
Decision-Theoretic Multi-Agent Sensor Planning �Diane J. Cook, Piotr Gmytrasiewicz and Lawrence B. HolderDepartment of Computer Science EngineeringUniversity of Texas at ArlingtonEmail: fcook, piotr, holderg@cse.uta.eduAbstractThis paper describes a decision-theoretic approach to cooperative sensor planning betweenmultiple autonomous vehicles executing a military mission. For this autonomous vehicle appli-cation, intelligent cooperative reasoning must be used to select optimal vehicle viewing locationsand select optimal camera pan and tilt angles throughout the mission. Decisions are made insuch a way as to maximize the value of information gained by the sensors while maintaining ve-hicle stealth. Because the mission involves multiple vehicles, cooperation can be used to balancethe work load and to increase information gain. This paper presents the theoretical foundationsof our cooperative sensor planning research and describes the application of these techniques toDARPA's Unmanned Ground Vehicle program.1 IntroductionTraditionally, research in multi-agent planning and research in image understanding have beenpursued independently. The DARPA Unmanned Ground Vehicle (UGV) program is pulling to-gether these two technologies to autonomously execute multi-vehicle missions. Here we describeour component of DARPA's UGV program which combines decision theory, sensor planning, andmulti-agent planning with cooperation to direct and focus sensors on-board a unit of militaryvehicles.We develop two capabilities for a unit of autonomous vehicles based on these ideas of cooperativesensor planning. The �rst capability selects points along a path or in a bounded region that provideoptimal locations for vehicles to observe a speci�ed objective area. The second capability selects�Supported by DARPA contract DAAHO4-93-G-0423.1



optimal pan/tilt angles, or a �eld of view, for each vehicle's camera as it moves in formation withthe vehicle's military unit.For both of these capabilities, we pursue a decision-theoretic approach to the guidance of sensingbased on goals of the military mission. These goals include such possibly-con
icting priorities asmaximizing the expected value of information obtained, avoiding exposure of one's presence to theenemy, and balancing sensor planning and processing work between cooperating vehicles. Staticand dynamic sensor planning can be achieved in a principled manner using the decision-makingtechniques developed in the area of multiattribute utility and decision theories.In this paper, we �rst describe DARPA's Unmanned Ground Vehicle program, list the capa-bilities of the vehicles and sensors used in our project, and review the principles of multiattributedecision theory. Next, we describe our Observation Point re�nement system that selects optimalvehicle positions for observation of a speci�ed area. The following section introduces a method ofusing multi-agent planning techniques with decision theory to dynamically focus sensor attentionduring a military mission. We provide experimental evaluations of both of these contributions.Finally, we review related work to date and conclude with directions for future work.2 Sensor Planning for Unmanned Ground VehiclesThe United States armed forces continuously seek to increase soldier e�ectiveness and survivabilityin the face of increasingly lethal battle�elds. The need exists to operate in environments that arehazardous because of enemy actions, to increase survivability, to enhance continuous operation, andto expand the radius of reconnaissance / surveillance units. Unmanned semi-autonomous groundvehicles can meet these needs.The goal of DARPA's Unmanned Ground Vehicle program is to develop and demonstrate �eld-deployable semi-autonomous ground vehicles incorporating DARPA-sponsored technologies. Thecapabilities that are currently being demonstrated by these vehicles include autonomous on-roadand o�-road navigation, obstacle avoidance, path planning, formation control, target detection andrecognition, and cooperative sensor planning.A typical UGV task would be to cooperatively plan a reconnaissance, surveillance, and targetacquisition (RSTA) task in which the vehicles move in formation along a speci�ed route. At somepoint in the mission the vehicles may split up and move to pre-computed spots from which theycan maximally view a speci�ed objective area while still maintaining stealth. The vehicles would2



Figure 1: DARPA's Autonomous Vehiclethen reconvene and move in formation to the objective area.In this problem domain, planning for vehicle movement and planning for sensor movementmust be performed in harmony. One reason for this synchronization is the need to maintain 360degree security around the platoon unit formation. Maintaining this security requires the planningof sensor directions to cover the entire area surrounding the vehicles while minimizing duplicatedwork among separate vehicles.Another motivation for controlling vehicle and sensor movement together is active RSTA, orcoordinated recognition of enemy targets. Executing such a coordinated e�ort requires planningof both vehicle positions and camera angles for maximum coverage of the target while maintainingformation security. A third reason that plan generation is needed for both