

Mining for Structural Anomalies in Graph-based Data
William Eberle and Lawrence Holder, Members, IEEE

Abstract—In this paper we present graph-based approaches
to mining for anomalies in domains where the anomalies
consist of unexpected entity/relationship alterations that closely
resemble non-anomalous behavior. We introduce three novel
algorithms for the purpose of detecting anomalies in all
possible types of graph changes. Each of our algorithms
focuses on a specific graph change and uses the minimum
description length principle to discover those substructure
instances that contain anomalous entities and relationships.
Using synthetic and real-world data, we evaluate the
effectiveness of each of these algorithms in terms of each of the
types of anomalies. Each of these algorithms demonstrates
the usefulness of examining a graph-based representation of
data for the purposes of detecting fraud.

I. INTRODUCTION
ecently there has been an impetus towards analyzing
multi-relational data using graph theoretic methods.

Not to be confused with the mechanisms for analyzing
“spatial” data, graph-based data mining approaches are an
attempt at analyzing data that can be represented as a graph
(i.e., vertices and edges). Yet, while there has been much
written as it pertains to graph-based data mining for
intrusion detection [13], very little research has been
accomplished in the area of graph-based anomaly detection.

Using information theoretic, probabilistic and maximum
partial substructure approaches, we have developed three
novel algorithms for analyzing graph substructures for the
purpose of uncovering all three types of graph-based
anomalies: modifications, insertions and deletions. In this
paper, we define what we consider to be an anomaly as it
relates to graphs. Then, we present the algorithms along
with some examples, followed by our results using
randomly-generated synthetic graphs two real-world data
sets. Finally, we conclude with some related work,
conclusions and future work.

II. RELATED WORK
Lin and Chalupsky [8] applied what they called rarity

measurements to the discovery of unusual links within a
graph. Using various metrics to define the commonality of
paths between nodes, the user was able to determine whether
a path between two nodes were interesting or not, without
having any preconceived notions of meaningful patterns.

One of the disadvantages of this approach was that while it
was domain independent, it assumed that the user was
querying the system to find interesting relationships
regarding certain nodes.

William Eberle is with the Department of Computer Science and

Engineering, University of Texas at Arlington, Arlington, TX 76019 USA.
(e-mail: eberle@cse.uta.edu).

Lawrence Holder is with the School of Electrical Engineering and
Computer Science, Washington State University, Pullman, WA 99164 USA.
(e-mail: holder@wsu.edu).

The AutoPart system presented a non-parametric
approach to finding outliers in graph-based data [1]. Part of
this approach was to look for outliers by analyzing how
edges that were removed from the overall structure affected
the minimum descriptive length (MDL) of the graph [11].
Representing the graph as an adjacency matrix, and using a
compression technique to encode node groupings of the
graph, he looked for the groups that reduced the
compression cost as much as possible. However, with this
approach, only the effect of edge removals on a graph’s
structure are examined.

In 2005, the idea of entropy was also used by Shetty and
Adibi [12] in their analysis of a real-world data set: the
famous Enron scandal. They used what they called “event
based graph entropy” to find the most interesting people in
an Enron e-mail data set. Using a measure similar to what
[9] had proposed, they hypothesized that the important
nodes (or people) were the ones who had the greatest effect
on the entropy of the graph when they were removed.
However, in this approach, the idea of important nodes did
not necessarily mean that they were anomalous.

In the 2005 SIGKDD Explorations, a couple of different
approaches to graph-based anomaly detection were
presented. Using just bipartite graphs, Sun et al. [14]
presented a model for scoring the normality of nodes as they
relate to the other nodes. Again, using an adjacency matrix,
they assigned what they called a “relevance score” such that
every node x had a relevance score to every node y, whereby
the higher the score the more related the two nodes.
Rattigan and Jensen [10] also went after anomalous links,
this time via a statistical approach. Using a Katz
measurement, they used the link structure to statistically
predict the likelihood of a link. While it worked on a small
dataset of author-paper pairs, their single measurement just
analyzed the links in a graph.

