, \mathcal{K} , n, c+tile_tc_id *TC) **for** (v,h,w) in (input_tile): for r = 0 to R for s = 0 to S y out = h - rx out = w - sif y_out<0 or x_out< 0 or y_out>TH or x_out>TW: continue result = $v \star kernel[r][s]$ temp_result[y_out*TW+x_out] += result // Write the output back to memory for th to TH: for tw to TW: $y = tile_id / (W/TW) * TH + th$ $x = tile_id \% (W/TW) * TW + tw$ atomicAdd(Y[H*W*N+y*W*N+x*N+n], temp_result[th*TW+tw])

Analytical Modeling



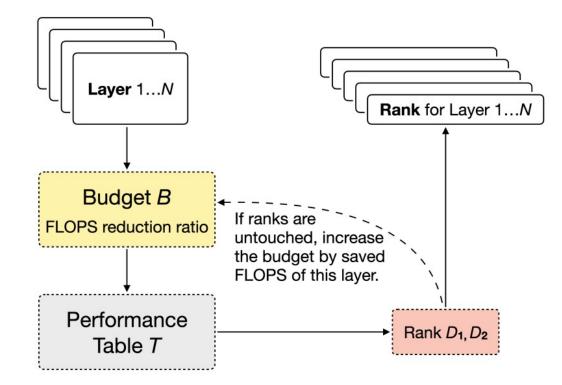
- $num_blks = H/TH \times W/TW \times C/TC$
- waves = ceil ((max_ths × occupancy)/(num_blks × blk_dim))
- blks_wave = (max_ths × occupancy)/blk_dim
- $flops_blk = 2 \times TH \times TW \times TC \times N$
- *f* lops_wave = blks_wave × *f* lops_blk
- time_wave = flops_wave/(comp_thr × occupancy)
- estimated_time = time_wave × waves

Hardware-aware Rank Determination

> Importance of rank D1 and D2:

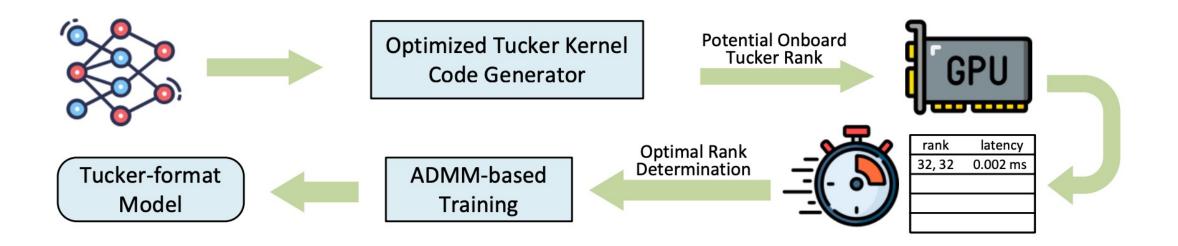
- Task accuracy
- Practical speedup
- Overall computational cost

> Proposed rank search strategy:



TDC Framework

> Overview of our TDC framework for generating TKD-compressed CNN models with highperformance inference code on GPUs:



