
Structural Mining of
Molecular Biology Data
A Graph-Based Tool for Discovering and Analyzing
Biological Patterns in Structural Databases

In recent years, there has been an explo-
sive amount of molecular biology infor-

mation obtained and deposited in various
databases. Identifying and interpreting in-
teresting patterns from this massive
amount of information has become an es-
sential component in directing further
molecular biology research. The sizes of
these data sets are too large for effective
analysis by humans; they require auto-
mated methods of sequence analysis and
pattern discovery. Data mining algo-
rithms that can find biologically impor-
tant patterns in these large databases, and
that can do so in polynomial running time,
are in great demand.

In response to this problem, a number
of researchers have developed techniques
for discovering patterns in databases. Al-
though much of the molecular biology
data collected today has an explicit or im-
plicit structural component, few discov-
ery systems handle this type of data [10].
One method for discovering knowledge in
structural data is the identification of
common substructures, or subgraphs,
within the data. Once identified, these
substructures can be used to simplify the
data by replacing instances of the sub-
structure with a pointer to the newly dis-
covered concept. The discovered
substructure concepts allow abstraction
over detailed structure in the original data
and provide new, relevant attributes for
interpreting the data.

In this article, we describe the SUBDUE

system that discovers interesting sub-
structures in structural data. SUBDUE dis-
covers substructures that compress the
original database and represent interest-
ing structural concepts in the data. By
compressing previously discovered sub-
structures in the data, multiple passes of
SUBDUE produce a hierarchical descrip-
tion of the structural regularities in the
data. The capabilities of SUBDUE are used

here to discover patterns in protein and
DNA databases.

Related Work
A variety of approaches to unsuper-

vised discovery using structural data have
been proposed (e.g., [6, 20]). Many of
these approaches use a knowledge base of
concepts to classify the structural data.
These systems perform concept learning
over examples and categorization of ob-
served data. While these methods repre-
sent examples as distinct objects and
process individual objects one at a time,
our method stores the entire database
(with embedded objects) as one graph and
processes the graph as a whole.

There are several applications of pat-
tern search in the secondary structure of
proteins. Mitchell et al. [14] use an algo-
r i thm that ident i f ies subgraph
isomorphism in protein structure by
searching for an exact match of a specific
pattern in a database. The approach of
Grindley et al. [12] finds maximally com-
mon substructures between two proteins
and can therefore highlight areas of struc-
tural overlap between proteins. In Koch et
al. [13], a graph is used to represent pro-
tein helices and strands to search for pro-
teins that are distantly related in structure.
Most of these studies focus on identifying
predefined patterns in a group of proteins.

Molecular biologists also have several
computational tools available for the anal-
ysis of DNA sequences. Pattern matching
approaches scan sequences for instances
of a given pattern [1, 15, 18]. Gene recog-
nition approaches identify potential genes
in the sequence data [3, 17]. However, the
goal of pattern discovery is quite different
from the previous goals of pattern match-
ing. Our goal is to find patterns that occur
often in the input sequences, with no bias
toward already-known patterns. As such,
pattern discovery methods offer the po-
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tential to find unexpected patterns that
may be biologically important.

Unsupervised Concept
Discovery Using SUBDUE

SUBDUE discovers substructures that
compress the original data and represent
structural concepts in the data. The sub-
structure discovery system represents
structural data as a labeled graph. Objects
in the data map to vertices or small
subgraphs in the graph, and relationships
between objects map to directed or undi-
rected edges in the graph. A substructure
is a connected subgraph within the graphi-
cal representation. An instance of a sub-
structure in an input graph is a set of
vertices and edges from the input graph
that match, graph theoretically, to the
graphical representation of the substruc-
ture. This graphical representation serves
as input to the substructure discovery sys-
tem. Figure 1 shows a geometric example
of a database. The graph representation of
the discovered substructure is included (a

triangle on top of a square) and one of the
four instances of the substructure is high-
lighted in the picture.