vehicle and sensormovement is stealth navigation through unknown terrain, and a fourth reason is that both vehicleand sensor capabilities must be considered to cooperatively compute optimal observation pointlocations for individual vehicles.Figure 2 illustrates several unit formations that may be employed throughout a mission. Atplanning time, each vehicle's sensor space is divided into individual �elds of regard and weightedto ensure complete 360 degree security around the unit formation while keeping the major focus ofattention toward the objective area. The relative amount of time allocated to each �eld of regardis shown.The camera suite onboard the vehicles can be controlled in terms of pan, tilt, zoom, and focus.All of these parameters are controlled by our systems as described in the remainder of this paper.3
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Figure 2: Vehicle Fields of Regard
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3 Decision-Theoretic FoundationsOur approach to intelligent sensing behavior during a military scouting mission is based on theutility and decision theories. Our basic premise is that the guidance of sensing behavior be basedon the rational trade-o� between two con
icting priorities (or attributes) of a military scoutingmission: to maximize the expected value of information obtained, and to avoid exposing one'spresence to the enemy. One of the basic results in the multiattribute utility theory states that ifthe attributes are utility-independent then the global utility function is a multiplicative functionover the attributes considered [12]. Thus, for our case of a military scouting mission, the globalfunction that the agent is attempting to maximize, U(A;S; P ), of scanning an area A using a sensorS from the position P , can be postulated to have the following form:U(A;S; P ) = k1UScan(A;S; P ) + k2UStealth(P; S) + k1k2UScan(A;S; P )UStealth(P; S); (1)where UScan(A;S; P ) is the expected value of information obtained during the sensing action, andUStealth(P; S) is the expected utility of maintaining stealth, i.e., remaining hidden from the enemywhile occupying the position P and using the sensor S. Let us note that this value includes notonly the danger of being discovered due to occupying an exposed location P , but also the danger ofusing the sensor S that could itself be detected by the enemy. The values of the constants k1 andk2 determine the relative weight with which the desirable attributes of gaining more informationand remaining undetected can be traded o� against one another. These values can be made tore
ect the parameters of a particular military scouting mission at hand.The following two subsections brie
y describe our proposed approach to calculating the valuesof UScan and UStealth during a military scouting mission.3.1 Determining the Utility of a Sensing ActionThe value of information, in general, is equal to the di�erence between the expected value of actionwhen the system has the information and the expected value of action without the information.The resulting desirable behavior will be an agent's attempt to look for objects of greatest concernand relevance to the overall military objective. The calculation of the expected value of a sensingaction has to include the likelihood that the interesting object is located within the area scanned,and that the sensor can successfully recognize the object at that location. Following Feldmann and5



Sproull [10], we propose that the general expression for the value of scanning the area A, usingsensor S, from the position P , be:UScan(A;S; P ) = ZAXk P1c(x; y)P2k(x; y)V Ikdxdy; (2)where P1c(x; y) is de�ned as the conditional probability that an object located at (x; y) ((x; y) 2 A)will be correctly identi�ed from the position P with the sensor S, P2k(x; y) is the prior probabilitythat an object of type k is located at (x; y), and the V Ik is the value of information about theobject of type k.Intuitively, the probability P1c(x; y) contains information about the sensing ability of sensorS given the current conditions c (day, night, fog, smoke, etc.), and the distance involved, i.e.,how well and how far the sensor can currently \see". The probability P2k(x; y) contains the priorinformation as to where various kinds of objects are likely to be located. This probability can beinitially derived from the prior Intelligence Preparation of the Battle�eld (IPB), commonly usedto assign a degree of interest to regions of the terrain under consideration. This probability is alsocontinually updated as the sensing actions are performed, so that it correctly represents the up-to-date state of the system's knowledge about the environment. The updating function on which wewill concentrate is Bayes' rule; however, alternative methods are currently being investigated.The value of information V Ik(t) about the object of type k, re
ects the importance of knowingthe location of an object of type k. The kinds of objects the system may be interested in include thevarious kinds of enemy forces in the area (tanks, HMMWVs, trucks, etc.), the locations of friendlyforces and other scouting vehicles, and the locations of navigational obstacles and other relevantelements of the terrain.As an example, suppose that we are trying to select one of two areas, A1 and A2, to scan.Assume that A1 and A2 are each composed of two discrete locations. Relevant parameter valuesare listed below.� A1 = f(100, 100), (100, 150)g� A2 = f(1000, 1000), (1000, 1050)g� S1 = Infrared� S2 = Color CCD Camera� k = fM1 tank, M2 tank, HMMWVg 6



