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Abstract

We propose a novel search-based approach
for greedy coreference resolution, where
the mentions are processed in order and
added to previous coreference clusters.
Our method is distinguished by the use
of two functions to make each corefer-
ence decision: a pruning function that
prunes bad coreference decisions from fur-
ther consideration, and a scoring function
that then selects the best among the re-
maining decisions. Our framework re-
duces learning of these functions to rank
learning, which helps leverage powerful
off-the-shelf rank-learners. We show that
our Prune-and-Score approach is superior
to using a single scoring function to make
both decisions and outperforms sever-
al state-of-the-art approaches on multiple
benchmark corpora including OntoNotes.

1 Introduction

Coreference resolution is the task of clustering a
set of mentions in the text such that all mentions in
the same cluster refer to the same entity. It is one
of the first stages in deep language understanding
and has a big potential impact on the rest of the
stages. Several of the state-of-the-art approaches
learn a scoring function defined over mention pair,
cluster-mention or cluster-cluster pair to guide the
coreference decision-making process (Daumé II-
I, 2006; Bengtson and Roth, 2008; Rahman and
Ng, 2011b; Stoyanov and Eisner, 2012; Chang et
al., 2013; Durrett et al., 2013; Durrett and Klein,
2013). One common and persistent problem with
these approaches is that the scoring function has to
make all the coreference decisions, which leads to
a highly non-realizable learning problem.

Inspired by the recent success of theHC-Search
Framework (Doppa et al., 2014a) for studying a

variety of structured prediction problems (Lam et
al., 2013; Doppa et al., 2014c), we study a novel
approach for search-based coreference resolution
called Prune-and-Score. HC-Search is a divide-
and-conquer solution that learns multiple compo-
nents with pre-defined roles, and each of them
contribute towards the overall goal by making the
role of the other components easier. The HC-
Search framework operates in the space of com-
plete outputs, and relies on the loss function which
is only defined on the complete outputs to drive it-
s learning. Unfortunately, this method does not
work for incremental coreference resolution since
the search space for coreference resolution con-
sists of partial outputs, i.e., a set of mentions only
some of which have been clustered so far.

We develop an alternative framework to HC-
Search that allows us to effectively learn from par-
tial output spaces and apply it to greedy corefer-
ence resolution. The key idea of our work is to
address the problem of non-realizability of the s-
coring function by learning two different function-
s: 1) a pruning function to prune most of the bad
decisions, and 2) a scoring function to pick the
best decision among those that are remaining. Our
Prune-and-Score approach is a particular instanti-
ation of the general idea of learning nearly-sound
constraints for pruning, and leveraging the learned
constraints to learn improved heuristic function-
s for guiding the search. The pruning constraints
can take different forms (e.g., classifiers, decision-
list, or ranking functions) depending on the search
architecture. Therefore, other coreference resolu-
tion systems (Chang et al., 2013; Durrett and K-
lein, 2013; Björkelund and Kuhn, 2014) can also
benefit from this idea. While our basic idea of two-
level selection might appear similar to the coarse-
to-fine inference architectures (Felzenszwalb and
McAllester, 2007; Weiss and Taskar, 2010), the
details differ significantly. Importantly, our prun-
ing and scoring functions operate sequentially at



each greedy search step, whereas in the cascades
approach, the second level function makes its pre-
diction only when the first level decision-making
is done.

Summary of Contributions. The main contribu-
tions of our work are as follows. First, we moti-
vate and introduce the Prune-and-Score approach
to search-based coreference resolution. Second,
we identify a decomposition of the overall loss
of the Prune-and-Score approach into the pruning
loss and the scoring loss, and reduce the problem
of learning these two functions to rank learning,
which allows us to leverage powerful and efficien-
t off-the-shelf rank learners. Third, we evaluate
our approach on OntoNotes, ACE, and MUC da-
ta, and show that it compares favorably to sever-
al state-of-the-art approaches as well as a greedy
search-based approach that uses a single scoring
function.