The substructure discovery algorithm
used by SUBDUE is a beam search.
SUBDUE’s discovery algorithm is shown in
Fig. 2. The first step of the algorithm is to
initialize ParentList (containing substruc-
tures to be expanded), ChildList (contain-
ing substructures that have been
expanded), and BestList (containing the
highest-valued substructures SUBDUE has
found so far) to be empty, and to set
ProcessedSubs (the number of substruc-
tures that have been expanded so far) to 0.
Each of the lists is a linked list of substruc-
tures, sorted in nonincreasing order by
substructure value. For each unique ver-
tex label, a substructure is assembled
whose definition is a vertex with that la-
bel, and whose instances are all of the ver-
tices in G with that label. Each of these
substructures is inserted into ParentList.

The inner while loop is the core of the
algorithm. Each substructure in turn is re-

moved from the head of ParentList, and
each of its instances is extended in all pos-
sible ways. This is done by adding a new
edge and vertex in G to the instance, or
just adding a new edge between two verti-
ces, if both of the vertices are already part
of the instance. The first instance of each
unique expansion becomes a definition
for a new child substructure, and all of the
child instances that were expanded in the
same way (i.e., by adding the same new
edge or new edge with new vertex to the
same old vertex) become instances of that
child substructure. In addition, child in-
stances that were generated by different
expansions, and that match the child sub-
structure definition within the matchcost
threshold, also become instances of the
child substructure.

Each child is then evaluated using the
Minimum Description Length (MDL, see
below) heuristic and inserted in ChildList
in order by the heuristic value. The beam
width of the search is enforced by control-
ling the length of ChildList: after inserting
a new child into ChildList, if the length of
ChildList exceeds the BeamWidth, the
substructure at the end of the list is de-
stroyed. The parent substructure is in-
serted in BestList; the same pruning
mechanism is used to limit the length of
BestList to be no greater than MaxBest.
When ParentList has been emptied,
ParentList and ChildList are switched, so
that ParentList now holds the next genera-
tion of substructures to be expanded.
SUBDUE’s running time is constrained to
be polynomial by the BeamWidth and
Limit (a user-defined limit on the number
of substructures to process) parameters, as
well as by computational constraints on
the inexact graph match algorithm. Com-
putation can be further constrained by en-
abling pruning, which discards child
substructures whose heuristic values are
not greater than the value of the parent.

Once a substructure is discovered, the
substructure is used to simplify the data by
replacing instances of the substructure
with a pointer to the newly discovered
substructure. The discovered substruc-
tures allow abstraction over detailed
structures in the original data. Iteration of
the substructure discovery and replace-
ment process constructs a hierarchical de-
scription of the structural data in terms of
the discovered substructures. This hierar-
chy provides varying levels of interpreta-
tion that can be accessed based on the
specific goals of the data analysis.
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1. Example substructure in graph form.

SUBDUE( Graph, BeamWidth, MaxBestm MaxSubSize, Limit )
Create a substructure from each unique vertex label and its sigle-vertex

instances; insert the resulting substructures in ParentList
Processed Subs < = Limit ParentList is not empty

ParentList is not empty
Parent = RemovedHead( ParentList )
Extend each instance of Parent in all possible ways
Group the extended instances into Child substructures

child
SizeOf( Child ) <= MaxSubSize

Evaluate the Child
Insert Child in ChildList in order by value

Length( ChildList ) > Beamwidth
Destroy the substructure at the end of ChildList

ProcessedSubs = ProcessedSubs + 1
Insert Parent in BestList in order by value
if Length( BestList ) > MaxBest

Destroy the substructure at the end of BestList
Switch ParentList and ChildList

BestList

while and do
while do

foreach do
if then

if then

then

return

2. SUBDUE’s discovery algorithm.



The MDL Heuristic
SUBDUE’s heuristic for evaluating sub-

structures is based on the MDL principle,
which states that the best theory to de-
scribe a set of data is that theory which
minimizes the description length of the
entire data set [16]. Description length
calculation is based on the model of a lo-
cal computer, the encoder, sending a de-
scription of a concept to a remote
computer, the decoder. The local com-
puter must encode the concept as a string
of bits that can be sent to the remote com-
puter, which decodes the bit string to re-
store the original concept. The concept’s
description length is the number of bits in
the bit string. The MDL principle has been
used for decision tree induction, pattern
discovery in biosequences, image pro-
cessing, concept learning from relational
data, and learning models of nonhomoge-
neous engineering domains.