III. GRAPH-BASED ANOMALIES
Setting up fraudulent web-sites, “phishing” for credit

cards, stealing calling cards, and creating bogus bank
accounts are just some of the countless examples of scams
that have succumb everyone from the individual investor to
large corporations. In every case, the fraudster has
attempted to swindle their victim and hide their dealings
within a morass of data that has become proverbially known

 R

as the “needle in the haystack”. Yet, even when the data is
not relatively large in size, the ability to discover the
nefarious actions is still ultimately difficult due to the
mimicry of the perpetrator.

The idea behind the approach presented in this paper is to
find anomalies in graph-based data where the
anomalous substructure in a graph is part of (or attached to
or missing from) a normative substructure. This definition
of an anomaly is unique in the arena of graph-based
anomaly detection, as well as non-graph-based anomaly
detection. The concept of finding a pattern that is "similar"
to frequent, or good, patterns, is different from most
approaches that are looking for unusual or “bad”
patterns. While other non-graph-based data mining
approaches may aide in this respect, there does not appear to
be any existing approaches that deal with this scenario.

 Definition: Given a graph G with a normative substructure
S, a substructure S’ is considered anomalous if the difference
d between S and S’ satisfies 0 < d <= X, where X is a user-
defined threshold and d is a measure of the unexpected
structural difference between two sub-graphs of a graph.

The importance of this definition lies in its relationship to
fraud detection (i.e., deceptive practices that are intended to
illegally obtain or hide information). If a person or entity is
attempting to commit fraud, they will do all they can to hide
their illicit behavior. To that end, their approach would be
to convey their actions as close to legitimate actions as
possible. The United Nations Office on Drugs and Crime
states the first fundamental law of money laundering as “The
more successful money-laundering apparatus is in imitating
the patterns and behavior of legitimate transactions, the less
the likelihood of it being exposed.” [6].

A. Anomaly Types
For a graph-based anomaly, there are several situations

that might occur:
1. A vertex exists that is unexpected.
2. An edge exists that is unexpected.
3. The label on vertex is different than was expected.
4. The label on edge is different than was expected.
5. An expected vertex is absent.
6. An expected edge between two vertices is absent.
In essence, there are three general categories of anomalies:
insertions, modifications and deletions. Insertions would
constitute the first two situations; modifications would
consist of the third and fourth situation; and deletions would
categorize the last two situations.

B. Assumptions
Many of the graph-based anomaly detection approaches

up to now have assumed that the data exhibits a power-law
distribution. The advantage of the approaches presented in
this paper is that it does not assume the data consists of a
power-law behavior. In fact, no standard distribution model
is assumed to exist. All that is required is that the data is

regular, which in general means that the data is
“predictable”. While there are many data sets that are not
regular in nature, many of the real-world data sets that are
examined for fraudulent activity consist of user transactions
that exhibit regular patterns of behavior.

In order to address our definition of an anomaly, we make
the following assumptions about the data.

Assumption 1: The majority of a graph consists of a
normative pattern, and no more than X% of the normative
pattern is altered in the case of an anomaly.
Since our definition implies that an anomaly constitutes a
minor change to the prevalent substructure, we chose a small
percentage (e.g., 10%) to represent the most a substructure
would be changed in a fraudulent action.
Assumption 2: The graph is regular.
If a graph were irregular, the ability to distinguish between
anomalies and noise would be prohibitive.
Assumption 3: Anomalies consist of one or more
modifications, insertions or deletions.
As was described earlier, there are only three types of
changes that can be made to a graph. Therefore, anomalies
that consist of structural changes to a graph must consist of
one of these types.
Assumption 4: The normative pattern is connected.
In a real-world scenario, we would apply this approach to
data such as cargo shipments, telecommunication traffic,
financial transactions or terrorist networks. In all cases, the
data consists of a series of nodes and links that share
common nodes and links. Certainly, graphs could contain
potential anomalies across disconnected substructures, but at
this point, we are constraining our research to only
connected anomalies.

IV. GRAPH-BASED ANOMALY DETECTION ALGORITHMS
Most anomaly detection methods use a supervised

approach, which requires some sort of baseline of
information from which comparisons or training can be
performed. In general, if one has an idea what is normal
behavior, deviations from that behavior could constitute an
anomaly. However, the issue with those approaches is that
one has to have the data in advance in order to train the
system, and the data has to already be labeled (i.e.,
fraudulent versus legitimate).

