
February 9, 2004 17:21 WSPC/109-IJAIT 00140

International Journal on Artificial Intelligence Tools
Vol. 13, No. 1 (2004) 27–44
c© World Scientific Publishing Company

STRUCTURAL WEB SEARCH ENGINE

ARASH RAKHSHAN, LAWRENCE B. HOLDER, and DIANE J. COOK

Department of Computer Science and Engineering

University of Texas at Arlington

Box 19015, Arlington, Texas 76019-0015, USA

{rakhshan,holder,cook}@cse.uta.edu

Received 18 July 2003
Revised 19 October 2003
Accepted 19 October 2003

We present a new approach in web search engines. The web creates new challenges
for information retrieval. The vast improvement in information access is not the only
advantage resulting from the keyword search. Additionally, much potential exists for
analyzing interests and relationships within the structure of the web. The creation of
a hyperlink by the author of a web page explicitly represents a relationship between
the source and destination pages which demonstrates the hyperlink structure between
web pages. Our web search engine searches not only for the keywords in the web pages,
but also for the hyperlink structure between them. Comparing the results of structural
web search versus keyword-based search indicates an improved ability to access desired
information. We also discuss steps toward mining the queries input to the structural web
search engine.

Keywords: Web search; hyperlink structure; graph.

1. Introduction

Structural web search is the process of searching the web for a specific hyperlink

structure combined with textual content. Sometimes, it is not sufficient to apply

purely text-based methods to find a large number of potentially relevant pages.

People are likely to surf the web using its graph structure. The current web search

engines can be used in order to search for some keywords or some combination of

them without forcing any hyperlink structure between web pages. In other words

the result of a particular search engine would be a number of hits each containing

one web page.

In contrast the result of a structural web search engine (SWSE) is a number

of hyperlink graphs, where each node represents a web page containing certain

keywords and edges represent hyperlinks between web pages. The engine ensures

that these structural hits match the user’s structural query. For example, Fig. 1

shows a simple structural query in which the user is looking for a web page on

27

February 9, 2004 17:21 WSPC/109-IJAIT 00140

28 A. Rakhshan, L. B. Holder & D. J. Cook

“UTA” that has a hyperlink to a web page on “UTA Library” and that is linked to

from a web page containing “UTA Graduate”. The result of structural search for

such a query would be the same graph or hyperlink structure that the user has input

except that it already has the web pages which satisfy not only the pure keyword

search in a text-based search engine but also the hyperlink structure between them.

Fig. 2 shows a sample hit returned by SWSE.

UTA

UTA Library

UTA Graduate

Fig. 1. A sample structural query.

UTA

UTA Library

UTA Graduate

http://www.uta.edu

http://orgs.uta.edu

http://www.uta.edu/library

Fig. 2. A sample hit returned by SWSE.

In the next section we describe work related to structural web search. We then

discuss the components of our structural web search engine. Next, we present the

results of experiments comparing the results of the structural search to keyword-

based search engines. We then discuss steps toward mining the queries input to

the structural web search engine. We conclude with a discussion of the benefits of

structural web search and directions for future research.

2. Related Work

Some existing keyword-based search engines make use of hyperlink structure to im-

prove their performance. However, they do not support queries against the hyperlink

structure itself. Some research has investigated querying a graph representation of

the web, but has been limited to subsets of the web. We review these approaches

here and point out the advantages of our approach.

February 9, 2004 17:21 WSPC/109-IJAIT 00140

Structural Web Search Engine 29

2.1. Current use of hyperlink structure

Much research has been done on approaches to keyword-based web search, but the

hyperlink structure has received relatively little attention 3. While many search

engines utilize structure to rank pages, the structure itself is not searched. In the

Google search engine, a significant number of maps have been created of these

hyperlinks to allow rapid calculation of a web pages’ ”Page Rank” 1. PageRank

is an excellent way to prioritize the results of web keyword searches. Aside from

PageRank and the use of anchor text, Google has several other features. First, it

has location information for all hits, and so it makes extensive use of proximity in

search. Second, Google keeps track of some visual presentation details such as font

size of words. Third, full raw HTML of pages is available in a repository.

Another approach to using hyperlink structure for ranking pages is to identify

authoritative pages. The goal is to compile a list of web resources considered the

most authoritative for a broad and well-represented topic on the web. At first these

lists were constructed either manually or through a combination of human and

automated effort. The ARC system 2 for automatically compiling a list of authori-

tative web resources on any (sufficiently broad) topic operates fully automatically.