SUBDUE’s implementation of the MDL
principle is in the context of graph com-
pression using a substructure. Here, the
best substructure in a graph is one that
minimizes DL S DL G S( ) ( | )+ , where S is
the discovered substructure, G is the input
graph, DL S( ) is the number of bits re-
quired to encode the discovered substruc-
ture, and DL G S( | ) is the number of bits
required to encode the input graph G after
it has been compressed using substructure
S. Cook and Holder [7] describe the exact
computation of graph description length
used in SUBDUE.

Inexact Graph Match
Because instances of a substructure

can appear in different forms throughout
the database, an inexact graph match is
used to identify substructure instances [8].
In this inexact match approach, each dis-
tortion of a graph is assigned a cost. A dis-
tortion is described in terms of basic
transformations such as deletion, inser-
tion, and substitution of vertices and
edges. The distortion costs can be deter-
mined by the user to bias the match for or
against particular types of distortions.

Given graphs g1 with n vertices and g2
with m vertices, m n≥ , the complexity of
the full inexact graph match is O n m( )+1 .
Because this routine is used heavily
throughout the discovery process, the
complexity of the algorithm can signifi-
cantly degrade the performance of the
system.

To improve the performance of the in-
exact graph match algorithm, we search
through the space of possible partial

mappings using a uniform cost search.
The cost from the root of the tree to a given
node is calculated as the cost of all of the
distortions corresponding to the partial
mapping for that node. Vertices from the
matched graphs are considered in order
from the most heavily connected vertex to
the least connected. Because uniform cost
search guarantees an optimal solution, the
search ends as soon as the first complete
mapping is found.

In addition, the user can limit the num-
ber of search nodes considered by the
branch-and-bound procedure (defined as
a function of the input graph sizes). Once
the number of nodes expanded in the
search tree reaches the defined limit, the
search resorts to hill climbing using the
cost of the mapping so far as the measure
for choosing the best node at a given level.
A complete description of the polynomial
inexact graph match used by SUBDUE is
provided by Cook and Holder [7].

Employing computational constraints
such as a bound on the number of sub-
structures considered (L) and the number
of partial mappings considered during an
inexact graph match (g), SUBDUE is con-
strained to run in polynomial time. The
worst-case run time of the system is the
product of the number of generated sub-
structures, the number of instances of
each substructure, and the number of par-
tial mappings considered during graph
match. This expression is equal to

( )i v i v L g
i

L

=∑ − − − −
1

1 1 1* (( ) ( ))) * ( ( ) *

where v represents the number of vertices
in the input graph. The derivation of this
expression is provided in the literature [8].

Application of Unsupervised
SUBDUE to Molecular Biology

The SUBDUE discovery system has
been applied to databases in a number of
domains. With each new application area,
capabilities are identified that need to be
added to our system. We have success-
fully applied SUBDUE with and without do-
main knowledge to databases in domains
including image analysis, CAD circuit

analysis, Chinese character databases,
program source code, and chemical reac-
tion chains [8, 9].

More recently, we have applied SUB-

DUE to several large databases that contain
data whose interpretation will be benefi-
cial to scientists and that reveal capabili-
ties that need to be added to the discovery
system. First, we have applied SUBDUE to
the July 1997 release of the Brookhaven
Protein Data Bank (PDB). The goal was to
identify structural patterns in primary,
secondary, and tertiary structure of three
categories of proteins: hemoglobin,
myoglobin, and ribonuclease A. These
patterns would act as signatures for the
protein category, distinguishing proteins
in the category from other types of pro-
teins and providing a mechanism for clas-
sifying unknown proteins.