The remainder of the paper proceeds as follows.
In Section 2, we dicuss the related work. We intro-
duce our problem setup in Section 3 and then de-
scribe our Prune-and-Score approach in Section 4.
We explain our approaches for learning the prun-
ing and scoring functions in Section 5. Section 6
presents our experimental results followed by the
conclusions in Section 7.

2 Related Work

The work on learning-based coreference resolu-
tion can be broadly classified into three types.
First, the pair-wise classifier approaches learn a
classifier on mention pairs (edges) (Soon et al.,
2001; Ng and Cardie, 2002; Bengtson and Roth,
2008), and perform some form of approximate de-
coding or post-processing using the pair-wise s-
cores to make predictions. However, the pair-wise
classifier approach suffers from several drawback-
s including class imbalance (fewer positive edges
compared to negative edges) and not being able to
leverage the global structure (instead making in-
dependent local decisions).

Second, the global approaches such as Struc-
tured SVMs and Conditional Random Fields
(CRFs) learn a cost function to score a potential
clustering output for a given input set of men-
tions (Mccallum and Wellner, 2003; Finley and
Joachims, 2005; Culotta et al., 2007; Yu and
Joachims, 2009; Haghighi and Klein, 2010; Wick
et al., 2011; Wick et al., 2012; Fernandes et al.,
2012). These methods address some of the prob-

lems with pair-wise classifiers, however, they suf-
fer from the intractability of “Argmin” inference
(finding the least cost clustering output among ex-
ponential possibilities) that is encountered during
both training and testing. As a result, they resort to
approximate inference algorithms (e.g., MCMC,
loopy belief propagation), which can suffer from
local optima.

Third, the incremental approaches construct the
clustering output incrementally by processing the
mentions in some order (Daumé III, 2006; De-
nis and Baldridge, 2008; Rahman and Ng, 2011b;
Stoyanov and Eisner, 2012; Chang et al., 2013;
Durrett et al., 2013; Durrett and Klein, 2013).
These methods learn a scoring function to guide
the decision-making process and differ in the form
of the scoring function (e.g., mention pair, cluster-
mention or cluster-cluster pair) and how it is being
learned. They have shown great success and are
very efficient. Indeed, several of the approach-
es that have achieved state-of-the-art results on
OntoNotes fall under this category (Chang et al.,
2013; Durrett et al., 2013; Durrett and Klein,
2013; Björkelund and Kuhn, 2014). However,
their efficiency requirement leads to a highly non-
realizable learning problem. Our Prune-and-Score
approach is complementary to these methods, as
we show that having a pruning function (or a set
of learned pruning rules) makes the learning prob-
lem easier and can improve over the performance
of scoring-only approaches. Also, the models in
(Chang et al., 2013; Durrett et al., 2013) try to
leverage cluster-level information implicitly (vi-
a latent antecedents) from mention-pair features,
whereas our model explicitly leverages the cluster
level information.

Coreference resolution systems can benefit
by incorporating the world knowledge including
rules, constraints, and additional information from
external knowledge bases (Lee et al., 2013; Rah-
man and Ng, 2011a; Ratinov and Roth, 2012;
Chang et al., 2013; Zheng et al., 2013; Hajishirzi
et al., 2013). Our work is orthogonal to this line
of work, but domain constraints and rules can be
incorporated into our model as done in (Chang et
al., 2013).

3 Problem Setup

Coreference resolution is a structured pre-
diction problem where the set of mentions
m1,m2, · · · ,mD extracted from a document cor-



reponds to a structured input x and the structured
output y corresponds to a partition of the men-
tions into a set of clusters C1, C2, · · · , Ck. Each
mention mi belongs to exactly one of the clusters
Cj . We are provided with a training set of input-
output pairs drawn from an unknown distribution
D, and the goal is to return a function/predictor
from inputs to outputs. The learned predictor
is evaluated against a non-negative loss function
L : X ×Y×Y 7→ <+, L(x, y′, y) is the loss asso-
ciated with predicting incorrect output y′ for input
x when the true output is y (e.g., B-Cubed Score).