This technique is embodied in the Clever search engine for finding hub and author-

ity pages. A good hub has many hyperlinks to good authority pages, while a good

authority has many hyperlinks from good hub pages.

2.2. WebSUBDUE

Viewing the hyperlink structure of the web as a graph has been a strong motivation

to improve the result of the search engines. Combination of the keyword extraction

and using hyperlink structure has been the main idea of the recent research on the

web searches like WebSUBDUE 8.

WebSUBDUE is a tool which retrieves sites corresponding to structures formed

by graph-based user queries. WebSUBDUE is enhanced with a knowledge discovery

system called SUBDUE 4, that discovers patterns in structural data and performs

various types of data mining on the graph. SUBDUE discovers repetitive patterns,

or subgraphs, in the graph. Since SUBDUE accepts data in the form of a labeled

graph; in WebSUBDUE, the search query and the WWW are represented as labeled

graphs, and discovered instances are reported as the results of the query.

For example, Figure 3 shows the SUBDUE representation of the simple keyword-

based query “Structural Search Engines.” A web page is represented by a vertex

labeled as “ page ”, and the keywords in the web page are represented as separate

vertices labeled with the keyword. The relationships between the keywords and the

web page are shown as directed edges starting from the main vertex to the keyword

vertex labeled as the attribute, in this case “ word ”.

Data collection in WebSUBDUE is performed using a web robot which follows

links to pages residing on specified servers. As it traverses a web site, the robot

generates a graph file representing the specified site. Once the URLs have been

February 9, 2004 17:21 WSPC/109-IJAIT 00140

30 A. Rakhshan, L. B. Holder & D. J. Cook

page

Structural Search

Engines

word _word_

word

Fig. 3. SUBDUE format of a simple query.

crawled, a labeled graph is generated representing the website. The search engine

allows the user to create a graph for a new domain or search an existing graph.

New web sites can also be incrementally added to an existing graph. WebSUBDUE

invokes SUBDUE to find instances of the graphical query in the graph of the web

site. WebSUBDUE reports the graph vertices, edges and corresponding URLs for

each discovered instance. SUBDUE’s inexact graph match algorithm can be used

by WebSUBDUE to find web sites that closely, but not exactly, match the user

query.

In WebSUBDUE a sample WWW domain was tested to apply SUBDUE as a

structural search engine. A graph format of the sample domain was created and

the results were compared to the popular search engine, AltaVista. The power of

WebSUBDUE is revealed even in text searching. As it is obvious from the query

shown in Figure 3, we can use WebSUBDUE as a regular text-based search engine.

The experiments showed WebSUBDUE outperformed text-based search engines like

AltaVista. The main advantage of WebSUBDUE compared to other search engines

is the ability to search not only for the keywords in a web page, but also for a

specific structure between web pages imposed by the user query. Figure 4 shows

a possible query where the user is looking for a web page containing “Structural

Search Engines” which has a link to another web page containing “WebSUBDUE”.

Integrating WordNet, the electronic lexicon database5, to WebSUBDUE in-

creased the search quality by searching through web pages for not only the exact

keywords but also for synonyms of those presented in the user query. The exper-

imental results showed the capability of this search engine compared to popular

text-based search engines. These successful experiments led to extend the concepts

of structural search and develop the SWSE.

February 9, 2004 17:21 WSPC/109-IJAIT 00140

Structural Web Search Engine 31

page

Structural Search

Engines

Page

WebSUBDUE

word

word

word

hyperlink
word

Fig. 4. SUBDUE format of a structured query.

2.3. SWSE

In our Structural Web Search Engine (SWSE) in order to search and find the

hierarchical structure presented by the user, no data mining tool is required. So

there is no need for data preparation. SWSE benefits from the fact that the web

has been crawled with the most powerful and trusted web crawler by keyword based

search engines like Google. SWSE retrieves only the web pages it needs to crawl,

that is the web pages which already have keywords of interest to the user. It searches

for the hyperlink structure posed by the user between the web pages it retrieves.

The web pages do not have to be in any specific domain. SWSE uses a client-server

approach, and it can be used online like any other keyword-based search engine.

The SWSE’s web-based user-friendly interface allows the user to draw and edit

their query in graph form.

3. Structural Web Search

Fig. 5 shows a high-level overview of the Structural Web Search Engine (SWSE).

