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Abstract—Protecting and securing sensitive 
information are critical challenges for businesses. 
Deliberate and intended actions such as malicious 
exploitation, theft or destruction of data, are not only 
harmful and difficult to detect, but frequently these 
threats are propagated by an insider.  Unfortunately, 
current efforts to identify unauthorized access to 
information such as what is found in document control 
and management systems are limited in scope and 
capabilities.  This paper presents an approach to 
detecting anomalies in business transactions and 
processes using a graph representation. In our graph-
based anomaly detection (GBAD) approach, anomalous 
instances of structural patterns are discovered in data 
that represent entities, relationships and actions. A 
definition of graph-based anomalies and a brief 
description of the GBAD algorithms are presented, 
followed by empirical results using a discrete-event 
simulation of real-world business transactions and 
processes. 

I. INTRODUCTION 
 very day there are reports of insider threats that affect 
an IT organization’s network, systems and information.  

Recent reports have indicated that approximately 6% of 
revenues are lost due to fraud, and almost 60% of those 
fraud cases involve employees [10]. The Identity Theft 
Resource Center recently reported that 15.8 percent of 
security breaches so far in 2008 have come from insiders, up 
from 6 percent in 2007 [5]. Various insider activities such as 
violations of system security policy by an authorized user, 
deliberate and intended actions such as malicious 
exploitation, theft, or destruction of data, the compromise of 
networks, communications, or other IT resources, and the 
difficulty in differentiating suspected malicious behavior 
from normal behavior, have hampered business activities. IT 
organizations, responsible for the protection of their 
company’s valuable resources, require the ability to mine 
and detect internal transactions for possible insider threats.  

Yet, most organizations spend considerable resources 
protecting their networks and information from the outside 
world, with little effort being applied to the threats from 
within. 
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For years, companies have been analyzing their business 
processes for the purposes of streamlining operations, 
discovering wasteful overhead, overcoming inefficiencies in 
production, etc.  However, there have also been several 
efforts applied towards analyzing business processes for 
fraud detection, which has led to an increase in pertinent 
data mining activity.  Most of these approaches have dealt 
with the visualization of business processes, such as 
VisImpact [12].  Some approaches have used data/audit logs 
that are collected by a company, in order to generate fraud 
alerts in near real-time.  In addition, the ability to mine 
relational data has become important for detecting structural 
patterns. Recently there has been an impetus towards 
analyzing relational data using graph theoretic methods [2].  
Graph-based data mining approaches analyze data that can 
be represented as a graph (i.e., vertices and edges).  While 
there are approaches for using graph-based data mining for 
intrusion detection [3], little work has been done in the area 
of graph-based anomaly detection, especially for application 
to business processes, such as in document control and 
management systems.  

In this paper, we present such an approach called Graph-
Based Anomaly Detection (GBAD) [4]. GBAD discovers 
anomalous instances of structural patterns in data that 
represent entities, relationships and actions. Input to GBAD 
is a labeled graph in which entities are represented by 
labeled vertices and relationships or actions are represented 
by labeled edges between entities.  Using the minimum 
description length (MDL) principle to identify the normative 
pattern that minimizes the number of bits needed to describe 
the input graph after being compressed by the pattern, 
GBAD uses algorithms for identifying the three possible 
changes to a graph:  modifications, insertions and deletions.  
Each algorithm discovers those substructures that match the 
closest to the normative pattern without matching exactly.  
As a result, GBAD is looking for those activities that appear 
to match normal (or legitimate) transactions, but in fact are 
structurally different.  This is a promising novel approach to 
discovering anomalies as most anomaly detection 
approaches use profiles based on non-structural attributes, 
and then search for outliers to those profiles [18]. 

 Take for instance the document flow scenario of an order 
processing system, as shown in Figure 1. This example 
would consist of individual transactions where personnel 
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receive, process and possibly pass on documents to other 
personnel or departments.  However, when this information 
is represented as a graph, possible anomalous actions can be 
considered “additional structure” within the graph that was 
an unexpected deviation from the normal pattern of 
document flow. For example, the Sales department might 
also pass the Order Acknowledgement to another customer, 
providing “inside information.” 