We convert primary structure informa-
tion from the SEQRES (sequence of resi-
dues) records of each PDB file by
representing each amino acid in the se-
quence as a graph vertex. The vertex num-
bers increase in the sequence order from
N-terminus to C-terminus, and the vertex
label is the name of the amino acid. An
edge labeled “bond” is added between ad-
jacent amino acids in a sequence.
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Secondary structure is extracted by
listing occurrences of helices and strands
along the primary sequence. Each helix is
represented by a graph vertex labeled “h”
followed by the helix type and length.
Each strand is represented by a graph ver-
tex labeled “s” followed by the orientation
of the strand and the length of the strand.
Edges between two consecutive vertices
are labeled “sh” if they belong to the same
PDB file. The three-dimensional (3-D)
features of the protein are represented us-
ing the X, Y, and Z coordinates of each
atom in the protein. Each amino acid
α-carbon is represented as a graph vertex.
If the distance between two α-carbons is
greater than 6 Å, the information is dis-
carded. Otherwise, edges between two
α-carbons are created and labeled as “vs”
(very short, distance ≤ 4 Å), or “s” (short).
Empirical testing revealed that 4 Å cap-
tures relationships between all consecu-
tive residues along with a few other alpha
carbons in close contact. Based on experi-
ments gained from MMR structural stud-
ies, 6 Å was found to be an adequate
threshold to capture relationships be-
tween all other alpha carbons that indicate
spatial proximity.

SUBDUE indeed found such a pattern
for each protein category. Using pri-
mary structure information, patterns
were identified that were unique to each
class of protein but occurred in 63 of the

65 hemoglobin cases, 67 of the 103
myoglobin cases, and 59 of the 68
ribonuclease A cases.

Figure 3 summarizes one of the find-
ings for hemoglobin secondary structure,
presenting an overall view of the protein,
the portion of the protein where the SUB-

DUE-discovered pattern exists, and the
schematic views of the best pattern. The
patterns discovered for each sample cate-
gory covered a majority of the proteins in
that category (33 of the 50 analyzed he-
moglobin proteins , 67 of the 89
myoglobin proteins, and 35 of the 52
ribonuclease A proteins contained the dis-
covered patterns). Detailed analysis of
those that do not have the pattern indicates
that there are many possible reasons. The
structure of a protein is affected by many
factors. The accuracy of the structure is
affected by the quality of the protein sam-
ple, experimental conditions, and human
error. Discrepancies may also be due to
physiological and biochemical reasons.
Structure of the same protein molecule
may differ from one species to another.
The protein may also be defective. For
example, sickle-cell anemia is the classic
example of a genetic hemoglobin dis-
ease. The defective protein does not have
the right structure to perform its normal
function.

The secondary structural patterns for
the hemoglobin, myoglobin, and
ribonuclease A proteins were mapped
back into the PDB files. When mapped
back, one discovered hemoglobin pattern
was found to belong to the β chains and
the other belonged to the α chains of a he-
moglobin molecule (a hemoglobin molec-
ular contains two α and two β chains). The
discovered myoglobin pattern appears in
a majority of the myoglobin proteins in
the data set. Finally, upon mapping back
discovered ribonuclease A patterns, we
observed that several ribonuclease S pro-
teins have the same patterns as those in
ribonuclease A proteins. This is consistent
with the fact that ribonuclease S is a com-
plex consisting of two fragments
(S-pept ide and S-protein) of the
ribonuclease A proteins. The pattern in
the ribonuclease S comes from the
S-protein fragment.

Dr. Steve Sprang, a molecular biolo-
gist at the University of Texas Southwest-
ern Medical Center, evaluated the patterns
discovered by the SUBDUE system. This
scientist was asked to review the original
database and the discovered substructures
and determine if the discovered concepts

were indicative of the data and interesting
discoveries. Dr. Sprang indicated that
SUBDUE did find an interesting pattern in
the data that was previously unknown and
suggests new information about the mi-
cro-evolution of such proteins in mam-
mals [19].

The secondary structure patterns dis-
covered are also distinct to each protein
category. The global data set is searched
to identify the possible existence of the
discovered pattern from each category.
Results indicate that there is no exact
match of the best patterns of one category
in another category of proteins.

Application of the unsupervised and
supervised learning algorithms in SUBDUE

is continuing in the domains of biochem-
istry, geology, program source code, and
aviation data. SUBDUE thus brings unique
capabilities to the unsupervised analysis
of data that is structural in nature.