SWSE is implemented in Java and executed as a client-server application on the

web. SWSE is available at the following URL: http://swse.uta.edu.

The graph editor is a Java applet running on the client machine. Fig. 6 shows

the SWSE interface. The whole query represented as a graph in the client is sent to

the server as an object. A Java program listens for the users’ query on the server

and responds back to the client with the search result. The search result has the

same hyperlink structure as the query presented by the user except it has the web

pages satisfying not only the keyword search on each node but also the hyperlink

structure between those web pages.

Once the server obtains the graph, for each node in the graph, it sends an

appropriate query string, including the keywords in the node, to a search engine. In

February 9, 2004 17:21 WSPC/109-IJAIT 00140

32 A. Rakhshan, L. B. Holder & D. J. Cook

Given: Gq = (V, E), the query represented as a graph, where

vertices represent pages having one or more keywords,

edges represent hyperlinks.

Return: S = set of matches to Gq

begin

Gq ← graph obtained from the graph editor

for each vertex v ∈ V [Gq]

Hits(v)← Google Hits(keywords(v))

for each link e ∈ E[Gq], e : vi → vj

for each hit(vi) ∈ Hits(vi)

for each hit(vj) ∈ Hits(vj)

if there is a hyperlink such that hit(vi)→ hit(vj)

Add (hit(vi), hit(vj)) to linked list located at Matrix(i, j)

else

Remove hit(vi) from Hits(vi)

Gi ← a combination of URLs from Matrix

while not all possible combinations of URLs have been checked

if Gi is isomorphic to Gq

Add Gi to S

Gi ← another URL combination

return S

end

Fig. 5. SWSE server algorithm.

response, it receives the HTML pages, including the hits returned by the keyword-

based search engine, e.g., Google. The program parses the HTML pages and extracts

all of the hits.

Now for each node we have a number of URLs, each of which includes the

keywords specified in the node. The server tries to find those URLs that satisfy the

structure imposed by the query. In the following sections we describe in detail the

components of the SWSE algorithm.

3.1. Query presentation

In order to design a structural web search engine we need to have the query pre-

sented as a graph, so the desired hyperlink structure can be imposed by the user.

The nodes in the graph indicate web pages and the links between the nodes are the

hyperlinks between them. We have developed a prototype interface where the users

can draw their desired graph-based structure in a user-friendly graph editor and

specify the keywords for each web page by inserting the keywords into the graph

nodes. We assume the links are between two different nodes (i.e., no self links). This

February 9, 2004 17:21 WSPC/109-IJAIT 00140

Structural Web Search Engine 33

Fig. 6. Screen shot of the graph drawing tool.

is a reasonable assumption that reduces the complexity of the algorithm, because

if all nodes in the graph are in the same domain, this means that the links are for

navigational purposes, not for inferring useful information 7. Fig. 6 shows a screen

shot of a query in the graph drawing tool presented by a user when accessing the

SWSE.

3.2. Keyword hits extraction

The SWSE needs to find the web pages which satisfy the keywords provided in

each node of the graph query. Any text-based web search engine can be utilized to

crawl the web for the specified keywords and pull out the keyword matches. We

use Google because of the accuracy of its results. In order to extract the web pages

containing the keywords, parsing the pages returned by Google was required. The

customized Google search engine was helpful to ease the parse phase, but there

is no way to directly send the query string to the server and get the result back.

We needed a way to automatically extract the hits. Yahoo’s version of the Google

search engine provides such a facility. The keywords embedded in nodes of the

query are automatically sent to the text-based Google search engine via the proper

query string, and the results page is parsed to extract the web pages containing the

keywords. Based on this approach the user can put any keyword acceptable by the

Google search engine.

February 9, 2004 17:21 WSPC/109-IJAIT 00140

34 A. Rakhshan, L. B. Holder & D. J. Cook

This approach limits the result to the number of hits we can get from Yahoo’s

version of the Google search engine, which is usually less than all the hits the Google

search engine can find. We are contented with this number of hits, because the users

usually surf the very first hits returned by a keyword-based search engine, but we

do parse and extract as many hits as the Google search will provide us. With this

approach we can assume that if a user cannot find any result returned by SWSE,

he most likely cannot find any hit or any relevant hit by using a keyword-based

search engine like Google, even if they surf through all of the hits returned by the

search engine.