 

 
Figure 1.  Order processing scenario. 
This example will be discussed in more detail later in this 
paper. 

In the following section, we present a definition of what is 
a graph-based anomaly, some assumptions that we have 
made, and a brief introduction to the three graph-based 
detection algorithms embodied in GBAD [6].  The primary 
contribution of this work is the applicability of these 
algorithms to the detection of insider threats in business 
transactions and processes.  In this paper we present the 
flow of information associated with application processing, 
and evaluate GBAD’s ability to discover deviations that 
could indicate attempted abuse.  We then conclude with 
some discussion of future work. 

II. GRAPH-BASED ANOMALY DETECTION 

A. Definition 
The idea behind the approach presented in this paper is to 

find anomalies in graph-based data where the 
anomalous substructure in a graph is part of (or attached to 
or missing from) a normative substructure.  

 
Definition: A graph substructure S’ is anomalous if it is not 
isomorphic to the graph’s normative substructure S, but is 
isomorphic to S within X%. 
 
X signifies the percentage of vertices and edges that would 
need to be changed in order for S’ to be isomorphic to S.  
The importance of this definition lies in its relationship to 
any deceptive practices that are intended to illegally obtain 
or hide information.  The United Nations Office on Drugs 
and Crime states the first fundamental law of money 
laundering as “The more successful money-laundering 
apparatus is in imitating the patterns and behavior of 

legitimate transactions, the less the likelihood of it being 
exposed” [1].   

For a structural graph-based anomaly, there are several 
situations that might occur: 

 
1. A vertex exists that is unexpected. 
2. An edge exists that is unexpected. 
3. The label on vertex is different than was expected. 
4. The label on edge is different than was expected. 
5. An expected vertex is absent. 
6. An expected edge between two vertices is absent. 
 
In essence, there are three general categories of anomalies: 
insertions, modifications and deletions.  Insertions would 
constitute the first two situations; modifications would 
consist of the third and fourth situation; and deletions would 
categorize the last two situations. 

B. Assumptions 
Many of the graph-based anomaly detection approaches 

up to now have assumed that the data exhibits a power-law 
distribution [13].  The advantage of the approaches 
presented in this paper is that it does not assume the data 
consists of a power-law behavior.  In fact, no standard 
distribution model is assumed to exist.  All that is required is 
that the data is regular, which in general means that the data 
is “predictable”. While there are many data sets that are not 
regular in nature, in general, business processes consist of 
transactions that would exhibit regular patterns of behavior.  
After all, that is why companies set up processes in the first 
place – to establish rules and guidelines for normal business 
activity. 

In order to address our definition of an anomaly, we make 
the following assumptions about the data. 

Assumption 1: The majority of a graph consists of a 
normative pattern, and no more than X% of the normative 
pattern is altered in the case of an anomaly. 
Since our definition implies that an anomaly constitutes a 
minor change to the prevalent substructure, we would chose 
a small percentage (e.g., 10%) to represent the most a 
substructure would be changed in a fraudulent action. 
Assumption 2: Anomalies consist of one or more 
modifications, insertions or deletions. 
As was mentioned earlier, there are only three types of 
changes that can be made to a graph.  Therefore, anomalies 
that consist of structural changes to a graph must consist of 
one of these types. 
Assumption 3: The normative pattern is connected. 
In the real-world scenarios of business transactions and 
processes, the entities are typically linked to each other in 
some way.  Certainly, graphs could contain potential 
anomalies across disconnected substructures, but at this 
point, we are constraining our research to only connected 
anomalies. 
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C. Approach 
Most anomaly detection methods use a supervised 

approach, which requires some sort of baseline of 
information from which comparisons or training can be 
performed.  In general, if one has an idea what is normal 
behavior, deviations from that behavior could constitute an 
anomaly.  However, the issue with those approaches is that 
one has to have the data in advance in order to train the 
system, and the data has to already be labeled (e.g., normal 
employee transaction versus threatening insider activity). 