Supervised Concept
Learning Using SUBDUE

We have extended SUBDUE to act not
only as an unsupervised discovery system
but also to perform supervised
graph-based relational concept learning.
Few general-purpose learning methods
use a formal graph representation for
knowledge, perhaps because of the arbi-
trary expressiveness of a graph and the in-
herent NP-hardness of typical learning
routines. Structural learning methods cus-
tomized for biological and chemical do-
mains have been successful due to the
natural graphical representation of this
data, but no domain-independent concept
learning systems use a graph representa-
tion. Therefore, we have added a concept
learning capability to the SUBDUE

graph-based discovery system.
The key to adding concept-learning

capabilities to SUBDUE is to create a graph
containing instances for each class to be
learned. If the system needs to learn a con-
cept that describes examples labeled
“positive” and excludes examples labeled
“negative,” then the SUBDUE concept
learner (which we will refer to as
SUBDUECL) accepts both a positive and a
negative graph and evaluates substruc-
tures based on their compression of the
positive graph and lack of compression of
the negative graph. SUBDUECL searches
for the substructure S, minimizing the cost
defined as
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value G G S DL G S DL S

DL G DL G S

p n p

n n

( , , ) ( , ) ( )

( ) ( , )

= +

+ −

where DL G S( , ) is the description length,
according to the MDL encoding, of a
graph G after being compressed using
substructure S, and DL G( ) is the descrip-
tion length of a graph G. This cost repre-
sents the information needed to represent
the positive graph G p using the substruc-
ture S plus the information needed to rep-
resent the portion of the negative graphGn
that was compressed using substructure S.
Therefore, SUBDUECL prefers substruc-
tures that compress the positive graph, but
not the negative graph.

A challenge in adding concept learning
capabilities to SUBDUE is the discovery sys-
tem’s bias toward finding only one good
substructure in the entire input graph. In-
ductive logic programming (ILP) systems
may offer an advantage in structural learn-
ing over SUBDUE because they typically
find theories composed of many rules [4],
whereas SUBDUE finds essentially one rule.
The iterative, hierarchical capabilities of
SUBDUE somewhat address this problem,
but the substructures found in later itera-
tions are typically defined in terms of pre-
viously discovered substructures and are
therefore only specializations of the ear-
lier, more general rule. To avoid this ten-
dency, SU B D U ECL discards any
substructure that contains substructures
discovered during previous iterations.

SUBDUECL iterates until no substructure
can be found that compresses the positive
graph more than the negative graph.

Application of Supervised
SUBDUE to Molecular Biology

For over a decade, the molecular biol-
ogy research community has been in-
volved in a worldwide effort to obtain the
entire genomic DNA sequences of several
organisms. The most well known of these
projects is the Human Genome Project.
As part of this project, genomes for a
number of organisms have been com-
pletely sequenced. We demonstrate how
SUBDUECL can be used to find biologi-
cally important patterns in the DNA se-
quence of baker’s yeast, Saccharomyces
cerevisiae.

DNA sequence patterns can be classi-
fied by the regular languages they describe.
Although it is possible to discover simple
patterns in linear time, allowing don’t-care
and arbitrarily repeating characters in-
creases the complexity of the algorithm.

However, the general pattern classes are
more biologically common and are of
greater interest to researchers. Our goal is
to determine if SUBDUE can automatically
find such patterns in DNA data.

The data for our experiments come
from a recent study by Brazma et al. [2].
One part of their study used windows of
sequences that occur immediately up-
stream of yeast gene start sites. These
yeast genes were clustered into groups
based on similar gene expression profiles,
then discretized into seven time intervals
and either three or five intervals based on
gene expression rate. Each cluster con-
tains genes that are likely to be involved in
related cellular processes, and perhaps
even regulated by similar or identical
mechanisms.

To allow don’t-care positions in the
data representation and thus the discov-
ered patterns, we use a “backbone” graph
representation shown in Fig. 4. This rep-
resentation separates the base names from
the vertices representing the bases. The
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name name name name name

4. Backbone graph representation.

Table 1. Best Patterns found by SUBDUE in Cluster cr4.111101.77

Pattern N+ – TRANSFAC exact matches

ATCCAT 16 12 MOUSE$AP2_02, HS$GRH_05, RAT$GRH_16, HCMV$IE1_22, RICE$GL51_02, HS$BCR_04,
HS$BCR_04, RAT$SPI_01, HS$GBP_02, HS$EG_05, MOUSE$GSR_01, MOUSE$GSR_03