� V IM1 = 10� V IM2 = 8� V IHMMWV = 5� P = (0, 0)� c = clear, early evening, 60 degrees� Using Sensor S1:P1c(100, 100) = .9P1c(100, 150) = .9P1c(1000, 1000) = .7P1c(1000, 1050) = .6� For every location (x; y):P2M1(x; y) = .001P2M2(x; y) = .001P2HMMWV (x; y) = .01The value of scanning areas A1 and A2 can be computed using equation 2. Because of the timeof day, assume that the infrared sensor is used. Uscan is computed below.UScan(A1; S1; P ) = :9 � :001 � 10 + :9 � :001 � 8 + :9 � :01 � 5 +:9 � :001 � 10 + :9 � :001 � 8 + :9 � :01 � 5= :1224UScan(A2; S1; P ) = :7 � :001 � 10 + :7 � :001 � 8 + :7 � :01 � 5 +:6 � :001 � 10 + :6 � :001 � 8 + :6 � :01 � 5= :0884
Area A1 thus provides a higher scan utility over area A2. The probability distributions P1 andP2, as well as the values of information V I, will depend on the goals of the mission as well as the7



nature of the battle�eld area. Once the goals and locations are established, these values can begenerated and used for sensor planning. Although this example demonstrates the application ofutility theory to detection of enemy targets, the underlying formulas can be used to direct sensorplanning for a variety of applications.3.2 Utility of Maintaining StealthWe can postulate that the utility of maintaining the stealth of the scouting vehicle is the negativeof the expected cost, ECDisc(P; S), of being discovered by the enemy:UStealth(P; S) = �ECDisc(P; S): (3)The expected cost of being discovered is the probability pDisc(P; S) of being discovered whileat position P and using sensor S, multiplied by the cost itself:ECDisc(P; S) = pDisc(P; S)CDisc(P ): (4)The probability of the vehicle being discovered, pDisc(P; S), depends on the location of theenemy forces relative to the location P and their line of sight, and on the detectability of thesensor used. Thus, the same location can be safe or dangerous, depending on whether the enemy'sexpected position allows for a clear line of sight of this location. Also, some sensors can be safer dueto the fact that they are more di�cult to detect by the enemy. Thus, the probability pDisc(P; S)can be computed from prior information about the possible locations of the enemy forces, and froman estimate of detectability of the sensor used.The cost of being discovered by the enemy at the given location is also a combination of severalfactors. There is the immediate danger that the given vehicle will become a target of enemy forces,as well as the danger associated with how the information about the location of the vehicle couldbe used by the enemy to harm and obstruct the mission of other friendly forces.The exact algorithms for computing pDisc(P ) and CDisc(P ) remain among the active researchareas within the UGV project. The obvious question is the appropriate level of detail that shouldbe included in these calculations. Our strategy in answering this question will begin by examiningthe elements of the very rigorous and detailed view, as outlined above, and proceed by successiveapproximations to �nd the sensitivity of the resulting performance to the details neglected, giventhe real-time control requirements of the modern battle�eld.8



4 Decision-Guided Observation Point Re�nementThe observation-point re�nement algorithm (OP) is used to select optimal observation points fromwhich vehicles can observe a speci�ed area of interest. OP is provided with polygonal descriptionsof the area to be observed (area of interest) and the selected regions where the vehicles will performobservation. OP will return a sorted list of observation-point sets (a set contains a single observationpoint for each vehicle), where each set is rated by its visibility/stealth measure.The OP framework applies decision-theoretic techniques to guide observation point re�nement.Here, we are applying the basic idea to select an observation point so as to optimize the expectedvalue of the information obtained using the sensors from that location, while maintaining stealth.When selecting an observation point, therefore, an agent should trade o� the expected value ofinformation acquired on one hand, and the dangers of revealing the agent's presence, on the otherhand. In accordance with the multiattribute utility formulation discussed in the previous section,we use Equation 1 to rate the suitability of candidate vehicle locations, given an area of interest tobe scanned, and given the suit of sensors onboard the vehicle.In our implementation we assume that a sensor can successfully recognize an object if there existsa clear line of sight between the sensor and object and if the object is within the sensor's range. Thelikelihood of recognizing the object decreases with the increase in obstructions (such as vegetation)between the sensor and the object. The likelihood of recognizing an object increases as the numberof vehicles that can view the object increases. Prior information as to where various kinds ofobjects are likely to be located can be initially derived from the