Our work has resulted in the development of three
algorithms, which we have implemented using a tool called
GBAD (Graph-based Anomaly Detection). GBAD is an
unsupervised approach, based upon the SUBDUE graph-
based knowledge discovery system [2]. SUBDUE is a
graph-based knowledge discovery system that finds
structural, relational patterns in data representing entities
and relationships. Using a greedy beam search and
Minimum Description Length (MDL) heuristic, each of the
three anomaly detection algorithms uses SUBDUE to

provide the top substructure, or normative pattern, in an
input graph. In our implementation, the MDL approach is
used to determine the best substructure(s) as the one that
minimizes the following:

)()|(),(SDLSGDLGSM +=

where G is the entire graph, S is the substructure, DL(G|S) is
the description length of G after compressing it using S, and
DL(S) is the description length of the substructure.

Using GBAD as the tool for our implementation, we have
developed three separate algorithms: GBAD-MDL, GBAD-
P and GBAD-MPS. Each of these approaches is intended to
discover all of the possible graph-based anomaly types as set
forth earlier.

A. Information Theoretic Algorithm (GBAD-MDL)
In order to implement the GBAD-MDL algorithm, we

first use SUBDUE to discover the best substructure. In
addition to providing the normative pattern using an MDL
evaluation, SUBDUE also provides two other features: the
ability to specify inexact matching as a percentage of the
normative substructure, and a list of all instances that match
the best substructure. SUBDUE terminates processing when
there are no more extensions to candidate substructures,
whereas the GBAD-MDL algorithm continues processing
the best substructure, analyzing its instances for the one that
is closest in transformation cost to the normative pattern.

First, the algorithm modifies the best substructure list by
determining which substructure is actually the true
normative pattern. Since an inexact matching was used, it is
possible that the top substructure specified in SUBDUE (i.e.,
the best substructure), may not be the true normative pattern.
So, a search is performed on the list of instances, finding the
pattern that is the most frequent, and replacing the
previously specified best substructure with its structure.

Second, the new list of instances is compared to the new
best substructure, and each instance is given an anomalous
score equal to its cost of transformation (for transforming
the instance into the normative pattern). Then, for each
instance in the list that matches this instance (i.e.,
isomorphic), the anomalous score is increased by the value
of the cost of transformation, where the score is equal to the
cost of transformation times frequency.

For the last step, our GBAD-MDL implementation finds
the anomalous instance (or instances, if their anomalous
scores match), and flags the individual vertices and edges
that are anomalous. This is accomplished by comparing the
structure of the anomalous instance with the normative
substructure, and for each vertex and edge in the anomalous
instance that does not have a match in the normative pattern,
a flag is set. So, in the end, when the anomalous instance is
output by this implementation, there is an indicator next to
each individual anomaly.

The following is a simple example of results obtained
using our implementation of the GBAD-MDL algorithm

described above.
A

C B

A

D B

A

C B

A

C B

A

C B
Fig. 1. Simple graph for GBAD-MDL example.

Running the GBAD-MDL algorithm, the anomalous
substructure, as shown in Fig. 2, is:

A

D B
Fig. 2. Anomalous substructure from simple graph using GBAD-MDL.

which is exactly the desired result. (The individual anomaly
is in bold.) It should also be noted that no other
substructures are reported as anomalous. The above is
similar to the example that was presented in the paper by
Noble and Cook [9]. In their work they used the SUBDUE
application to look at the problem of anomaly detection from
the anomalous substructure and sub-graph perspective.

B. Probabilistic Algorithm (GBAD-P)
In order to implement the GBAD-P algorithm, we again

used SUBDUE to discover the best substructure. In
addition, we also used two other features provided by
SUBDUE: maintaining a list of all instances that match the
best substructure; iterating multiple times, compressing the
graph by the best substructure at each iteration. When
enough iterations are specified, SUBDUE terminates
processing when any more attempts at compressing the
graph would not result in a further reduction in its MDL.
After the first iteration, where the graph is compressed by
the normative pattern, the GBAD-P algorithm analyzes
extensions from each instance of the best substructure at
each iteration, looking for the ones with the lowest
probability of occurring.