GBAD (Graph-based Anomaly Detection) [6] is an 
unsupervised approach, based upon the SUBDUE graph-
based knowledge discovery method [7].  Using a greedy 
beam search and Minimum Description Length (MDL) 
heuristic [8], each of the three anomaly detection algorithms 
in GBAD uses SUBDUE to provide the top substructure, or 
normative pattern, in an input graph.  In our implementation, 
the MDL approach is used to determine the best 
substructure(s) as the one that minimizes the following: 

 
)()|(),( SDLSGDLGSM +=  

 
where G is the entire graph, S is the substructure, DL(G|S) is 
the description length of G after compressing it using S, and 
DL(S) is the description length of the substructure.   

We have developed three separate algorithms:  GBAD-
MDL, GBAD-P and GBAD-MPS.  Each of these 
approaches is intended to discover all of the possible graph-
based anomaly types as set forth earlier.  The following is a 
brief summary of each of the algorithms, along with some 
simple business process examples to help explain their 
usage.  The reader should refer to [6] for a more detailed 
description of the actual algorithms. 
 
Information Theoretic Algorithm (GBAD-MDL) 
 

The GBAD-MDL algorithm uses a Minimum Description 
Length (MDL) heuristic to discover the best substructure in 
a graph, and then subsequently examines all of the instances 
of that substructure that “look similar” to that pattern – or 
more precisely, are modifications to the normative pattern.  
In Noble and Cook’s work on graph-based anomaly 
detection [9], they presented a similarly structured example 
(albeit with different labels) to the one shown in Figure 2. 

In this example, the normal business process involves 
Sales sending an order to the Dispatcher, the Dispatcher 
verifying the order and sending in onto the Warehouse, and 
the Warehouse confirming the fulfillment of the order with 
Sales.  When applying the GBAD-MDL algorithm to this 
example, the circled substructure in Figure 2 is reported as 
being anomalous.  In this case, there are three entities 
communicating for each order, but Accounts is handling the 
order instead of Sales - going outside the normal process.  
With Noble and Cook’s approach, the “Accounts” vertex 
would have correctly been shown to be the anomaly, but the 
importance of this new approach is that a larger picture is 

provided regarding its associated substructure.  In other 
words, not only are we providing the anomaly, but we are 
also presenting the context of that anomaly within the graph 
(the individual anomaly within the instance is in bold.)  

  
Figure 2.  Example with anomalous instance circled. 

 
Probabilistic Algorithm (GBAD-P) 
 

The GBAD-P algorithm uses the MDL evaluation 
technique to discover the best substructure in a graph, but 
instead of examining all instances for similarity, this 
approach examines all extensions (or insertions) to the 
normative substructure with the lowest probability.  The 
difference between the algorithms is that GBAD-MDL is 
looking at instances of substructures with the same 
characteristics (e.g., size), whereas GBAD-P is examining 
the probability of extensions to the normative pattern to 
determine if there is an instance that includes edges and 
vertices that are probabilistically less likely than other 
possible extensions.  Taking the business process example 
again, Figure 3 shows the process flow between a 
warehouse (W), dispatcher (D), accounting (A) and the 
customer (C). 

 

 
Figure 3.  Example with instance of normative pattern 

boxed and anomaly circled 

 
In this example, the normal process involves a 

communication chain between Sales, Warehouse and 
Dispatcher, with the order confirmation being conveyed by 
the Dispatcher to the Customer.  After the first iteration of 
the GBAD-P algorithm, the boxed instance in Figure 3 is 
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one of the instances of the best substructure.  Then, on the 
second iteration, extensions are evaluated, and the circled 
instance is the resulting anomalous substructure.  In this 
example, the Dispatcher is communicating with Accounts 
when it should have been the Customer.  Again, the edge 
and vertex (shown in bold) are labeled as the actual 
anomaly, but the entire anomalous substructure is output to 
provide additional context for possible analysis. 