In this work, we formulate the coreference
resolution problem in a search-based framework.
There are three key elements in this framework:
1) the Search space Sp whose states correspond
to partial clustering outputs; 2) the Action prun-
ing function Fprune that is used to prune irrelevant
actions at each state; and 3) the Action scoring
function Fscore that is used to construct a com-
plete clustering output by selecting actions from
those that are left after pruning. Sp is a 3-tuple
〈I, A, T 〉, where I is the initial state function, A
gives the set of possible actions in a given state,
and T is a predicate which is true for terminal s-
tates. In our case, s0 = I(x) corresponds to a s-
tate where every mention is unresolved, and A(si)
consists of actions to place the next mention mi+1

in each cluster in si or a NEW action which creates
a new cluster for it. Terminal nodes correspond to
states with all mentions resolved.

We focus on greedy search. The decision pro-
cess for constructing an output corresponds to s-
electing a sequence of actions leading from the
initial state to a terminal state using both Fprune
and Fscore, which are parameterized functions
over state-action pairs (Fprune(φ1(s, a)) ∈ < and
Fscore(φ2(s, a)) ∈ <), where φ1 and φ2 stand for
feature functions. We want to learn the parameters
of both Fprune and Fscore such that the predicted
outputs on unseen inputs have low expected loss.

4 Greedy Prune-and-Score Approach

Our greedy Prune-and-Score approach for coref-
erence resolution is parameterized by a pruning
function Fprune : S × A 7→ <, a scoring func-
tion Fscore : S × A 7→ <, and a pruning param-
eter b ∈ [1, Amax], where Amax is the maximum
number of actions at any state s ∈ S . Given a
set of input mentions m1,m2, · · · ,mD extracted
from a document (input x), and a pruning param-

Algorithm 1 Greedy Prune-and-Score Resolver
Input: x = set of mentions m1,m2, · · · ,mD from
a document D, 〈I, A, T 〉 = Search space defini-
tion, Fprune = learned pruning function, b = prun-
ing parameter, Fscore = learned scoring function

1: s← I(x) // initial state
2: while not T (s) do
3: A

′ ← Top b actions from A(s) according to
Fprune // prune

4: ap ← argmaxa∈A′ Fscore(s, a) // score
5: s← Apply ap on s
6: end while
7: return coreference output corresponding to s

eter b, our Prune-and-Score approach makes pre-
dictions as follows. The search starts at the ini-
tial state s0 = I(x) (see Algorithm 1). At each
non-terminal state s, the pruning function Fprune
retains only the top b actions (A′) from A(s) (Step
3), and the scoring function Fscore picks the best
scoring action ap ∈ A′ (Step 4) to reach the next
state. When a terminal state is reached its con-
tents are returned as the prediction. Figure 1 illus-
trates the decision-making process of our Prune-
and-Score approach for an example state.

We now formalize the learning objective of our
Prune-and-Score approach. Let ŷ be the predicted
coreference output for a coreference input-output
pair (x, y∗). The expected loss of the greedy
Prune-and-Score approach E(Fprune,Fscore) for a
given pruning function Fprune and scoring func-
tion Fscore can be defined as follows.

E(Fprune,Fscore) = E(x,y∗)∼D L (x, ŷ, y∗)

Our goal is to learn an optimal pair of pruning
and scoring functions

(
Foprune,Foscore

)
that min-

imizes the expected loss of the Prune-and-Score
approach. The behavior of our Prune-and-Score
approach depends on the pruning parameter b,
which dictates the workload of pruning and scor-
ing functions. For small values of b (aggressive
pruning), pruning function learning may be harder,
but scoring function learning will be easier. Simi-
larly, for large values of b (conservative pruning),
scoring function learning becomes hard, but prun-
ing function learning is easy. Therefore, we would
expect beneficial behavior if pruning function can
aggressively prune (small values of b) with little
loss in accuracy. It is interesting to note that our
Prune-and-Score approach degenerates to existing
incremental approaches that use only the scoring
function for search (Daumé III, 2006; Rahman and



