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Abstract

In this work we propose gRegress, a new algorithm
which given set a of labeled graphs and a real value
associated with each graph extracts the complete
set of subgraphs such that a) each subgraph in this
set has correlation with the real value above a user-
specified threshold and b) each subgraph in this set
has correlation with any other subgraph in the set
below a user-specified threshold. gRegress incor-
porates novel pruning mechanisms based on corre-
lation of a subgraph feature with the output and cor-
relation with other subgraph features. These prun-
ing mechanisms lead to significant speedup.
Experimental results indicate that in terms of run-
time, gRegress substantially outperforms gSpan,
often by an order of magnitude while the regression
models produced by both approaches have compa-
rable accuracy.

1 Motivation

Regression models are the trusted workhorse for predictive
modeling in a variety of application domains. The prob-
lem of mining subgraph features from a database of labelled
graphs (referred to as graph transactions) for building regres-
sion models is critical when an attribute-valued representa-
tion is insufficient to capture the domain of study. An ex-
ample of such a scenario would be the case where we are
trying to build a regression model for the toxicity of chemical
compounds which is a real value collected from in-vivo ex-
periments. The chemical compounds are represented as graph
transactions and the real value of interest associated with each
transaction is the toxicity. Is such a scenario, how do we ex-
tract relevant features for building a regression model? Cur-
rently the state of the art in this regard is the large body of
work on the problem of frequent subgraph mining (relevant
literature on this topic is reviewed later in the paper). A typ-
ical frequent subgraph mining algorithm will mine the com-
plete set of subgraphs with a user-defined frequency threshold
and these subgraphs can be used as features to build a regres-
sion model. Such an approach involving feature extraction
using a frequent subgraph mining algorithm has been stud-
ied in the context of the graph classification problem and has
been applied to the task of classifying chemical compounds
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[Deshpande et al., 2005] and proteins [Huan e al., 2004] with
promising results. However, this approach is plagued with a
number of problems which we now illustrate by describing a
small case study. The objective of this case study is to moti-
vate our approach and set the stage for the rest of the paper.

The case study involves building regression models for pre-
dicting the melting point of a set of chemical compounds (de-
tails on the data set can be found later in the paper) based
solely on subgraph features extracted by the frequent sub-
graph mining system gSpan using support vector regression.
We ran gSpan [Yan and Han, 2002] on the dataset at thresh-
olds ranging from 20% to 5% in 1% decrements with a max-
imum size of 10. Regression models were built using the
feature vectors based on the presence/absence of subgraph
features using SVR (Support Vector Regression) [Smola
and Scholkopf, 2004], [Cristianini and Shawe-Taylor, 2000]
(the particular implementation used was SVMIlite [Joachims,
1999]) and were evaluated using the Q? (details on the Q2
metric are found later in the paper) score on a 5-fold cross val-
idation. The Q2 score for the model, the number of subgraphs
discovered and the runtimes of gSpan for each threshold set-
ting are illustrated in Figure 1 (a), (b) and (c). We can observe
the following. First,the predictive accuracy of the regression
model improves as the threshold frequency reduces. This is
an expected result [Deshpande et al., 2005] and has been ob-
served earlier. It can be explained by the fact that additional
relevant subgraph features are available on which the model
can be based. Second, the number of frequent subgraphs and
the runtime also increases as the threshold decreases (as ex-
pected and observed earlier [Deshpande er al., 2005]) which
in the worst case is expected to grow exponentially with the
size of graph transactions and the number of graph transac-
tions.

These observations raise the question on how many of the
newly considered subgraph features actually contribute to in-
creased predictive accuracy of the regression model. To an-
swer this question we analyzed the frequent subgraphs gen-
erated at the threshold of 10%. Figure 1 (i) shows the ab-
solute pairwise correlations between subgraph features for
those subgraphs whose absolute correlation with the output
is at least 0.20. Pairwise correlation lower than 0.20 is de-
noted in black while pairwise correlation greater than 0.20 is
denoted in white. The subgraphs in black are the ones that
contribute most to the predictive accuracy of the regression



model based on these thresholds on correlation with the out-
put and the pairwise correlations. While these thresholds are
somewhat arbitrary, they do give a certain measure of the re-
dundancy of the subgraphs generated. Typically, feature se-
lection for building regression models considers the trade off
between how much a feature correlates with the output and
how much the feature correlates with the features already se-
lected. Our claim is that mining features based on their fre-
quency produces useful features but also produces additional
redundant features at an added cost. Of course, redundant fea-
tures could be eliminated by a simple post processing step but
this is computationally expensive as the redundant subgraphs
are still generated in the first place. We should prefer to mine
for a set of subgraphs such that each member of this set has
high correlation with the output value and that the members
of this set have low correlation with each other. Mining a
complete set of subgraphs based on two thresholds, correla-
tion with the output and correlation with other features, is an
intuitive approach for building regression models and, as this
work will show, is also computationally efficient. This brings
us to key contributions of this work:

1. For a given subgraph feature, we prove an upper bound
on the correlation with the output that can be achieved
by any supergraph for this subgraph feature.