Experiments

Accuracy table

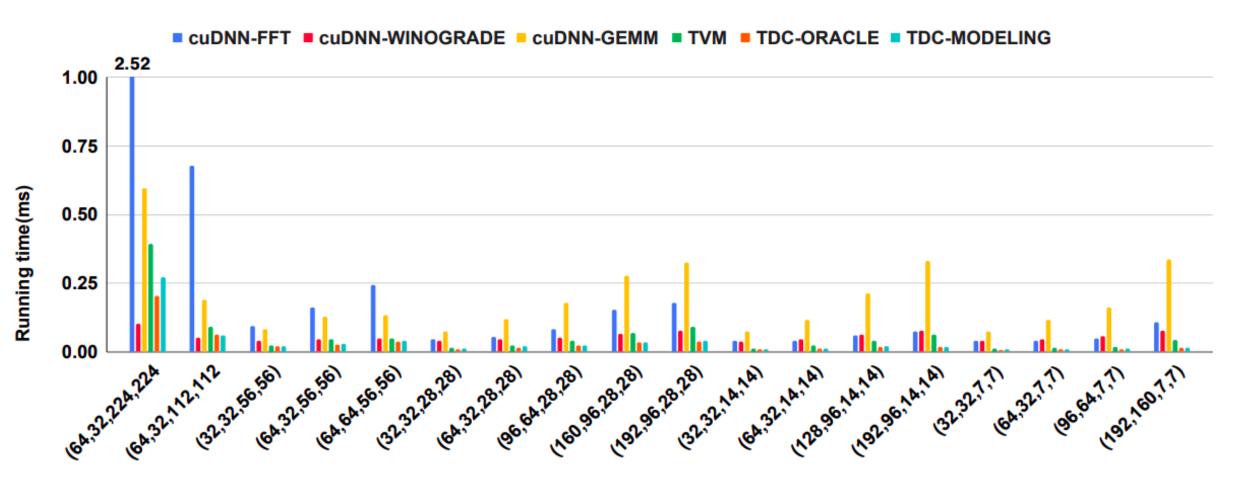
ân	Model	Compression Method	Top-1/Drop (%)	FLOPs↓
ResNet-18	Original [14]	No compr.	69.75/-0.00	N/A
	FPGM [16]	Pruning	68.41/-1.34	42%
	DSA [27]	Pruning	68.61/-1.14	40%
	SCOP [37]	Pruning	68.62/-1.13	45%
	TRP [40]	MD	65.51/-4.24	60%
	Stable [33]	CPD	69.06/-0.69	65%
	Opt. TT [42]	TTD	69.29/-0.46	60%
	Std. TKD [19]	TKD	66.65/-3.10	60%
	MUSCO [13]	TKD	69.28/-0.47	58%
	TDC	TKD	69.70/-0.05	63%
ResNet-50	Original [14]	No compr.	76.13/-0.00	N/A
	FPGM [16]	Pruning	75.59/-0.54	42%
	HRank [24]	Pruning	74.98/-1.15	44%
	TDC	TKD	77.46/+1.33	40%
	Stable [33]	CPD	74.66/-1.47	60%
	TDC	TKD	76.42/+0.29	60%
VGG-16	Original [14]	No compr.	71.59/-0.00	N/A
	CC [22]	MD	68.81/-2.78	50%
	TDC	TKD	71.62/+0.03	80%
DN-1	Original [14]	No compr.	74.43/-0.00	N/A
	TDC	TKD	76.33/+1.90	10%
DN-2	Original [14]	No compr.	76.88/-0.00	N/A
D	TDC	TKD	76.92/+0.04	10%

Accuracy summary

- 0.05% accuracy loss on Resnet-18
- 0.29% accuracy increment on Resnet-50
- 0.03% accuracy increment on Vgg-16
- 1.90% accuracy increment on Densenet-121
- 0.04% accuracy increment on Densenet-201

Experiments

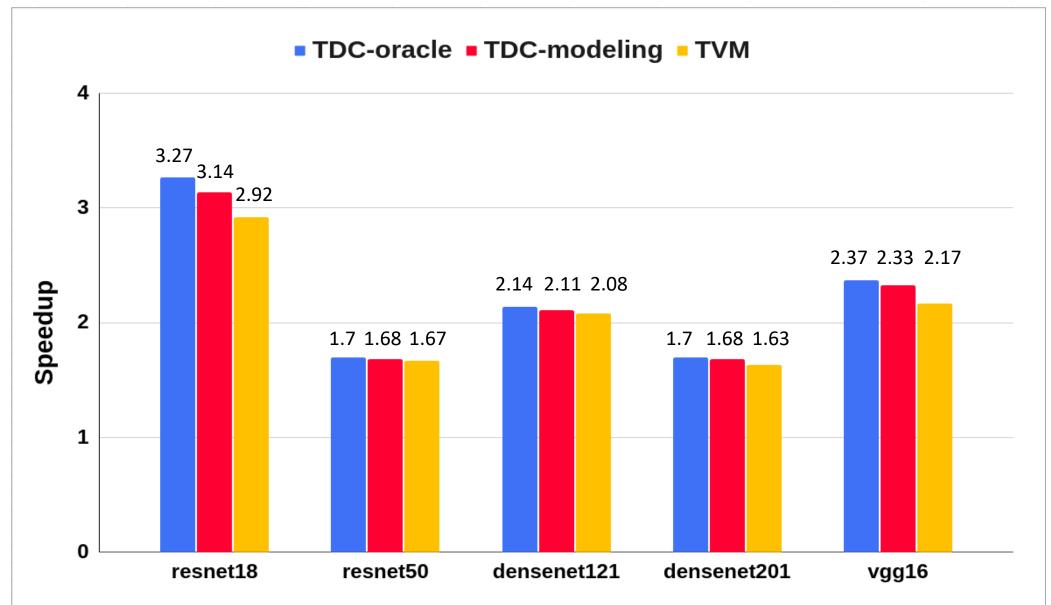
Layer-wise TDC kernel performance evaluation(On A100)



Convolution shape(C, N, H, W)

Experiments

End2end speedup comparison(On A100)



Thank you! Any questions are welcome

Contacts: Lizhi Xiang: u0814474@umail.utah.edu Yinmiao: miao.yin@rutgers.edu