First, SUBDUE’s logic for extensions is modified to only
extend one edge at each iteration. While the first iteration
works as-is in terms of performing extensions in order to
find the best substructure, subsequent iterations only process
single edge extensions from the newly compressed
substructure. This allows the GBAD-P algorithm to
eventually evaluate the probability of individual extensions.

Second, the algorithm modifies the list of best
substructure list by finding the best substructure that
contains the compressed normative pattern from the first
iteration. This is done to ensure that at each iteration we are
still working from the normative pattern. The first
substructure in the list that contains the compressed
normative pattern is moved to the top of the list as the best
substructure (since the list is already in order by value).

Third, for the newly defined best substructure, all of its
instances are evaluated in terms of their probability amongst
themselves. For each instance, a simple evaluation is
calculated where the probability of the instance is the
number of matching instances divided by the total number of
instances, all within the list of instances for the best

substructure. This value is then set as the anomalous score
for the corresponding instance.

After each iteration, our GBAD-P implementation prints
the anomalous instance (or instances, if their anomalous
scores match). The output is similar to what is produced by
the GBAD-MDL algorithm, except that the score is a value
from 0.0-1.0, and it is done after each iteration (except for
the first). By doing this over each iteration, it allows one to
view the growth of the anomaly, one edge at a time.

The following is a simple example of results obtained
using our implementation of the GBAD-P algorithm on a
network-looking structure, as shown in Fig. 3.

X

Y
G H

E F

Y
G H

E F

Y
G H

E F

Y
G H

E F
I

J

K
I

J

K

I

J

K

I

J

K

Fig. 3. Network-type graph.

In Fig. 3, there is a central node (labeled X) with four
connected identical star structures (each with a center node
labeled Y). Each of these star structures has an identical
smaller substructure (made up of vertices labeled I, J and K)
connected to it. However, one of the star structures has the
IJK substructure connected to its vertex labeled E, while the
others have it connected to their vertex labeled G.

Running the GBAD-P algorithm on this graph results in
the following three structures labeled as anomalous, as
shown in Fig. 4 (after the second iteration).

Y
H

E F

I
Y

H

E FJ

Y
H

E F

KG

G
G

Fig. 4. Anomalous structures when limit increased on GBAD-P example.

So, in essence, while it did report the anomaly as three
different substructures (all equal in probability), the
complete anomaly is discovered. It should also be noted that
on subsequent iterations, no more anomalous substructures
are found. (All of the subsequent candidates have a
probability of 100%.) This is because on the following
iteration, the instances of the best substructure are
compressed to a single vertex, and the other vertices (I, J
and K), are linked to that single vertex, with no former
knowledge of where they linked (i.e., whether they linked to
E or G). Possible future work could include a modification
to this approach to keep track of the original connections for
further evaluation.

C. Max Partial Substructure Algorithm (GBAD-MPS)
In order to implement the GBAD-MPS algorithm, again

we used SUBDUE to discover the best substructure. In
addition, we also used another feature provided by
SUBDUE: specifying the beam width of the search. By
default, SUBDUE uses a beam width of 4 which signifies
that it will only keep the top 4 substructures after evaluating
each extension. While this heuristic has proven to be
successful in SUBDUE’s ability to discover the normative
pattern, in order to be able to analyze substructures that
never extended to the normative pattern, which is necessary
for this algorithm, we need to extend the beam width so that
other substructures can be evaluated for anomalies. This
allows for us to keep track of those instances that are not
direct ancestors of the normative pattern. In the end,
SUBDUE terminates processing when there are no more
extensions to candidate substructures, while the GBAD-
MPS algorithm continues processing all of the ancestral
substructures, looking for the one that is closest in
transformation cost to the normative pattern

First, a list of substructures is maintained that consists of
substructures (and their instances) that at some point during
SUBDUE processing were used in evaluating their potential
for being the normative pattern. Even if a substructure fails
to make the “best” list at some point, it is still maintained on
this list as a possible anomalous substructure. While this list
can be rather large (and deserves some future memory-
saving analysis), since the normative pattern is not known at
this point, it has to be maintained until the final evaluation.