2. For a given subgraph feature, we prove a lower bound
on the correlation that can be achieved by any super-
graph for this subgraph feature with any other subgraph
feature.

3. Using these two bounds we design a new algorithm
called gRegress, which extracts the complete set of sub-
graphs such that a) each subgraph in this set has correla-
tion with the real value above a user-specified threshold
and b) each subgraph has correlation with any other sub-
graph in the set below a user-specified threshold.

4. We conduct an experimental validation on a number of
real-world datasets showing that in terms of runtime,
gRegress substantially outperforms gSpan, often by an
order of magnitude while the regression models pro-
duced by both approaches have comparable accuracy.

2 Problem Formulation

Our graphs are defined as G = (Vg, Eq, La, La), where
Ve is the set of vertices, Fg C Vg x Vg is a set of
edges, L is the set of labels and L is the labelling function
Lg : Ve U Eg — Lg. The notions of subgraph (denoted by
G C G’), supergraph, graph isomorphism (denoted G = G”)
and subgraph isomorphism in the case of labelled graphs are
intuitively similar to the notions of simple graphs with the
additional condition that the labels on the vertexes and edges
should match. Our examples consist of pairs,

E= {< T1,Y1 >, < T2,Y2 >, ..., < Tn, Yn >}
where z; is a labelled graph and y; € R and is assumed to be
centered, that is, > ;¥ = 0. We define the set S to contain
every distinct subgraph of every graph in E. For any subgraph
feature g C x we define,

1, ifgCux
hy() = {—1, otherwise

We define the the indicator function I(z) = y.The absolute
correlation of a subgraph feature g; with the output is given
by,

h!]i 1

1]

Py .l =\ 171
I ”hgl

The absolute correlation of a a subgraph feature g; with an-
other subgraph feature g; is given by,

pgi,g]' =

||hg@|| thj I ‘

We can now define the problem as follows.

Given:
1. A set of examples E,

2. A threshold on the correlation with the output o € R,
0<a<l1

3. A threshold on the correlation between subgraph fea-

turess B e R,0< <1
Find: A maximal set H = {g1, go, ..., gk } such that,

1. Foreach g; € H,

hg, - 1
Pgi,1 H T
9 g | =
2. Forany g;,9; € H,
hgi ‘hg]
Pgi,g; = ' <p
2 Mg Ag, |

We now discuss why it makes intuitive sense to mine for
the set H. First, note that the formulation is in terms of abso-
lute correlations. This is simply because we are interested in
mining subgraph features with high correlations either posi-
tive or negative. Negative correlation, implying that the ab-
sence of a subgraph correlates with the output is equivalent to
positive correlation as the regression model will simply learn
negative weights for such a feature. Next, note that the set H
is the maximal or the largest possible set of subgraphs such
that a) each subgraph in this set has correlation with the real
value above a user-specified threshold « and b) each subgraph
has correlation with any other subgraph in the set below a
user-specified threshold 3. Feature selection for building re-
gression models considers the trade off between how much a
feature correlates with the output and how much the feature
correlates with the features already selected. The problem
definition intuitively captures this trade off.

3 Proposed Algorithm: gRegress

Given the formulation of the problem in the previous section a
naive solution would be an algorithm that searches the com-
plete space of subgraph features (of the graph transactions)
checking for each subgraph feature conditions (1) and (2) re-
taining only those subgraph features that satisfy all of them.
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Of course, one of the many canonical labeling schemes intro-
duced in frequent subgraph mining systems could be incorpo-
rated to prevent the generation of duplicate subgraph features
(relevant literature on this topic is reviewed later in the paper).

The critical problem here is determining pruning condi-
tions corresponding to the frequency antimonotone pruning
condition used by all frequent subgraph mining systems. The
frequency antimonotone pruning condition is a simple obser-
vation that if a subgraph feature has frequency below the user
specified threshold, no supergraph of this subgraph can be
frequent given this threshold. This simple observation allows
for massive pruning of the search space in the case of frequent
subgraph mining.

Thus the key problem is to answer the following two ques-
tions.

1. Given a subgraph feature, what is the highest possible
correlation any supergraph of this subgraph feature can
achieve with the output?

2. Given a subgraph feature what is the lowest possible
correlation any supergraph of this subgraph feature can
achieve with some other subgraph feature?

It must be noted that once we have a quantitative mea-
sure for questions (1) and (2) it becomes very easy to adapt
any frequent subgraph mining system to solve the problem at
hand. Quantitative measures for (1) and (2) in a sense corre-
spond to the frequency antimonotone condition in the case of
frequent subgraph mining.

