
TDC: Towards Extremely Efficient CNNs on GPUs via
Hardware-Aware Tucker Decomposition

Lizhi Xiang, Miao Yin, Chengming Zhang, Aravind
Sukumaran-Rajam, P. Sadayappan, Bo Yuan, Dingwen Tao

AI is
Everywhere

DNN Model Trend vs GPU Development

> The development of GPU is significantly behind the
expanding speed of DNN model size

Ref: https://epochai.org/blog/trends-in-gpu-
price-performance

Ref: https://www.researchgate.net/publication/349044689_Fre
ely_scalable_and_reconfigurable_optical_hardware_for_deep_l
earning

Compression Techniques

Unstructured
Pruning

Structured
Pruning

Tensor
Decomposition

Tucker Decomposition (TKD)
> Original kernel is decomposed into three kernels:

> Tucker-format convolution (The original convolution is
transformed to three small convolutions):

• Avoid complex data structure
• Able to keep the spatial information
• Adjust D1 and D2 to control the

entire computational cost under a
target budget

128 X 256 X 3 X 3 128 X 32 X 1 X 1 32 X 32 X 3 X 3 32 X 256 X 1 X 1

Discrepancy in Practice

Hard to train TKD
compressed models

01
Lack of software-
aware TKD
convolution
algorithms for CNN
acceleration

02
Lack of performance-
driven frameworks
for highly efficient
and accurate CNN
inference on GPUs

03

Optimized Training

> Why Alternating Direction Method
of Multipliers (ADMM)?
• Impose low-rankness corresponding to

hardware performance
• Significantly preserve task accuracy

Accuracy comparison between directly training and our
ADMM-based compression for ResNet-20 on CIFAR-10:

> Challenges for training tucker-format models:
• Directly training Tucker-format models from scratch

• Limited capacity -> accuracy degradation
• Initializing Tucker-format models from uncompressed models

• Approximation error -> accuracy degradation

Training objective:

where

Hardware
budget

Selected ranks according to
practical runtime of our kernel

Training steps:

Truncated-HOSVD that truncates
the smallest singular values

Optimized Training(ADMM-based Training)

TDC: Convolution Kernel Design

Hard to translate flops reduction to
actual performance improvement.

• Irregular convolution shape.

• Compute resource under-utilization.

TDC: Convolution Kernel Design

Shared memory buffer

Threads level

TH

TW
TC

Analytical Modeling

• 𝑛𝑢𝑚_𝑏𝑙𝑘𝑠 = 𝐻/𝑇𝐻 × 𝑊/𝑇𝑊 × 𝐶/𝑇𝐶
• 𝑤𝑎𝑣𝑒𝑠 = 𝑐𝑒𝑖𝑙 ((𝑚𝑎𝑥_𝑡ℎ𝑠 × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)/(𝑛𝑢𝑚_𝑏𝑙𝑘𝑠 × 𝑏𝑙𝑘_𝑑𝑖𝑚))

• 𝑏𝑙𝑘𝑠_𝑤𝑎𝑣𝑒 = (𝑚𝑎𝑥_𝑡ℎ𝑠 × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)/𝑏𝑙𝑘_𝑑𝑖𝑚
• 𝑓𝑙𝑜𝑝𝑠_𝑏𝑙𝑘 = 2 ×𝑇𝐻 ×𝑇𝑊 ×𝑇𝐶 × 𝑁
• 𝑓 𝑙𝑜𝑝𝑠_𝑤𝑎𝑣𝑒 = 𝑏𝑙𝑘𝑠_𝑤𝑎𝑣𝑒 × 𝑓 𝑙𝑜𝑝𝑠_𝑏𝑙𝑘
• 𝑡𝑖𝑚𝑒_𝑤𝑎𝑣𝑒 = 𝑓𝑙𝑜𝑝𝑠_𝑤𝑎𝑣𝑒/(𝑐𝑜𝑚𝑝_𝑡ℎ𝑟 × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)

• 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒_𝑤𝑎𝑣𝑒 × 𝑤𝑎𝑣𝑒𝑠

Remove tiling
configurations with
high computation-

latency

All tiling configurations

11

Pick the one with the
lowest data movement

Hardware-aware Rank Determination

> Proposed rank search strategy:> Importance of rank D1 and D2:

• Task accuracy
• Practical speedup
• Overall computational cost

TDC Framework

> Overview of our TDC framework for generating TKD-compressed CNN models with high-
performance inference code on GPUs:

Experiments

• 0.05% accuracy loss on Resnet-18

• 0.29% accuracy increment on Resnet-50

• 0.03% accuracy increment on Vgg-16

• 1.90% accuracy increment on Densenet-121

• 0.04% accuracy increment on Densenet-201

Accuracy summary

Accuracy table

Experiments
Layer-wise TDC kernel performance evaluation(On A100)

Experiments
End2end speedup comparison(On A100)

3.27
3.14

2.92

1.7 1.68 1.67

2.14 2.11 2.08

1.7 1.68 1.63

2.37 2.33 2.17

Thank you!
Any questions are welcome
Contacts: Lizhi Xiang: u0814474@umail.utah.edu

Yinmiao: miao.yin@rutgers.edu