 
Maximum Partial Substructure (GBAD-MPS) 

 
The GBAD-MPS algorithm again uses the MDL approach 

to discover the best substructure in a graph, then it examines 
all of the instances of parent (or ancestral) substructures that 
are missing various edges and vertices (i.e., deletions).  The 
value associated with the parent instances represents the cost 
of transformation (i.e., how much change would have to take 
place for the instance to match the best substructure).  Thus, 
the instance with the lowest cost transformation is 
considered the anomaly, as it is closest (maximum) to the 
best substructure without being included on the best 
substructure’s instance list.  If more than one instance have 
the same value, the frequency of the instance’s structure will 
be used to break the tie if possible. Consider the slightly 
more complex graph of a business process, involving 
multiple transactions that are linked together by common 
entities, as shown in Figure 4. 

 
Figure 4.  Example with instance of normative pattern 
boxed and anomaly circled. 

In this example, the normative pattern in the process is a 
Sales person communicating with the Warehouse and a 
Customer, and the Warehouse corresponding with a 
Dispatcher.  Suppose we take one of the instances of the 
normative pattern (shown in the box), and remove an edge 
and its associated vertex (shown in the circle).  When 
applying GBAD-MPS to that modified graph, an anomalous 
substructure, similar to the normative pattern, is discovered, 
where the Customer entity is missing along with the “note” 
link from Sales. 

 
Tests and Performance 

 
In order to systematically test each of the algorithms, we 

created synthetic graphs of various sizes and connectivity.  
We then repeated experiments, each time randomly 
modifying, inserting or deleting (and sometimes a 
combination of all types) vertices and edges. We measured 
GBAD’s ability to not only correctly identify the created 
anomalies (true positives versus false positives), but also its 
ability to not miss the anomaly. The overall results were that 
GBAD never found less than 95% of the anomalies, with 
minimal (none in most cases) false positives reported.  

The average running times of the algorithms is anywhere 
from < 1 second to ~45 minutes, depending upon the size of 
the graphs. The larger the graph, as well as the number of 
subgraphs one wants to analyze for anomalous structure, the 
greater the runtime for the algorithms.  In general, the 
running time of GBAD is polynomial in the size of the 
graph and the parameters of the algorithm. The ability to 
discover the anomalies is sometimes limited by the 
resources allocated to the algorithm.  Given a graph where 
the anomalous substructure consists of the minimal 
deviation from the normative pattern, if a sufficient amount 
of processing time and memory is provided, all of these 
algorithms will discover the anomalous substructure with no 
false positives.  However, the ability to discover anomalies 
(per our definition) is also hampered by the amount of noise 
present in the graph.  The issue is that if noise is a smaller 
deviation from the normative pattern than the actual 
anomaly, it may score higher than the targeted anomaly 
(depending upon the frequency of the noise).  

The reader should refer to [6] for more information 
regarding the experimental results and analysis of GBAD, 
including experiments on two diverse real-world data sets: 
cargo shipments and network traffic. 

III. INTEGRATION OF GBAD AND OMNET++ 
In order to perform a systematic evaluation of the Graph-

Based Anomaly Detection (GBAD) approach for identifying 
anomalies, or insider threats, in business transactions or 
processes, we used the OMNeT++ discrete event simulator 
[14] to model transactions and processes, generate 
transaction and process data, represent the data in graph 
form, and then analyze the graphs using GBAD.  This 
process has two main benefits.  First, we can model many 
different types of transactions with known structure and 
known anomalies, which allows us to easily verify GBAD’s 
ability to detect these anomalies.  Second, the OMNeT++ 
framework can be used to model real business processes to 
further evaluate the real-world applicability of the GBAD 
approach.  Here we give a brief introduction of this process 
on a simple business transaction example, followed by a 
more complex example representing a known business 
process. 
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Figure 5.  Depiction of an order fulfillment process; 
dashed arrow indicates a low-probability anomaly. 