Second, the algorithm takes this list of substructures and
compares each substructure to the normative pattern. If a
substructure matches within the user specified anomalous
threshold (cost of transformation), each of its instances is
compared to the instances of the normative pattern. If an
instance overlaps one of the normative pattern’s instances
(i.e., all of its edges and vertices are found in one of the
normative instances), the instance is thrown out because it
could eventually extend to the normative pattern.

Third, each instance in the candidate list of instances is
given an anomalous score equal to its cost of transformation
(for transforming the instance into the normative pattern).
Then, for each instance in the list that is isomorphic to
another instance in the list, its anomalous score is increased
by the value of its cost of transformation (i.e., cost of
transformation * frequency).

In the end, our GBAD-MPS implementation prints the
anomalous instance (or instances, if their anomalous scores
match). This output is a little different from the other two
algorithms in that no anomalous vertices and edges are
indicated, just the entire anomalous instance. Since what is
anomalous is the lack of structure, a comparison of the
normative pattern to the anomalous substructure yields the
anomalous differences.

The following is a simple example of results obtained
using our implementation of the GBAD-MPS algorithm

described above.
D

B

C A

B

C A

B

C A

D D D

B

C A

B

C A

D

Fig.5. Simple graph for GBAD-MPS example.

The normative pattern from this graph is shown in Fig. 6.

B

C A

D

Fig. 6. Normative pattern from simple graph for GBAD-MPS example.

Now, suppose we remove one of the edges and its associated
vertex, from one of the instances of this normative pattern,
creating the graph shown in Fig. 7.

D

B

C A

B

C A

B

C A

D D D

B

C A

B

C A
Fig. 7. Simple graph for GBAD-MPS with deleted vertex and edge.

In other words, we removed one of the D vertices and its
associated edge. Running the maximum partial substructure
approach on this modified graph, results in the anomalous
instance shown in Fig. 8.

B

C A
Fig. 8. Anomalous instance from deletion example using GBAD-MPS.

However, this pattern is common to all of the normative
instances. So, for usefulness, we report the actual
anomalous graph instance specified in the input graph file.

V. SYNTHETIC EXPERIMENTS
For our synthetic experiments, we created graphs using a

tool called subgen [3] that generates graphs based upon
user-specified parameters, including:

• total number of vertices and edges
• list of possible vertex and edge labels and their

probabilities
• substructure pattern
• amount of connectivity

Using these parameters, subgen computes the number of
instances that need to be generated by calculating the size of
the graph and dividing by the size of the substructure pattern
(i.e., what we want to be the normative pattern). After the
graph is built from these instances, randomly-labeled
vertices (based upon their probabilities) are added in order
to achieve the desired graph size. Then randomly-labeled
edges (again based upon their probabilities) are added in
order to achieve the specified connectivity level. Finally,
any additional edges are added in order to achieve the

desired graph size.
In order to be consistent across all experiments, we chose

a star-cluster pattern as our normative pattern (i.e., a node
with connections to several other nodes, and each of those
nodes with several connections to other nodes). The choice
of this pattern was somewhat arbitrary, but it also resembles
many types of real-world data, such as networks, calling
trees, and financial transactions. Each synthetic graph
consisted of substructures containing a normative pattern (V
number of vertices and E number of edges), connected to
each other by one or more random connections, and each
test consisted of AV number of anomalous vertices and AE
number of anomalous edges.

Fig. 9 shows the effectiveness of the GBAD-MDL
approach. For graphs of varying sizes, from 100
vertices/edges to 10,000 vertices/edges, with a normative
pattern consisting of 10 vertices/9 edges, the results were
identical across the spectrum. In this figure, the X axis
represents the thresholds, the Y axis is the percentage of
anomalies discovered, and the Z axis indicates the sizes of
the anomalies.

0.01
0.025

0.05
0.075

0.1
0.15

1 vertex modified

1 edge modified

1 vertex/1 edge modified

2 vertices/1 edge modified

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

changes

Fig. 9. GBAD-MDL runs where all anomalies discovered

As expected, when the threshold is increased to
accommodate the size of the anomaly with respect to the
normative pattern, the anomalies are discovered 100% of the
time. The drawback is that as the threshold is increased, so
is the running time of the algorithm, and false positives, like
noise, will increase (i.e., the size of the reported anomaly is
equal to or smaller than that of the true anomaly).