For a graph g we define

my(z) = -1, ifI(z) <0
I (), ifI(z) >0
We have the following upper bound on the correlation any

supergraph of a subgraph feature can achieve with the output.
For some subgraph features g; and g; if g; C g;, then,

hg, -1

gj Mg, - I
g, || 1211

1]

Pg;, 1 =

”mgq‘,

Proof. 1t is easy to see that for any subgraph feature say g; if
hg,(x) = —1 then for no subgraph feature g; C g;, hy, (7) =
1. That is, all those « such that hy, () = —1, for any g; C g;
hg,(x) = —1. Furthermore, only for those = where h,, (z) =
1 can hy, (z) = —1 for some g; C g;. The highest possible
pg,,1 can occur in the case where for all - such that I(x) <0
hg,(x) = —1. The result follows. O

For a graph g we define
_[—=1, ifhy(x) >0
ny(@) = {hg, if g () < 0

We have the following lower bound on the correlation any
supergraph of a subgraph feature can achieve with some other
subgraph feature.

For some subgraph features g;, g; and g, if g; C g;, then,

hgj i hgk
([, | g

Ng, - hg,

K
[1Frg |

Pgj,gr =

Hngi

Proof. As before, is easy to see that for any subgraph feature
say g; if hg, () = —1 then for no subgraph feature g; C gy,
hg, (x) = 1. That is, all those « such that hy, (x) = —1, for
any g; C gi hg, () = —1. Furthermore, only for those x
where hg, () = 1 can hy, (z) = —1 for some g; C gi. The
lowest possible py. ¢, can occur in the case where for all x
such that hg, () > 0 hg, () = —1. The result follows. O

Using these bounds it is now possible to adapt any sub-
graph enumeration scheme to the task defined earlier. In par-
ticular, we adopt the DFS search and DFS canonical labelling
used by gSpan. The key steps of our algorithm, which we
refer to as gRegress, are summarized in Algorithm 3.1 and
Procedure 3.2.

Algorithm 3.1 gRegress(E,«.,(,S)

: P < DFS codes of 1-vertex subgraphs in F/
: for all g; such that g, € P do:

Extend(E, o, 3, S, H, g;)

: return H

Procedure 3.2 Extend(E, «, 3, S, H, g;)

1: if g not minimum DFS code :
2: return
hg, 1
3if | E—| <
T, i | =@
4: return
5: for all g; such that g; € H:
hy, hg,
6: if | —% 99 >0
;i [[ 1[4, [
7: return
8: H— HUy;
9: P « DFS codes of rightmost extensions of g;
10: for all g, such that g, € P :
I
11: if | o > a:
o, 0| = ©
. ng; ‘hg, .
12: for every g; € H if T, T <p:
95 Ik
13: Extend(E, a, 3, S, H, gx)

4 Experimental Evaluation

Our experimental evaluation of the proposed gRegress algo-
rithm seeks to answer the following questions.

1. How do the subgraph features extracted by gRegress
compare with frequent subgraph mining algorithms with
respect to predictive accuracy of the regression model
developed based on these features?

2. How does the gRegress algorithm compare with fre-
quent subgraph mining algorithms in terms of runtime
when applied to the task of feature extraction for build-
ing regression models?
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3. How does the runtime gRegress algorithm vary for vari-
ous choices of o and § parameters?

4.1 Selecting Data Sets and Choice of
Representation

In order to answer these questions we collected a number
of data sets. All the data sets are publicly available and are
from the domain of computational chemistry. They consist of
chemical compounds with a specific property of interest as-
sociated with each compound. They include the Karthikeyan
data set [Karthikeyan et al., 2005], the Bergstrom data set
[Bergstrom et al., 2003], the Huuskonen data set [Huuskonen,
2000], the Delaney data set, [Delaney, 2004] the ERBD data
set (Estrogen Receptor Binding Dataset) [Tong et al., 2002]
and the ARBD data set (Androgen Receptor Binding Data)
[Blair et al., 2000], [Branham et al., 2002]. In every case
we use a simple graph representation for the chemical com-
pounds with element symbols as vertex labels and bond types
as edge labels. The value for which the regression model to
be built was centered to have a mean of zero. No information
other than the subgraph features are used to build the regres-
sion models for any experiments reported in the paper.