GGGA.G.A 19 16 MOUSE$HOX23_01, HS$CREBP1_01, RABBIT$UG_18, HS$ALDA_02, HS$APOB_14, MOUSE$PCP2_02

TCCCT 65 35 Y$G3PDH_01

AAGGG 95 37 CAMV$35SR_01, RAT$ALBU_18, AD$E2AE1_11, AD$E2AE1_15, RAT$EAI_11, RAT$BF_03,
DROME$FTZ_03, MOUSE$BMG_06, RAT$GLU_01, HS$GHA_01, HS$H3_01, HS$H3_02,
DROME$HSP27_04, HS$HSP70_07, HS$HSP70_08, HS$IFNB_03, HS$IFNB_04, HS$ISG15_01,
HS$ISG15_02, HS$ISG15_03, HS$ISG15_04, HS$ISG15_05, MOUSE$M2EB_01, MOUSE$CMYC_01,
RAT$AMHC_01, HS$TF_02, MOUSE$M2AAK_01, MOUSE$IGKL_22, CAMV$35SR_04, DROOR$ADH_12,
PCF$CONS, HS$CREBP1_04, HS$CREBP1_16, HS$CREBP1_17, HS$TPO_03, DROME$EVE_26,
DROME$EVE_27, MOUSE$ADIP_02, KR$CONS_02, DROME$HB_03, DROME$KNI_01, DROME$KNI_02,
HS$GHA_08, MOUSE$IGH_47, HS$GAPDH_01, MOUSE$S16H_02, HPV$HPV16_12,
CHICK$APOVLDL_07, HS$ADH3_01, MOUSE$TTPA_06,  HS$DPOLA_01, CHICK$GATA1_05,
HS$EG_02, HS$TF_10, HS$PGK_05, RABBIT$UG_19,  EBV$BZLF1_06, MOUSE$BMG_10,
MOUSE$CD4_02, HS$GFER_01, RAT$OMP_06, RAT$OCNC_01, HS$APOB_12, HS$APOB_14,
MOUSE$MB1_02, MOUSE$M2AAD_01, AD$E2AE1_24, RAT$BMHC_06, MOUSE$LB1_01, RAT$GRH_23,
HS$PR264_04, DROME$SNA_01, HS$AG_15, MOUSE$RARB_01, HS$PDGF2_02

CCCT 128 76 Y$BCY_01, Y$GAL1_04, Y$X40_01, Y$CYC1_12, Y$GAL1_14, Y$G3PDH_01, Y$POX1_01, Y$DDR2_01,
Y$DDR2_02, Y$TPI_02



intention is to allow SUBDUE to represent
don’t-care bases by leaving out the
“name” edges and neighboring vertices.
Interestingly, the backbone representa-
tion mimics the actual chemical structure
of a DNA molecule, in which the DNA
bases are connected by deoxyribose sug-
ars to a linear phosphate backbone.

For the results shown in Table 1, SUB-

DUE was run using an exact match and five
iterations. The best pattern for each itera-
tion is shown in the table. For this experi-
ment, cluster cr4.111101.77, with 77
examples, was used as the positive training
set. The negative examples consist of 100
sequences randomly selected from the set
of upstream sequences not belonging to the
targeted cluster. The last column in each ta-
ble contains a list of TRANSFAC tran-
scription factor binding sites containing
substrings that exactly match the discov-
ered pattern. TRANSFAC matches are the
primary criterion used to evaluate the dis-
covered patterns. Patterns that match
TRANSFAC site substrings are more
likely to be part of binding sites themselves
and thus are more likely to be involved in
gene regulation.

All of the patterns shown in Table 1
have exact TRANSFAC matches and are

nontrivial (the smallest has four bases).
Pattern AAGGG is especially interesting
because it has the greatest number of posi-
tive instances, no exact matches to yeast
TRANSFAC entries, but 75 exact
matches to transcription factor binding
sites of other organisms. These features
indicate a strong possibility that this may
be part of an actual, as yet undiscovered,
yeast transcription factor binding site.

The results of this study demonstrate
that SUBDUECL can be used to discover
patterns in DNA sequences that may be
involved in the regulation of gene expres-
sion. Using a graph representation, pat-
terns involving don’t-care and arbitrarily
repeated characters can be learned in ad-
dition to simple patterns, all within a poly-
nomial run time.