prior Intelligence Preparation ofthe Battle�eld (IPB).The stealth of a vehicle is inversely proportional to the ability of an enemy, assumed to belocated inside the area of interest, to sense and identify the vehicle at the observation point. Whilevisibility of a potential target inside the area of interest is measured from the top of the vehicle(where the sensor is located), the visibility of a vehicle is measured with respect to the center of thevehicle. Figure 3 shows sample observation points for two vehicles looking at a single point insidean area of interest. Although the bottom vehicle can see the point, the vehicle itself is also clearlyseen, yielding a high visibility value and a low stealth value. On the other hand, the top vehiclepositions itself behind the crest of a hill, so it cannot be seen well from the area of interest point.The point can be viewed from the vehicle, though a tree along the path impedes visibility.Three types of operations are executed by OP. All three operations rely on the formulae de-9



visibility = 1.0
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Figure 3: Optimal Observation Pointscribed earlier.Selection of observation points within an area. For this operation, observation regions areselected by the user for each vehicle. OP then collects sample points within each region, andcomputes visibility/stealth measures for each combination of observation points. The sorted list ofsets is returned to the user to be integrated into the mission plan.Selection of observation points along a path. Although an explicit observation task is oftenintegrated into the mission plan, the operator may desire for vehicles to scan an area of interestthroughout the entire plan, from a variety of vantage points along the speci�ed mission route. Asa result, OP can be used to sample points along a speci�ed path and select a set of these pointsthat maximizes information gain and information value. The entire formation would stop at theselocations to scan the area of interest.Division of objective area among vehicles. The current e�ciency of target recognition algorithmsprevents a quick perusal of the objective area by unmanned ground vehicles. Therefore, the workmust be divided as e�ciently as possible among the vehicles involved in the mission. Given apolygonal description of the area of interest, OP divides the polygon into separate contiguousregions, one per vehicle. These regions are selected to maximize visibility of the region by thevehicles while also trying to balance the work load between vehicles.To date, the objective area is split into separate regions along lines parallel to the x or y axis.In the future, piecewise linear regression algorithms [22] can be used to yield a more e�ective split.All of these operations can be computationally expensive because of the large number of raysthat must be traced. The procedure can be made more e�cient by reducing the number of samplepoints considered within the observation regions and within the area of interest. The number of10



sample points is reduced by either utilizing a coarse-grain sampling technique or by selecting samplepoints with the highest prior probability. Once a few potential observation points are selected, theselected points can be re�ned recursively using a more detailed sampling. Parallel processingtechniques can also be used to improve e�ciency by calculating visibility/stealth measures forindividual points in parallel.5 Dynamic Zone SecurityThe cooperative RSTA planning system is used to cooperatively maintain 360-degree camera secu-rity around a moving unit formation and to cooperatively search for targets. Both capabilities use adecision-theoretic approach to select the current camera �eld of view throughout mission execution.In this section we describe the �eld of view selection method and cooperative reasoning methodsthat are central to our cooperative sensor planning called MA-DSP (Multi-Agent Dynamic SensorPlanning).5.1 Decision-Based Field Of View SelectionZone security is accomplished by de�ning multiple �elds of regard for each vehicle according tothe current formation (line, wedge, diamond, column) and the vehicle's position in the formation.Weights assigned to each �eld of regard allow the vehicle to spend more time looking in higher-interest areas.Each vehicle's �eld of regard is divided into individual �elds of view (FOV). With each �eld ofview is associated a location (in terms of pan/tilt angles or a world coordinate focus location), aweight indicating the priority of the FOV, and the desired angular width of the FOV. Each timethe camera is ready to move to a new location, the weights of the �elds of view are updated andthe current FOV is selected.The weights of each individual �eld of view are adjusted dynamically. As we mentioned, thevalue of a particular �eld of view area A viewed with sensor S from position P can be calculatedas UScan(A;S; P ) = ZAXk P1c(x; y)P2k(x; y)V Ikdxdy;where P1c(x; y) is the probability that an object located at (x; y) will be correctly identi�ed fromthe position P with the sensor S under conditions c, P2k(x; y) is the prior probability that anobject of type k is located at (x; y), and V Ik is the value of information about the object of type k.11