IV. BUSINESS TRANSACTIONS 
Consider the order-fulfillment process depicted in Figure 

5.  The process is initiated by the Customer placing an 
Order, which is sent to the Sales department.  The Sales 
department sends an Order Acknowledgement back to the 
Customer and sends an Internal Order to the Warehouse.  
Once the Warehouse ships the order, they send a Delivery 
Note to the Customer.  One possible anomaly in this process 
is when someone in the Sales department copies the Order to 
an Unknown entity, perhaps to leak insider information to a 
competitor about the order. 

 
Figure 6.  The orderprocess.net file describes the 
different modules and how they interconnect. 

First, we will see how this order-fulfillment process is 
defined within OMNeT++.  Figure 6 shows the definition 
for this process using the NED (Network Description) 
language.  Each node in the process is defined as a module 
in NED. Modules (like OrderProcess) can consist of sub-
modules and their interconnections.  The actual function of 
each module (how it processes messages) is defined in C++.  
The Utility module provides utility functions accessible by 
the other modules.  After receiving an Order message, the 
Sales module waits 10-60 seconds and then sends an Order 
Acknowledgement message to the Customer module, sends 
an Internal Order message to the Warehouse module, and 
with a Bernoulli probability of 0.001 (as defined in the 
omnetpp.ini file) sends an Order message to the Unknown 
module. 

The OMNeT++ user’s manual describes the procedure for 
making and executing the simulation.  Figure 7 shows a 
portion of the output from the order fulfillment simulation.  
In addition to the logging information produced by 
OMNeT++, the figure also shows the GBAD-related 
messages printed from each module describing order-related 
messages as they are sent and received by the modules.  It is 
this information we will use to construct graphs of the 
ordering process.  A utility program called “o2g” converts 
the GBAD-enhanced OMNeT++ simulation output into a 
Subdue-formatted graph. simple Customer 

  parameters: 
    maxOrders: numeric const; 
  gates: 
    in: fromSales, fromWarehouse; 
    out: toSales; 
endsimple 
 
simple Sales 
  parameters: 
    probAnomaly: numeric const; 
  gates: 
    in: fromCustomer; 
    out: toCustomer, toWarehouse, toUnknown; 
endsimple 
 
simple Warehouse 
  gates: 
    in: fromSales; 
    out: toCustomer; 
endsimple 
 
simple Unknown 
  gates: 
    in: fromSales; 
endsimple 
 
simple Utility 
endsimple 
 
module OrderProcess 
  submodules: 
    customer: Customer; 
    sales: Sales; 
    warehouse: Warehouse; 
    unknown: Unknown; 
    utility: Utility; 
  connections: 
    customer.toSales --> sales.fromCustomer; 

sales toCustomer --> customer fromSales;

For the experiment depicted in Figure 5, representing the 
processing flow of 1,000 orders, we generated a graph of 
approximately 3,000 vertices and 4,000 edges.  From this 
graph, GBAD is able to successfully discover, with no false-
positives, the anomaly shown with dotted lines and a larger 
font in Figure 8. 

 

 

OMNeT++/OMNEST Discrete Event Simulation  (C) 
1992-2005 Andras Varga 
Release: 3.3, edition: Academic Public 
License. 
See the license for distribution terms and 
warranty disclaimer 
Setting up Cmdenv... 
 
Preparing for Run #1... 
Setting up network `orderprocess'... 
Initializing... 
 