3.3. Search for hyperlink structure

Next, we need to find the specific structure imposed by the user between the web

pages extracted from the keyword-based search. For example, if there is a link in

the query from a node having ”UTA” as its keyword to another node having ”UTA

Library” (see Fig. 1), we need to pull out all of the links in the hits retrieved from

the first node, to see if there is such a hyperlink to a hit retrieved from the second

node.

Referring to the algorithm in Fig. 5, for each link e : vi → vj in the query graph,

the server picks the URLs retrieved for node vi one at a time and extracts the links

inside that web page to see if there is a link between that URL and a URL retrieved

for node vj . If there is no such link, it removes the URL from node vi, because it

does not satisfy the structural component of the query.







Null ... (URL1a, URLna′)
... (URLik, URLjk′)

...

(URLnv, URL1v′) ... Null







Fig. 7. Two dimensional array including linked lists of URL pairs.

These URL pairs are stored in a two dimensional array of linked lists (see Fig. 7).

We assign a unique number to each node in the graph before sending it to the server.

Based on these unique numbers we can put each URL pair in the right place. If the

two dimensional array is considered as an adjacency matrix of the graph (Matrix),

then the Matrix(i, j) element would be a linked list containing pairs of URLs

(e.g., (URLik, URLjk′)). The first element of the pair is a web page from the node

identified uniquely by the row number (e.g., kth hit of node i in our example). This

page has a link to the web page located at the second element of the pair, which

belongs to the node identified uniquely by the column number (e.g., k′th hit of node

j in the example).

After we fill this matrix with information obtained by examining the URLs, we

check all possible combinations of URLs to see if they satisfy all structural con-

February 9, 2004 17:21 WSPC/109-IJAIT 00140

Structural Web Search Engine 35

straints of the query. This step of the algorithm is very efficient, because we do

not have to use a full graph isomorphism test. The nodes for a particular combina-

tion of URLs are already mapped to the corresponding nodes of the query graph.

Therefore, checking for a match requires only checking that the edges are consistent.

3.4. Ranking the hits

In the current version of the application, all of the results are being treated the same,

that is, there is no ranking involved. The reason is that the web pages returned by

the Google search engine have the keywords the user is looking for, and the structure

should match the query structure exactly; otherwise, it is not a proper hit for our

search. Another reason is that the user has already fixed the nodes by inserting some

keywords in them, so no graph isomorphism is involved, and we cannot assume any

sort criteria over equally-valid isomorphic hits. One extension would be to allow

inexact matches to the query graph, which would involve the use of an inexact

graph isomorphism algorithm. The degree of match can be used to rank the results.

Another extension of this application would be exploiting WordNet5, the electronic

lexicon database. We can then rank the results based on a similarity criteria for the

keywords matching the query.

3.5. Saving the results

Another goal of this research is to mine the queries submitted to the SWSE to

see if there are prevalent patterns (sub-queries) in the user’s queries. Also, we may

be able to identify the type of user from sub-patterns in their query, information

that may be useful in ranking the hits. To achieve this goal we need to store the

queries posted by users including some additional information. The query is stored

in two different phases. The first phase occurs exactly after the server gets the

original query and before any other processes start, and it stores the query posted

by the user without any other information. The second phase occurs after the search

process is done and before the hits are sent to the client. In this phase we have more

information to store, and for mining purposes we add information about the client

URL so we can recognize identifying information about the user (e.g., whether they

are coming from a .com or a .edu domain). The number of hits returned by the

engine and timing information is included in the second phase. Figure 8 shows the

SWSE log for the query presented in figure 1.

3.6. Converting the data to SUBDUE format

As we discussed earlier, we use SUBDUE 4 in order to mine the queries stored in

the engine. The queries in both phases are stored in text format. We developed a

stand alone application to convert this text file to the suitable format for SUBDUE.

Fig. 9 shows the graph format accepted by SUBDUE for the query in Figure 1.

February 9, 2004 17:21 WSPC/109-IJAIT 00140

36 A. Rakhshan, L. B. Holder & D. J. Cook

date = Wed Apr 02 10:55:44 CST 2003

query {
node 1 ”uta”
node 2 ”uta library”
node 3 ”uta graduate”
link 1 2 ”null”
link 3 1 ”null”
}
hits per node {
node 1 40
node 2 40
node 3 40
}
max hits per node = 40
query hits = 23
Pulling hits out for all nodes takes: 443576 MilliSeconds
Extracting all possible pair of links between two web pages takes: 179 MilliSeconds
request ip: 192.168.1.1
request host: outside.ailab.uta.edu
request Scheme: http
time ms = 444813
}

Fig. 8. SWSE stored query format.

node

uta 1

num_keywordskeyword

host

node node

uta

Graduate

uta

Library
2

host host

num_keywords
keyword

num_keywords 2
keyword

keyword

keyword

hyperlink

hyperlink node

domain

.edu

Fig. 9. Graph format of the query after adding more information.