There are several factors that a�ect P1 and P2, including security, continuity, focus of attention,and terrain reasoning. A priority of a multi-vehicle reconnaissance mission is to maintain 360-degreesecurity around the unit at all times. The computational demands of current target detection andrecognition algorithms prevent rapid processing of each image frame. Because each vehicle cannotquickly scan the entire area around the unit, vehicles must make use of teamwork to e�ectivelydivide the work. Each vehicle is assigned the portion of the unit security that can best be handledfrom that position in the unit formation.The second factor is continuity. Continuity ensures smooth motion of the camera pan/tilt,because �elds of view that neighbor the current FOV are more heavily weighted than other �elds ofview. Continuity is important when the camera pan/tilt motion is slow, when information sharedbetween neighboring �elds of view is useful for the target detection/recognition algorithms, andwhen pan/tilt limits prevent easy movement between non-neighboring views.The third factor a�ecting FOV weights is focus of attention. Prior probabilities can be estab-lished for target locations based on database information, and these probabilities can be updated asvehicles detect potential targets throughout the mission. Any region identi�ed as a high-probabilityregion will received increased priority in the FOV-selection algorithm.Finally, terrain reasoning can be used to dynamically update FOV weights. Military vehiclesoften make use of terrain for maximal stealth as well as ease of navigation. These terrain featureswill thus a�ect the probability that a target is located in a given region. For example, targetvehicles are more likely to be found along tree lines than in an open �eld. In addition, vehicles areless likely to be found on a steep slope, where the vehicle would be unstable. Figure 4 demonstratesthis type of terrain reasoning.On the other hand, terrain obstructions can limit the amount of information obtainable froma FOV, and thus the corresponding weight should be decremented. Figure 4 demonstrates a casein which a tree obstructs the view from the vehicle, and the weight of the corresponding FOVis decremented accordingly. Because the terrain surrounding the unit changes as the unit movesalong the speci�ed route, the terrain-based weights must be updated dynamically throughout themission. Each of these four factors can contribute much or little to the overall values of P1 andP2, depending on how heavily the user weights each parameter.When a new �eld of view is requested, a biased roulette wheel is spun. Roulette wheel methodshave proven to be e�ective in a variety of adaptive algorithm applications [11]. Using this selectionmethod, potential �elds of view are assigned a portion of the wheel corresponding to their fraction12
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Figure 4: FOV adjustment based on terrainof the total possible weight. The probability of selecting a given FOV is proportional to the FOV'sshare of the roulette wheel.Once a �eld of view is selected, the width of the �eld of view is dynamically computed to �tthe corresponding terrain. A sampling of rays is collected that centers around the FOV direction.Each ray is traced to the point where the ray intersects the ground, and average distance to theground is calculated for the FOV. If the average ray length is greater than the sensor range, thecamera elevation is adjusted slightly or the view is re-selected, based on current terrain features.The width of the FOV is then computed in such a way that the amount of pixel information perFOV is constant, as given by the formulaViewWidth = tan�1( NumDesiredPixelsAverageRayLength ):Figure 4 demonstrates how the hill forces the ray lengths for the top FOV to be short and thus thewidth will be greater than for the other �elds of view.5.2 Multi-Vehicle Cooperative ReasoningFor a military RSTA mission, multiple vehicles must be utilized. The use of multiple vehiclesincreases the chance of a successful mission because of the increased robustness, increased security,and increased number of observation points for scouting an area.Multi-agent planning and coordination is a focus of much attention in AI reasoning [6, 8, 9, 14,15, 17, 21]. As automation of intelligent tasks increases, the need arises for heterogeneous agents towork in a common environment. While the need for multi-agent planning algorithms is apparent,13



the development of algorithms which meet each agent's goals in a timely fashion, avoid deadlock,and do not incur heavy communication costs provides a challenging task.Cook [7] describes three types of multi-agent control schemes: central control, distributed con-trol, and local control (no communication). Central control is shown to be e�ective when communi-cation is reliable, and local control is e�ective if no communication is needed; otherwise, distributedcontrol is necessary.Our cooperative sensor planning system has elements of all three control schemes. The initialpartitioning of the �elds of regard and the weighting of each of the four selection factors is controlledby a central force: the mission leader. The selection of each FOV and the dynamic updating ofweights and view widths is