Running simulation... 
** Event #0 T=0.0000000 (0.00s).  (Customer) 
orderprocess.customer (id=2) 
[GBAD] 1 Order: Customer -> Sales (0) 
** Event #1 T=0.0000000 (0.00s).  (Sales) 
orderprocess.sales (id=3) 
** Event #2 T= 30.8511 (30.85s).  (Sales) 
orderprocess.sales (id=3) 
[GBAD] 1 InternalOrder: Sales -> Warehouse 
(30.8511) 
[GBAD] 1 OrderAcknowledgement: Sales -> 
Customer (30.8511) 
** Event #3 T= 30.8511 (30.85s).  (Warehouse) 
orderprocess.warehouse (id=4) 

Figure 7.  Partial OmNet++ simulation output. 
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Figure 8.  Subdue-formatted (partial) graph produced 
from GBAD-enhanced OmNet++ simulation output. 

V. BUSINESS PROCESSES 
Next, we simulated a document processing scenario that 

was motivated by two real-world sources of information. 
One source is the incidents reported in the CERT Insider 
Threat documents [15][16][17] that involve privacy 
violations in a government identification card processing 
organization and fraud in an insurance claim processing 
organization. Another source, for which our model directly 
simulates, is based on the process flow associated with a 
passport application [11]. The outline of this process flow, 
depicted in Figure 9, is as follows: 

 
1. The applicant submits a request to the frontline staff 

of the organization. 
2. The frontline staff creates a case in the organization’s 

database and then submits the case to the approval 
officer. 

3. The approval officer reviews the case in the database 
and then assigns the case to one of the case officers. 
By default, there are three case officers in the 
organization. 

4. The assigned case officer reviews the case. The 
assigned case officer may request additional 
information from the applicant, which is submitted to 
the frontline staff and then forwarded to the assigned 
case officer. The assigned case officer updates the 
case in the database based on this new information. 
The assigned case officer may also discuss the case 
with one or more of the other case officers, who may 
review the case in the database in order to comment 
on the case. Ultimately, the assigned case officer will 
recommend to accept or reject the case. This 
recommendation is recorded in the database and sent 
to the approval officer. 

5. Upon receiving the recommendation from the 
assigned case officer, the approval officer will make 
a final decision to accept or reject the case. This 
decision is recorded in the database and sent to both 
the frontline staff and the applicant. 

6. Finally, upon receiving the final decision, the 
frontline staff archives the case in the database. 

 
There are several scenarios where potential insider threat 

anomalies might occur, including: 
 

 
Figure 9.  Information flow in request/claim approval 
scenario. 

 
1. Frontline staff performing a Review Case on the 

database (e.g., invasion of privacy). 
2. Frontline staff submits case directly to a case officer 

(bypassing the approval officer). 
3. Frontline staff recommends or decides case. 
4. Approval officer overrides accept/reject 

recommendation from assigned case officer. 
5. Unassigned case officer updates or recommends case. 
6. Applicant communicates with the approval officer or 

a case officer. 
7. Unassigned case officer communicates with 

applicant. 
8. Database access from an external source or after 

hours. 
 
Representing the processing of 1,000 passport applications, 
we generated a graph of approximately 5,000 vertices and 
13,000 edges, and proceeded to replicate some of the 
scenarios described above. 

First, we randomly inserted an example that represents 
Scenario 1.  While the GBAD-MDL and GBAD-MPS 
algorithms do not discover any anomalous structures, 
GBAD-P is able to successfully discover the one case out of 
1,000 where a frontline staffer was performing a review of a 
case – a clear violation of their duties.  Figure 10 shows the 
normative pattern and the anomalous edge “ReviewCase” 
between the “FrontlineStaff” node and the “Database” node. 
 

 
Figure 10.  Scenario 1 normative pattern and anomaly. 
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The actual anomaly in Figure 10 is shown with a bolded 
edge and larger label font.  Also, while not shown here, this 
same structural anomaly can be found in scenarios 3 and 6.  
Scenario 3 consists of an extra edge 
(“RecommendAcceptCase”) going from the “FrontlineStaff” 
node to the “Database” node, and as such is only different 
from Scenario 1 by the label on the edge.  Scenario 6 
consists of an extra edge between the “Applicant” node and 
the “ApprovalOfficer” (or  “CaseOfficer”) node, which is 
structurally identical to the other two scenarios – an 
unexpected edge between two expected vertices. 