Without changing any parameters, experiments using
GBAD-P and GBAD-MPS resulted in less than a 100%
discovery rate across all tests. However, when we increased
SUBDUE’s beam width parameter so that GBAD could be
provided a larger set of substructure instances to evaluate,
the result was a 100% discovery rate. The reason that the
number of substructures to evaluate has to be increased is
that as the size of the anomaly grows (i.e., the number of
vertices and edges inserted or deleted increases), the further
away the cost of transformation for the anomalous instance
is from the normative pattern. In addition, unlike with the
GBAD-MDL tests, there were no false positives reported
from any of the GBAD-P or GBAD-MPS synthetic tests.
Using varying sizes of normative patterns and anomalies,

each approach has shown to be useful at discovering a
specific type of anomaly. While the algorithms do not
appear to be useful outside of their intended targets, no
graphs of any size or any anomaly went undetected by all
three approaches.

One of the advantages of these algorithms is that they do
not just return the pattern of the anomaly – they also return
the actual anomalous instances within the data. In a real-
world scenario, that can be invaluable to an analyst who may
need to act upon a fraud situation before the losses are too
great. The disadvantage of these algorithms is that they are
focused on specific anomalies: modifications, insertions or
deletions. Thus, in a real-world scenario, it would require
that all three algorithms be used in conjunction, as the type
of anomaly would most likely be unknown.

VI. REAL-WORLD EXPERIMENTS

A. Cargo Shipments
One area that has garnered much attention recently is the

analysis and search of imports into the United States. The
largest number of imports into the U.S. arrive via ships at
ports of entry along the coasts. Thousands of suspicious
cargo, whether illegal or dangerous, are examined by port
authorities every day. Due to the volume, strategic decisions
must be made as to which cargo should be inspected, and
which cargo will pass customs without incident. A daunting
task that requires advanced analytical capabilities to
maximize effectiveness and minimize false searches.

Using shipping data obtained from the CBP
(http://www.cbp.gov/), we are able to create a graph-based
representation of the cargo information where row/column
entries are represented as vertices, and labels convey their
relationships as edges. Fig. 10 shows a portion of the actual
graph that we will use in our anomalous detection
experiments. While we were not given any labeled data
from the CBP (i.e., which shipments were illegal, or
anomalous, and which ones were not), we can draw some
results from random changes and from simulations of
publicized incidents.

ARRIVAL_INFO

“020601”

VDATE

SHIPMENT

COMMODITY

“EMPTY RACK”

COMMODITY

COUNTRIES_AND_PORTS

“YOKOHAMA”

“SEATTLE”

“JAPAN”

US_IMPORTER

FPORT

USPORT

COUNTRY

“AMERICAN TRI NET EXPRESS”

NAME

FOREIGN_SHIPPER

“TRI NET”

FNAME

VESSEL

“CSCO”

“LING YUN HE”

36

TARIFF

“CONTAINER FOR
ONE OR

MORE MODES OF
TRANSPORT”

HARM_DESC

860900

HSCODE

CONTAINER

FINANCIAL

CARGO

HAS_A

HAS_A
HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

“TOLU4972933”

CONTAINER

VALUE

27579

00434100

“”

“”

0.00

5.60

BOL_NBR

HAZMAT_FLA

CONSIZE

TEUS

MTONS

SLINE

VESSEL

VOYAGE

Fig. 10 Example of cargo data represented as a graph.

In [5], real-world cargo shipment occurrences were
generated so as to show how graph properties can be used to
determine structural anomalies in graphs. While that
approach was successful in discovering graphs that
contained anomalies, the exact anomalies were not part of
the output. Using the GBAD algorithms on these same data
sets, we can display the actual anomalies.