performed at a local level. Distributed coordination schemes, whileoften the most robust, are also very complex. This section describes the distributed cooperationthat is necessary to our cooperative sensor planning system.There are several tasks that required distributed decision-making and coordination, including:� target con�rmation,� security hando�, and� health checks.Target con�rmation. For every target that vehicle A detects, vehicle A asks for con�rmationfrom all other vehicles. All other vehicles that are available to help and are in line of sight of thepotential target interrupt their work to focus on the target region. All target detection informationis passed to the requesting vehicle.Security hando�. If a detected target is stationary, target detection and recognition can bedone quickly enough to maintain the integrity of the unit security camera movements. If a detectedtarget is moving, all other camera work is abandoned while the vehicle tracks the detected target.Unit security is a cooperative task and the responsibility is shared by all vehicles. If vehicle Aneeds to track a target, vehicle A hands o� its security work to another available vehicle (vehicleB). After tracking is complete, vehicle A �nds the owner of the shared security �elds of regard(vehicle B may have handed the work over to yet another vehicle) and resumes its original securitywork.Shifting responsibility security work from vehicle to vehicle is fairly straightforward. A's de-scription of its �elds of regard and their weights must be communicated to vehicle B. Vehicle B14



adds the corresponding �elds of view to the existing list, in e�ect dividing the roulette wheel intoa greater number of pieces. When the security work is returned to vehicle A, the shared �elds ofview are removed from vehicle B's list.Health checks. Although it is not desirable for a vehicle to malfunction or be destroyed duringa mission, the success of the mission should not depend entirely on the health of any one vehicle.To ensure that the goals of the mission are met, the leader of the unit periodically performs healthchecks on the other vehicles. If a vehicle does not respond in a timely manner, the sensor planis recon�gured for one less vehicle and new work is partitioned among the unit. In this way, nowork is lost because of a missing vehicle. As long as one vehicle is remaining, the mission can beaccomplished. If the vehicle comes back to life, the plan can be recon�gured to include the revivedvehicle.6 Evaluation of Techniques6.1 Evaluation of Observation Point Re�nementThe purpose of the observation point re�nement algorithm is to select observation points for a setof vehicles that optimizes the cooperative viewing of an area of interest while minimizing the riskof being viewed from the area of interest.While this computation is crucial to the success of a RSTA mission, OP re�nement for multiplevehicles can also prove to be computationally expensive. In this section, we demonstrate howthe computation time and the utility of the selected observation point change with the number ofsample points considered.For this experiment, we perform a uniform sampling strategy over the observation regions. Twodi�erent problem sizes are considered. In the �rst problem size, two observation 250x250 meterareas are re�ned to select one point from each area. The two vehicles will be positioned at theseselected locations, both viewing the 250x250 meter area of interest. In the second problem set, theobservation regions and the area of interest cover a 500x500 meter area. For both problem sets,the results are averaged over three randomly-selected sets of regions and are compared to a singleobservation point located in the center of the observation areas. These experiments are run for atwo-vehicle case. In this situation, we look for an optimal pair of points that produces the optimalcombined result of visibility and stealth.As Figure 5 indicates, both the utility of the observation point and the computation time in-15
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Figure 6: MA-DSP security results for line and diamond formationsplan would spend an equal amount of time in each area. The actual distribution of camera snapshotsis compared to the ideal distribution, and the deviation is graphed below. The performance of MA-DSP is compared to two other methods: random selection and continuous scan. The results foreach technique are averaged over three independent trials. The performance is measured for eachof the four formations introduced in Figure 2.The results of this experiment are shown in Figures 6 and 7. When a single vehicle is used,continuous scan performs well because the mission runs long enough to allow a single complete scanaround the vehicle. However, as the number of vehicles increases, uniform and complete coveragearound the formation becomes more di�cult. Because of the multi-agent planning involved in oursystem, MA-DSP outperforms the other methods as the number of vehicles increases. This is dueto the ability of MA-DSP to balance the work evenly between vehicles, reducing redundant workand preventing vehicles from obscuring each other's views.In the second experiment, we demonstrate the ability of MA-DSP to detect enemy targetsduring a mission. Once again, we compare MA-DSP to random selection and continuous scan. Inthis experiment, we randomly place 20 targets over the mission area. The results are averaged overthree independent distributions of targets, and three trials are run per distribution. The resultsare graphed in Figures 8 and 9.Again, MA-DSP outperforms the other methods because of the systematic coverage of the areaoutside the unit. Non-cooperative methods tend to spend time looking at already-searched areas17