4.2 Selecting a Frequent Subgraph Mining System

Among the various frequent subgraph mining systems to
compare gRegress with, we chose gSpan. While it is un-
clear whether gSpan is the best frequent subgraph mining
[Worlein et al., 2005], [Nijssen and Kok, ] (relevant litera-
ture on this topic is reviewed later in the paper) it can def-
initely be considered to be among the state of the art as far
as the frequent subgraph mining problem is concerned. In
order to ensure that our results generalize to frequent sub-
graph mining algorithms in general, we compare the number
of subgraphs considered by both gRegress and gSpan. This
is simply a count of all minimal DFS codes considered by
each of the systems. The difference between the number
of minimal DFS codes considered by gSpan and gRegress
gives us a measure of how gRegress compares with any other
frequent subgraph mining system. This is because different
frequent subgraph mining systems may use other forms of
canonical labelling and search mechanisms will prevent the
generation of duplicate subgraph features better than gSpan
and gRegress but every subgraph feature (the minimal code
in the case of gSpan and gRegress) will have to be consid-
ered at least once. If gRegress considers significantly fewer
subgraphs, the speedup in terms of runtime would most likely
apply to other frequent subgraph mining systems also.

4.3 Selecting a Regression Algorithm

Among the various approaches to regression we chose SVR
(Support Vector Regression) [Smola and Schélkopf, 20041,
[Cristianini and Shawe-Taylor, 2000] which can be consid-
ered among the state of the art as far as the regression problem
is concerned. In particular, we use the SVMLite [Joachims,
1999] package. While it is possible that in certain situations
other regression algorithms might outperform SVR, we find
it unlikely to get opposite results while comparing the quality
of the regression models based on the subgraph features pro-
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duced by gSpan and gRegress with any regression algorithm.
But in future work we will consider other regression methods.

4.4 The Q)? score

We use the Q2 score to evaluate the predictive accuracy of
the regression models. While other measures of regression
quality exist, we chose Q2 due to its use in evaluating other
graph regression methods [Saigo et al., 2008]. The Q? score
for a regression function f is defined as follows.

Do (Wi = f(:))?
2?21(%' - 717 Z?:1 Yi)?

Note that the Q2 score is a real number between 0 and 1 and
its interpretation is similar to the Pearson correlation coeffi-
cient. The closer it is to 1, the better the regression function
fits the testing data.

Q=

4.5 Experiments

In order to answer question (1) and (2) we conducted exper-
iments on gSpan and gRegress on the six data sets described
above. The subgraph features produced by each algorithm
were used to build a regression model using SVR. The pre-
dictive accuracy of the models was evaluated based on the
Q? score using a 5-fold cross validation. Additionally the
runtimes and the number of subgraphs considered by each al-
gorithm were also recorded. The maximum subgraph size for
each system was set to ten. The parameters of each system
(threshold frequency in the case of gSpan and the « and (3
parameters in the case of gRegress) were systematically var-
ied. While comparing results on the various runs of the algo-
rithms, we select the significantly highest Q2 scores achieved
by each system and then compare the lowest possible run-
times and the subgraphs considered for this Q? score. The in-
tuition behind this to compare the lowest computational cost
for the best possible predictive accuracy. The results of these
experiments are reported in Figure 1 (d), (e) and (f) .

In order to answer question (3) we ran gRegress on the
Karthikeyan data set (we chose this data set as this was the
largest data set in terms of transactions) with o and /3 pa-
rameters systematically varied in small increments of 0.05.
Figure 1 (g) and (h) illustrate these results with contour plots.

4.6 Observations

We can observe the following from the experimental results.

1. The predictive accuracy of the regression models based
on the features generated by gSpan and gRegress is com-
parable.

2. gRegress substantially outperforms gSpan in terms of
runtime and the number of subgraphs explored.

3. The runtime and the number of subgraphs explored by
gRegress increases for small values of « and large values

of (3.
5 Related Work

The field of graph mining or the discovery of interesting pat-
terns from structured data represented as graphs has been
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extensively researched and good surveys can be found in
[Washio and Motoda, 2003] and [Cook and Holder, 2006].

The problem of developing regression models from graph
transactions is relatively new as compared to the related prob-
lem of graph classification. Recently, [Saigo et al., 2008]
extended their boosting based approach for graph classifica-
tion to perform graph regression. In this work the authors
also propose an approach based on partial least square regres-
sion. Work related to the task of developing regression mod-
els from graph transactions also includes [Ke et al., 2007] in
which the authors investigate the search for subgraphs with
high correlation from a database of graph transactions.

6 Conclusions and Future Work

The findings of this work are as follows. Firstly, mining fea-
tures from graph transactions for building regression mod-
els based on their frequency produces useful features but also
produces additional redundant features at an added cost. Sec-
ondly, features can be mined based on two thresholds, cor-
relation with the output and correlation with other features,
at a significantly lower cost without sacrificing the predictive
accuracy of the regression model.

The work raises the following questions which we plan to
investigate as a part of our future work. First, how can the
relation between the o and (3 parameters and the predictive
accuracy of the regression model be characterized? Second,
how to systematically select the o and  parameters to get the
best regression model?
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