One example is from a press release issued by the U.S.
Customs Service. The situation is that almost a ton of
marijuana is seized at a port in Florida [15]. In this drug
smuggling scenario, the perpetrators attempt to smuggle
contraband into the U.S. without disclosing some financial
information about the shipment. In addition, an extra port is
traversed by the vessel during the voyage. For the most
part, the shipment looks like it contains a cargo of toys, food
and bicycles from Jamaica. When we run all three
algorithms on this graph, GBAD-MDL is unable to find any
anomalies, which makes sense considering none of the
anomalies are modifications. When the graph contains the
anomalous insertion of the extra traversed port, the GBAD-P
algorithm is able to successfully discover the anomaly.
Similarly, when the shipment instance in the graph is
missing some financial information, GBAD-MPS reports the
instance as anomalous.

According to CBP, an estimated $2 billion in illegal
textiles enter the U.S. every year [4]. One of the more
common methods of eluding authorities is accomplished
using what is called transshipment. The CBP defines
transshipment as “A false declaration or information given
in order to circumvent existing trade laws for the purpose of
avoiding quotas, embargoes or prohibitions, or to obtain
preferential duty treatment.” In order to circumvent quotas,
the fraudster will change the country of origin of their
goods. For example, they may ship the goods into Canada
or Mexico, change the country-of-origin, and ship into the
U.S. free from tariffs under the North American Free Trade
Agreement (NAFTA).

In order to simulate this real-world example, we randomly
changed the country of origin on one of the shipments to
“CANADA”. While the GBAD-P and GBAD-MPS
algorithms were unsuccessful in discovering this anomaly
(as was expected), the GBAD-MDL algorithm was able to
clearly mark the instance that contained the anomaly. At
first it was surprising that just a change in the country of
origin would have that effect, and given perhaps a different
set of data, this would not have been as effective. But, in
this case, all of the shipments had a normative pattern that
included Asian ports of origin. So, by altering the
originating country to Canada, the GBAD-MDL was able to
clearly notice the structural oddity.

B. Network Intrusions
One of the more applied areas of research when it comes

to anomaly detection can be found in the multiple
approaches to intrusion detection. The reasons for this are

http://www.cbp.gov/

its relevance to the real world problem of networks and
systems being attacked, and the ability of researchers to
gather actual data for testing their models. Perhaps the most
used data set for this area of research and experimentation is
the 1999 KDD Cup network intrusion dataset [7].

The KDD Cup data consists of connection records, where
a connection is a sequence of TCP packets. Each
connection record is labeled as either “normal”, or one of 37
different attack types. Each record consists of 31 different
features (or fields), with features being either continuous
(real values) or discrete. In the 1999 competition, the data
was split into two parts: one for training and the other for
testing. Groups were then allowed to train their solutions
using the training data, and were then judged based upon
their performance on the test data.

Since the GBAD approach uses unsupervised learning,
we will run the algorithms on the test data so that we can
judge our performance versus other approaches. Also,
because we do not know the possible structural graph
changes associated with network intrusions, we will have to
run all three algorithms to determine which algorithms are
most effective for this type of data. Each test contains 50
essentially random records, where 49 are normal records and
1 is an attack record, where the only controlled aspect of the
test is that there is only one attack record per data set. This
is done because the test data is comprised of mostly attack
records, which does not fit our definition of an anomaly,
where we are assuming that anomalous substructures are
rare. Fortunately, this again is a reasonable assumption, as
attacks would be uncommon in most networks.

Not surprisingly, each of the algorithms has a different
level of effectiveness when it comes to discovering
anomalies in intrusion data. Using GBAD-MDL, our ability
to discover attacks is relatively successful. Across all data
sets, 100% of the attacks are discovered. However, all but
the apache2 and worm attacks produce some false positives.
42.2% of the test runs do not produce any false positives,
while runs containing snmpgetattack, snmpguess, teardrop
and udpstorm attacks contribute the most false positives.
False positives are even higher for the GBAD-P algorithm,
and the discovery rate of actual attacks decreases to 55.8%.
GBAD-MPS shows a similarly bad false positive rate at
67.2%, and a lower discovery rate at 47.8%.

It is not surprising that GBAD-MDL is the most effective
of the algorithms, as the data consists of TCP packets that
are structurally similar in size across all records. Thus, the
inclusion of additional structure, or the removal of structure,
is not as relevant for this type of data, and any structural
changes, if they exist, would consist of value modifications.