For Scenario 2, we randomly inserted three examples 
where a frontline staffer submitted a case directly to a case 
officer, instead of sending it to the approval officer.  In this 
case, GBAD-P and GBAD-MDL do not uncover any 
anomalous structures, whereas GBAD-MPS is able to 
successfully discover all three instances where the frontline 
staffer did not submit the case to the approval officer.  
Figure 11 shows the normative pattern and the missing 
“SubmitCase” edge between “FrontlineStaff” and 
“ApprovalOfficer”, the missing “ReviewCase” edge 
between “ApprovalOfficer” and “Database”, and the 
missing “AssignCase” edge between “ApprovalOfficer” and 
“CaseOfficer”. 

 
Figure 11.  Graph of Scenario 2, showing the normative 
pattern and missing edges. 

The actual anomalies in Figure 11 are shown with a larger 
label font and a dashed edge, indicating their absence from 
the graph. 

For Scenario 4, we randomly modified three examples by 
changing the recommendation that the “CaseOfficer” sends 
to the “ApprovalOfficer”.  In one example, the 
“CaseOfficer” recommends to accept the case, and the 
recommendation from the “ApprovalOfficer” is changed to 
rejecting the case, and in the other two examples the reverse 
is implemented.  For this example, GBAD-MDL and 
GBAD-MPS do not find any anomalies, and GBAD-P only 
discovers one of the anomalous examples (where the 
“CaseOfficer” recommends to reject the case but the 
“ApprovalOfficer” decides to accept the case.  Figure 12 
shows the normative pattern and the anomalous structures 
from this example. 

 
Figure 12.  Graph of Scenario 4, showing the normative 
pattern and unexpected edge labels. 

When we have GBAD report on the top two most 
anomalous substructures, instances of that type (reject 
changed to accept) are discovered, but we are still missing 
the first anomalous example (accept changed to reject).   The 
issue is that we are dealing with multiple normative patterns 
(i.e., multiple substructures that can be considered normative 
in the entire graph.)  In this case, there are two basic 
normative patterns – one where the “ApprovalOfficer” and 
“CaseOfficer” both accept a case, and one where the 
“ApprovalOfficer” and “CaseOfficer” both reject a case.  
However, when we modified the GBAD-P algorithm to 
analyze the top N normative patterns, both of the examples 
where the “CaseOfficer” recommends rejecting the case but 
the “ApprovalOfficer” accepts the case, are reported as the 
most anomalous examples, and the next most anomalous 
instance reported is the other anomalous example.  Also, no 
other substructures were reported as anomalous along with 
these top three anomalies (i.e., no false positives). 

For Scenario 5, we randomly inserted into two examples 
the situation where a “CaseOfficer” recommends to accept a 
case for which they were not assigned.  In this scenario, 
GBAD-MDL does not report any anomalies, while both 
GBAD-MPS and GBAD-P each discover both anomalous 
instances.  GBAD-MPS discovers the anomalies because the 
“CaseOfficer” has assigned himself to the case without any 
corresponding recommendation back to the 
“ApprovalOfficer” or “Database”, while GBAD-P uncovers 
the extra “CaseOfficer” and his unauthorized assignment to 
the case.  Figure 13 shows the normative pattern and the 
anomalous structures from one of these examples.  Also, 
while not shown, this same structural anomaly can be found 
in scenario 7.  Scenario 7 consists of an extra edge going 
from the unauthorized “CaseOfficer” node to the 
“Customer” node, and as such is only different from 
Scenario 5 by the label on the edge and the targeted node. 

With the added aspect of time, found in Scenario 8, we 
are currently investigating the analysis of numerical 
attributes and how to incorporate them into the graph 
structure.  Our initial analysis of discrete values is not 
included in this paper, and is being addressed in future 
work.  It should also  
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