(a) Text with input set of mentions
Ramallah ( West Bank 2 )1 10-15 ( AFP3) - Eyewitnesses4 reported that Palestinians5
demonstrated today Sunday in the West Bank6 against the Sharm el-Sheikh7 summit to be
held in Egypt8 tomorrow Monday. In Ramallah9, around 500 people10 took to the town11’s
streets chanting slogans denouncing the summit ...

(b) Illustration of Prune-and-Score approach

1m
9m 3m 4m

6m
2m

1C

1a 2a 3a 4a 5a 6a 7a

5m

10m 7m
11m

2C 3C 4C 5C 6C

State: s = {C1, C2, C3, C4, C5, C6} Actions: A(s) = {a1, a2, a3, a4, a5, a6, a7}
Pruning step:

Scoring step:

2.5             2.2               1.9                1.5              1.4              0.7              0.4

4.5             3.1              2.6

2a 1a 7a 5a 6a 3a 4a

1a 2a 7a
A′(s) = {a2, a1, a7}

b = 3

Decision: a1 is the best action for state s

Fprune values

Fscore values

Figure 1: Illustration of Prune-and-Score approach. (a) Text with input set of mentions. Mentions are highlighted
and numbered. (b) Illustration of decision-making process for mention m11. The partial clustering output corre-
sponding to the current state s consists of six clusters denoted by C1, C2, · · · , C6. Highlighted circles correspond
to the clusters. Edges from mention m11 to each of the six clusters and to itself stand for the set of possible actions
A(s) in state s, and are denoted by a1, a2, · · · , a7. The pruning function Fprune scores all the actions in A(s) and
only keeps the top 3 actions A′ = {a2, a1, a7} as specified by the pruning parameter b. The scoring function picks
the best scoring action a1 ∈ A′ as the final decision, and mention m11 is merged with cluster C1.

Ng, 2011b) when b =∞. Additionally, for b = 1,
our pruning function coincides with the scoring
function.

Analysis of Representational Power. The fol-
lowing proposition formalizes the intuition that t-
wo functions are strictly better than one in expres-
sive power. See Appendix for the proof.

Proposition 1. Let Fprune and Fscore be func-
tions from the same function space. Then for all
learning problems, minFscore E(Fscore,Fscore) ≥
min(Fprune,Fscore) E(Fprune,Fscore). More-
over there exist learning problems for which
minFscore E(Fscore,Fscore) can be arbitrarily
worse than min(Fprune,Fscore) E(Fprune,Fscore).

5 Learning Algorithms

In general, learning the optimal
(
Foprune,Foscore

)
pair can be intractable due to their potential inter-
dependence. Specifically, when learning Fprune
in the worst case there can be ambiguity about
which of the non-optimal actions to retain, and

for only some of those an effective Fscore can be
found. However, we observe a loss decomposi-
tion in terms of the individual losses due to Fprune
and Fscore, and develop a stage-wise learning ap-
proach that first learns Fprune and then learns a
corresponding Fscore.

5.1 Loss Decomposition

The overall loss of the Prune-and-Score approach
E (Fprune,Fscore) can be decomposed into prun-
ing loss εprune, the loss due to Fprune not be-
ing able to retain the optimal terminal state in
the search space; and scoring loss εscore|Fprune ,
the additional loss due to Fscore not guiding the
greedy search to the best terminal state after prun-
ing using Fprune. Below, we will define these
losses more formally.