VII. CONCLUSION
The three algorithms presented in this paper are able to

discover an anomaly when it consists of a small change to
the normative pattern. Using the minimum description
length principle and probabilistic approaches, we have been

able to successfully discover anomalies in graphs and
normative patterns of varying sizes with minimal to no false
positives. Results from both synthetic and real-world data
demonstrate the effectiveness of the approaches. We are
pursuing experiments on other domains that can be
represented as graphs, including citation and social
networks. While our results are effective in detecting
anomalies in a security area such as cargo shipments, other
possible applications of these approaches include post-9/11
terrorist networks and the Enron e-mail datasets (e.g.,
detecting anomalies in e-mail patterns among executives).

REFERENCES
[1] D. Chakrabarti. AutoPart: Parameter-Free Graph Partitioning and

Outlier Detection. Knowledge Discovery in Databases: PKDD 2004,
8th European Conference on Principles and Practice of Knowledge
Discovery in Databases, 112-124, 2004.

[2] D. Cook and L. Holder. Graph-based data mining. IEEE Intelligent
Systems 15(2), 32-41, 1998.

[3] D. Cook and L. Holder. Substructure Discovery Using Minimum
Description Length and Background Knowledge. Artificial
Intelligence Research, 1:231-255, 1994.

[4] Customs and Border Protection Today, “Illegal textile entries: a way
to save a few bucks?”, March 2003.
(http://www.cbp.gov/xp/CustomsToday/2003/March/illegal.xml)

[5] W. Eberle and L. Holder. Detecting Anomalies in Cargo Shipments
Using Graph Properties. Proceedings of the IEEE Intelligence and
Security Informatics Conference, 2006.

[6] M. Hampton and M. Levi. Fast spinning into oblivion? Recent
developments in money-laundering policies and offshore finance
centres. Third World Quartely, Volume 20, Number 3, June 1999, pp.
645-656, 1999.

[7] KDD Cup 1999. Knowledge Discovery and Data Mining Tools
Competition. 1999.
(http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html)

[8] S. Lin and H. Chalupsky. Unsupervised Link Discovery in Multi-
relational Data via Rarity Analysis. Proceedings of the Third IEEE
ICDM International Conference on Data Mining, 171-178, 2003.

[9] C. Noble and D. Cook. Graph-Based Anomaly Detection. Proceedings
of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 631-636, 2003.

[10] M. Rattigan and D. Jensen. The case for anomalous link discovery.
ACM SIGKDD Explor. Newsl., 7(2):41-47, 2005.

[11] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World
Scientific Publishing Company, 1989.

[12] J. Shetty and J. Adibi. Discovering Important Nodes through Graph
Entropy: The Case of Enron Email Database. KDD, Proceedings of
the 3rd international workshop on Link discovery, 74-81, 2005.

[13] S. Staniford-Chen et al.. GrIDS – A Graph Based Intrusion Detection
System for Large Networks. Proceedings of the 19th National
Information Systems Security Conference, 1996.

[14] J. Sun, H. Qu, D. Chakrabarti and C. Faloutsos. Relevance search and
anomaly detection in bipartite graphs. SIGKDD Explorations 7(2),
48-55, 2005.

[15] U.S. Customs Service: 1,754 Pounds of Marijuana Seized in Cargo
Container at Port Everglades. November 6, 2000.
(http://www.cbp.gov/hot-new/pressrel/2000/1106-01.htm)

http://www.cbp.gov/xp/CustomsToday/2003/March/illegal.xml
http://www.cbp.gov/hot-new/pressrel/2000/1106-01.htm

	I. INTRODUCTION
	II. related work
	III. graph-based anomalies
	A. Anomaly Types
	B. Assumptions

	IV. graph-based anomaly detection algorithms
	A. Information Theoretic Algorithm (GBAD-MDL)
	B. Probabilistic Algorithm (GBAD-P)
	C. Max Partial Substructure Algorithm (GBAD-MPS)

	V. synthetic experiments
	VI. real-world experiments
	A. Cargo Shipments
	B. Network Intrusions

	VII. Conclusion