4. Experimental Results

Since this is the first time a structural search is provided; we cannot compare

the SWSE results with a similar search engine. To evaluate the capabilities of the

February 9, 2004 17:21 WSPC/109-IJAIT 00140

Structural Web Search Engine 37

SWSE, we compare query results of SWSE with search results generated using three

popular keyword-based search engines: Google, Altavista and Infoseek. Google’s

advanced search features include the use of link structure of the web to calculate a

quality ranking for each web page and utilize them to improve search results. This

provides a valuable point of comparison for the results discovered by SWSE.

4.1. Test query

As a test query, suppose we are looking for specific information about “Alfred

Nobel”. He focused on the development of chemical inventions, including such ma-

terials as synthetic rubber, synthetic leather, and artificial silk. He became wealthy

and purchased an elegant mansion at Avenue Malakoff. He established close contact

with Victor Hugo and other writers. Meanwhile his brothers joined in exploiting

the oil wells in the Caspian Sea area.

Alfred Nobel

Artificial Silk

Caspian Sea Oil Wells

Victor Hugo Malakoff

Fig. 10. Experimental query 1.

With the goal of finding a set of URLs relating the people and places described

above, we gave SWSE the query shown in Fig. 10. The bidirectional arrow indicates

the constraint that links exist in both directions.

Table 1. Experimental Results.

Keyword Satisfying URL Google Altavista Infoseek

Alfred http://nobel.se/nobel/alfred-nobel/
Nobel biographical/index.html 3 11 15

Artificial http://nobel.se/nobel/alfred-nobel/
Silk biographical/sanremo/index.html 493 N/A N/A

Victor Hugo http://nobel.se/nobel/alfred-nobel/
Malakoff biographical/malakoff/index.html 4 15 32

Caspian Sea http://nobel.se/nobel/alfred-nobel/
Oil Wells biographical/life-work/russia.html 393 482 N/A

The results are summarized in Table 1. The first column of the table shows the

keywords inserted in each node. After running the SWSE on the provided query,

February 9, 2004 17:21 WSPC/109-IJAIT 00140

38 A. Rakhshan, L. B. Holder & D. J. Cook

the web pages’ URLs which satisfy the keywords and hyperlink structure of the

presented query are provided in the second column of the table. All of the search hits

were retrieved at the time of writing the paper. There may be slight changes if they

are tried at a different time. We provided the keywords in the query (“Alfred Nobel

Artificial Silk Victor Hugo Caspian Sea Oil Wells”) to all of the three keyword-

based search engines and no results were found. In some cases even if we removed

some of the keywords (e.g., “Oil” or “Wells”), still we did not get any result back

or we got some results which were irrelevant to the topics of interest. For example,

when we provided another query (the same keywords without “Malakoff” and “Oil

Wells”) to the Google search engine, we got 35 hits, but none of them included

any of the URLs satisfying the structural query. Another experiment we conducted

was trying to retrieve the results of keyword-based search engines for the keywords

in each node individually. The results of this experiment are provided in the table

under “Google”, “Altavista” and “Infoseek” columns. The number represents the

rank of the URL from the second column in the hits returned by the search engine

(N/A means the URL was not in the returned list).

4.2. Common queries

We next considered more common examples demonstrating the inability of purely

keyword-based approaches to find desire information. Fig. 10 shows a possible query

from a user looking for a book by “Dietel” entitled “How to Program” that is

pointed to by a “chapter” on “JMX” at “Sun”, i.e., the user wants to be sure the

book is recommended by the Sun company. In our search engine this query results

in a hit relating a Sun Java web page that has a link to a Java book published by

Prentice Hall, which is linked to from the web page for Dietel. The Google search

returns no matches for the query “sun JMX chapter Deitel How to program”.

Sun JMX Chapter Dietel

How to program

Fig. 11. Experimental query 2.