Structural Hierarchical
Clustering Using SUBDUE

Clustering techniques provide a useful
means of gaining better understanding of
data, in many cases through revealing hi-
erarchical topologies. Clustering has been
applied in diverse fields such as analytical
chemistry, geology, biology, zoology and
archeology, and is a key component in
model fitting, hypothesis generation and

testing, data exploration, and data reduc-
tion. A simple example of hierarchical
clustering is the classification of vehicles
into groups such as cars, trucks, motorcy-
cles, tricycles, and so on, which are then
further subdivided into smaller and
smaller groups based on individual traits.

Current clustering techniques have
some intrinsic disadvantages. Statistical
and syntactic approaches have trouble ex-
pressing structural information, and neu-
ral approaches are greatly limited in
representing semantic information. De-
spite these limitations, a number of clus-
tering algorithms have demonstrated
success including Cobweb [11], Laby-
rinth [20], and AutoClass [5]. These ap-
proaches usually have the disadvantage of
being applicable only to metric data,
which excludes discrete-valued and struc-
tured databases.

Our graph-based hierarchical concep-
tual clustering algorithm uses SUBDUE to
construct a hierarchical lattice of clusters.
The substructure discovered after a single
iteration comprises a cluster. This cluster is
inserted into the classification lattice and
used to compress the input graph. The com-
pressed graph is passed again to SUBDUE to
find another substructure. This iteration al-
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lows SUBDUE to find new substructures de-
fined in terms of previously discovered
substructures.

Previous work suggested the use of
classification trees; however, in struc-
tured domains a strict tree is inadequate.
In these domains a lattice-like structure
may emerge instead of a tree. When sub-
structures are added to the lattice, their
parents may include other, non-root nodes
in the lattice. If a substructure is com-
posed of two of the same previously dis-
covered substructures, then there will be
two links from the parent to the child in
the lattice.

A small substructure is more general
than a large one, and it should represent a
parent node in the classification lattice for
any more specific clusters. To ensure that
a small substructure is found, during the
substructure search we modify SUBDUE to
finish an iteration when it finds a local
minima rather than the global minima
(which may be a much larger substruc-
ture). In many cases the local minima is
also the global minima, and in other cases
the larger substructure will usually be
found on a later iteration. In this process,
SUBDUE effectively searches the space of
all classification lattices.

Application of Structural Clustering
to Molecular Biology

To illustrate the clusters that SUBDUE

generates for structured data, we apply the
algorithm to a portion of a DNA data
shown in Fig. 5. In the input graph, verti-

ces represent atoms and small molecules,
and edges represent bonds. A portion of
the classification lattice generated by SUB-

DUE is shown in Fig. 6. As the figure
shows, the first level of the lattice repre-
sents small, commonly occurring sub-
structures (covering 61% of the data).
Subsequently identified clusters are based
on these smaller clusters that are com-
bined with each other or with other atoms
or molecules to form a new cluster. The
classification lattice can be used to under-
stand portions of the data that behave in
similar manners, to better understand the
database as a whole, and to predict un-
known features of data elements given
features of elements in the same cluster.

Conclusions
The structural component of molecu-

lar biology databases requires data mining
algorithms capable of handling structural
information. The SUBDUE system is spe-
cifically designed to discover concepts in
structural databases. In this article, we
have described how SUBDUE can be used
to perform unsupervised pattern discov-
ery, supervised concept learning, and
structural clustering to efficiently learn
concepts in molecular biology databases.

This comparison has identified a num-
ber of avenues for enhancements to both
types of learners. The graph-based learner

SUBDUECL would benefit from the ability
to represent recursion, which plays a cen-
tral part in many logic-based concepts.
More research is needed to identify en-
hancements to the representation that can
describe recursive structures, such as us-
ing graph grammars. We are also investi-
gating means of scaling the algorithms
using database techniques to store and in-
dex the graphs.

The results obtained in this study indi-
cate that SUBDUE is suitable for knowledge
discovery in molecular structural data-
bases. Planned future work includes in-
vestigating additional graph representa-
tions of molecular biology data, searching
for patterns in the 3-D structure of pro-
teins, and analyzing additional DNA se-
quences.
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