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Figure 7: MA-DSP security results for column and wedge formations
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Figure 9: MA-DSP target detection results for column and wedge formationsand at each other. The best results overall occur in the line, diamond, and wedge formations. Thecolumn formation does not perform target detection as well as other formations, because less areais covered by the unit as a whole. However, column formations are necessary for some maneuverssuch as on-road navigation.7 ConclusionsIn this paper we present a cooperative sensor planning system that uni�es research from activevision and sensor planning, decision theory, and multi-agent planning and communication.Work on active vision has been well established in the �eld. Bajcsy [2] introduced the idea ofactive perception as applied to controlling a sensor at any level of abstraction, from controllingthe focus of the physical device (as we are doing) to controlling the semantic interpretation ofinformation returned from the sensor. Active vision research has also made use of decision-theoretictechniques to measure the utility of gathering information [1, 2, 13], but has not been applied tothis type of military application where both static and dynamic decision making is necessary toachieve the overall mission objectives. Literature in the cognitive science community shows thatthis decision-theoretic approach to sensor planning is also demonstrated in human perception andinformation-gathering [5, 19].Although active vision techniques have been used to make centralized decisions about sensormovements, there is very little work that allows decentralized sensor planning decisions. Multi-19



agent planning and negotiation techniques are common in the AI literature, but have not beenintegrated into computer vision work. This paper describes a project that uses ideas from multi-agent planning and from sensor planning to allow centralized allocation of major tasks, local controlof individual sensor direction, and distributed cooperation between intelligent perceptual agents.The work described in this paper has been implemented in the context of the DARPA UnmannedGround Vehicle program and successfully used on-board a unit consisting of two HMMWVs. Al-though the work to date has demonstrated e�ective cooperative decision-guided sensor planning,there are a number of avenues we plan to pursue in the future.Ballard and Brown [4] and Bajcsy and Campos [3] both emphasize that learning is an importantpart of active perception. To date, the probabilities associated with each aspect of terrain reasoning,security, and stealth have been hard-coded. Future extensions of this project will learn the value ofinformation and probabilities of each aspect of the mission from experience. One method of learningprobability values is through the use of adaptive probabilistic networks, a subset of belief nets thatcan learn individual probability values and distributions using gradient descent [16, 18, 20].Another important extension of this project is to add temporal reasoning to the sensor planningalgorithm. In general, the probability of a given object existing at a speci�ed location shouldincrease if the object has been captured with a sensor, but should decrease as time passes sincethe object was last perceived. Thus, if a vehicle detects a target at one point in the mission, thetarget is not guaranteed to remain at the same location through the rest of the mission, and theassociated probabilities should be continuously adjusted.In addition, there are a number of ways in which the e�ectiveness of sensor planning couldbe improved with additional communication. For example, at each step in the plan one agentcould communicate all the information it has gathered to other agents in the unit, thus improvingevery vehicle's utility database. However, communication is very costly and communicating largeamounts of information between spatially-separated entities will decrease the stealth of the vehiclesas well as slow down mission execution. A future priority of this project is to investigate methodsof optimizing the tradeo� between minimizing communication and maximizing cooperation.Finally, from our existing work in this research area we have found that calculating sensor utilityfactors for several vehicles over a large area is computationally very expensive. As more and morefactors are included in the decision process, this computational burden will increase. However,considering each set of sensor parameters in great detail is not always pro�table | some decisionswill quickly show themselves to be wasteful or inappropriate for a given task. Directing and limiting20
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