Query 3 shown in Fig. 12 may represent a student looking for UT campuses

and information about visitors and the library at UTA (UT Arlington). The SWSE

returned two hits to this query, but these hits were not found by Google, Altavista,

or Infoseek using the keyword query “UT UTA campuses visitors library”. Finally,

February 9, 2004 17:21 WSPC/109-IJAIT 00140

Structural Web Search Engine 39

query 4 in Fig. 13 may represent a student looking at UT campuses and information

for prospective students in three Texas universities. SWSE returns one hit, which

was not found by Google, Altavista, or Infoseek using the keyword query “UT

campuses Austin Arlington Dallas Prospective students”.

UTA

UTA VisitorsUTA Library

UT Campuses

Fig. 12. Experimental query 3.

Prospective Students
UT Dallas

Prospective Students
UT Arlington

Prospective Students
UT Austin

UT Campuses

Fig. 13. Experimental query 4.

The results of these experiments indicate the ability of the structural web search

engine to more quickly find hits possessing desired relationships among the topics

of interest.

4.3. User experience

While users found the SWSE interface easy to use, there was some learning neces-

sary on the part of the user in order to retrieve query matches. The SWSE works

by performing individual keyword searches for each node in the query. So, if the

nodes of a query all have general keywords, then there is a low probability that

the retrieved pages would have hyperlinks between them. For example, if a user is

looking for information about our graduate school and libraries at our university

(UTA), they might enter a query like that in Fig. 14a. However, SWSE would not

return any results for this query, because the first 40, or even first 100, hits on

“Graduate” and “Library” would most likely not be those associated with “UTA”.

February 9, 2004 17:21 WSPC/109-IJAIT 00140

40 A. Rakhshan, L. B. Holder & D. J. Cook

UTA

 Graduate Library

UTA

UTA GraduateUTA Library

(b)(a)

Fig. 14. Two alternative queries for information about graduate school and libraries at UTA.

One approach to this issue is for the user to include the keywords of root nodes

to the keywords of the other nodes. For example, the query in Fig. 14b will allow the

SWSE to find some hits to the query within the first 40 hits of the individual node

keyword searches. A better approach might be to automatically propagate root

node keywords to child nodes before executing the query. That is, automatically

transform a query like Fig. 14a into that of Fig. 14b. This would be a good direction

for future improvements to the search engine.

5. Preliminary Query Mining Experiments

As the number of queries stored by the SWSE increases, we intend to mine

the queries for prevalent patterns (sub-queries). To test the potential of this ap-

proach, we have applied the graph-based data mining system SUBDUE4 to a set

of artificially-generated queries with known common patterns.

5.1. Experiment 1

In this experiment we constructed 100 queries containing the pattern shown in

Fig. 15. We also added some random extra structure and keywords to each query.

We believe this structure represents a typical level of query complexity based on

preliminary data.

University of Texas

Admissions Graduate Catalog

Fig. 15. Common pattern in queries for experiment 1.

February 9, 2004 17:21 WSPC/109-IJAIT 00140

Structural Web Search Engine 41

As a reminder, the SUBDUE format of the query shown in Fig. 15 would be

much more complex than what the subgraph itself looks like. As we discussed earlier

each attribute is presented as a single node attached to a main node with a labeled

edge (see Fig. 16).

node

University

of

Texas

node

Graduate

Catalog

node

Admissions

hyperlink

hyperlink

hyperlink

keyword
keyword

keyword

keyword

keyword

keyword

Fig. 16. SUBDUE format of the common pattern for experiment 1.

We ran SUBDUE on this set of 100 graphs and were able to discover the exact

pattern from Fig. 15. We also experimented with adding noise (changing keywords

and adding/deleting edges) to corrupt the patterns. SUDBUE was able to correctly

identify the pattern up to 40% noise levels.

5.2. Experiment 2

Experiment 2 tests whether or not we can find a query pattern that can distinguish

two types of users. We construct 100 queries in which 50 queries are considered

to be from “.com” sites and 50 from “.edu” sites. In order to show that a query

is posted by ”.edu” or ”.com” domain, we add another node to the graph having

”.edu” or ”.com” as the keyword and a edge with ”domain” as the label. This edge

connects to a central “node” vertex that is connected to the web page nodes of the

query using a “host” edge. We connect this node to all of the nodes in the graph

to indicate this property is an entire graph property. See Figures 17 and 18 for

examples. We use a simple pattern to distinguish the two types of queries. Queries

from “.edu” domains contain the keyword “Admissions”, and queries from “.com”

domains contain the keyword “Company”.

For this task we execute SUBDUE in concept learning mode6 and input a set

of positive examples (“.edu” query graphs) and negative examples (“.com” query

February 9, 2004 17:21 WSPC/109-IJAIT 00140

42 A. Rakhshan, L. B. Holder & D. J. Cook

University of Arlington

Admissions

Graduate School

Fig. 17. A sample query for the “.edu” domain.

node

node

node node

Careers Products

Sun Company

.com

keyword _keyword_

host

host

host

keyword
keyword

domain

hyperlink _hyperlink_

Fig. 18. A sample query for “.com” domain represented in SUBDUE format.

graphs). In this experiment SUBDUE correctly identified the distinguishing feature

of a web page containing the keyword “Admissions”. We also experimented with

varying the number of positive example versus negative examples. Subdue was able

to identify the correct distinguishing feature with as few as 20% positive examples,

i.e., 20 positive and 80 negative examples.

The results in this section indicate the potential of learning valuable patterns

from users’ queries posted to the SWSE. As the engine gains in popularity, we

hope to compile a large number of real queries on which we can perform similar

processing with SUBDUE to discover real patterns.

February 9, 2004 17:21 WSPC/109-IJAIT 00140

Structural Web Search Engine 43

6. Conclusions and Future Work

People are likely to surf the web using its link graph 1. Visitors to a web site often

”get lost in cyberspace” when they lose the context in which they are browsing and

are unsure how to proceed in terms of satisfying their original goal 9. Structural

web search addresses this problem. We developed a search engine which the user

can use to obtain information trails (or navigation paths) in response to a single

query. The SWSE increases productivity while surfing the web, being more precise

than keyword-based search engines and manually navigating the web pages.

Much research has focused on using hyperlink information in some way to en-

hance web search 2. Although these systems use hyperlink structure to rank re-

trieved web pages, they do not perform structural search. In contrast, SWSE per-

forms search to find a structural query combined with textual content. The exper-

imental results reveal the advantage of this approach over a traditional keyword-

based search engine when the user is interested in both the hyperlink structure of

the web pages and the keywords embedded in those web pages. We intend to fur-

ther improve the approach by allowing the user to add keywords to the graph edges

in order to constrain the anchor text on hyperlinks, and by using inexact graph

matching to find close matches and rank the matches by their degree of closeness.

The results described in this paper suggest a number of research directions

impacting the areas of machine learning and data mining from graph structure.

The mining of the web link structure has intellectual antecedents in the context

of graph-based knowledge discovery and data mining systems (e.g., SUBDUE4).

We intend to collect the structural queries entered by users and apply graph-based

data mining to these queries to find common patterns and clusters. SUBDUE is

a data mining tool that discovers repetitive substructures in graph-based data.

We intend to input our graphical representation of the queries into SUBDUE and

discover common patterns between the queries, classify them and find clusters to

better understand, predict and optimize typical users’ queries. Preliminary results

indicate this approach has promise.

Acknowledgments

This work was supported by the National Science Foundation grant 0097517.

References

1. S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine,
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

2. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan,
Automatic resource list compilation by analyzing hyperlink structure and associated
text, Proceedings of the 7th International World Wide Web Conference, 1998.

3. S. Chakrabarti, B. Dom, S. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, D. Gib-
son, and J. Kleinberg, Mining the Web’s link structure, Computer, 32(8):60–67, 1999.

4. D. J. Cook and L. B. Holder, Graph-based data mining, IEEE Intelligent Systems,
15(2):32–41, 2000.

February 9, 2004 17:21 WSPC/109-IJAIT 00140

44 A. Rakhshan, L. B. Holder & D. J. Cook

5. C. Fellbaum (editor), WordNet: An Electronic Lexical Database, MIT Press, 1998.
6. J. Gonzalez, L. Holder, and D. Cook, Graph-based relational concept learning, Pro-

ceedings of the Nineteenth International Conference on Machine Learning, 2002.
7. J. Kleinberg, Authoritative sources in a hyperlinked environment, Proceedings of the

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668–677, January
1998.

8. N. Manocha, D. Cook, and L. Holder, Structural web search using a graph-based
discovery system, Intelligence, 12(1):20–29, 2001.

9. J. Nielsen, Designing Web Usability, New Riders Publishing, 2000.