Pruning Loss is defined as the expected loss of
the Prune-and-Score approach when we perform
greedy search with Fprune and F∗score, the opti-
mal scoring function. A scoring function is said to
be optimal if at every state s in the search space



Sp, and for any set of remaining actions A(s), it
can score each action a ∈ A(s) such that greedy
search can reach the best terminal state (as eval-
uated by task loss function L) that is reachable
from s through A(s). Unfortunately, computing
the optimal scoring function is highly intractable
for the non-decomposable loss functions that are
employed in coreference resolution (e.g., B-Cubed
F1). The main difficulty is that the decision at any
one state has interdependencies with future deci-
sions (see Section 5.5 in (Daumé III, 2006) for
more details). So we need to resort to some form
of approximate optimal scoring function that ex-
hibits the intended behavior. This is very similar
to the dynamic oracle concept developed for de-
pendency parsing (Goldberg and Nivre, 2013).

Let y∗prune be the coreference output corre-
sponding to the terminal state reached from input
x by Prune-and-Score approach when performing
search using Fprune and F∗score. Then the pruning
loss can be expressed as follows.

εprune = E(x,y∗)∼D L
(
x, y∗prune, y

∗)
Scoring Loss is defined as the additional loss due
to Fscore not guiding the greedy search to the best
terminal state reachable via the pruning function
Fscore (i.e., y∗prune). Let ŷ be the coreference out-
put corresponding to the terminal state reached by
Prune-and-Score approach by performing search
with Fprune and Fscore for an input x. Then the
scoring loss can be expressed as follows:

εscore|Fprune

= E(x,y∗)∼D L (x, ŷ, y∗)− L
(
x, y∗prune, y

∗)
The overall loss decomposition of our Prune-and-
Score approach can be expressed as follows.

E (Fprune,Fscore)
= E(x,y∗)∼D L

(
x, y∗prune, y

∗)︸ ︷︷ ︸
εprune

+

E(x,y∗)∼D L (x, ŷ, y∗)− L
(
x, y∗prune, y

∗)︸ ︷︷ ︸
εscore|Fprune

5.2 Stage-wise Learning

The loss decomposition motivates a learning ap-
proach that targets minimizing the errors of prun-
ing and scoring functions independently. In par-
ticular, we optimize the overall loss of the Prune-
and-Score approach in a stage-wise manner. We

first train a pruning function F̂prune to optimize
the pruning loss component εprune and then train
a scoring function F̂score to optimize the scoring
loss εscore|F̂prune conditioned on F̂prune.

F̂prune ≈ argminFprune∈Fp
εprune

F̂score ≈ argminFscore∈Fs
εscore|F̂prune

Note that this approach is myopic in the sense that
F̂prune is learned without considering the impli-
cations for learning F̂score. Below, we first de-
scribe our approach for pruning function learning,
and then explain our scoring function learning al-
gorithm.

5.3 Pruning Function Learning

In our greedy Prune-and-Score approach, the role
of the pruning function Fprune is to prune away
irrelevant actions (as specified by the pruning pa-
rameter b) at each search step. More specifically,
we want Fprune to score actions A(s) at each s-
tate s such that the optimal action a∗ ∈ A(s) is
ranked within the top b actions to minimize εprune.
For this, we assume that for any training input-
output pair (x, y∗) there exists a unique action se-
quence, or solution path (initial state to terminal
state), for producing y∗ from x. More formally, let
(s∗0, a

∗
0), (s

∗
1, a
∗
1), · · · , (s∗D,∅) correspond to the

sequence of state-action pairs along this solution
path, where s∗0 is the initial state and s∗D is the ter-
minal state. The goal is to learn the parameters of
Fprune such that at each state s∗i , a

∗
i ∈ A(s∗i ) is

ranked among the top b actions.
While we can employ an online-LaSO style ap-

proach (III and Marcu, 2005; Xu et al., 2009) to
learn the parameters of the pruning function, it is
quite inefficient, as it must regenerate the same
search trajectory again and again until it learn-
s to make the right decision. Additionally, this
approach limits applicability of the off-the-shelf
learners to learn the parameters of Fprune. To
overcome these drawbacks, we apply offline train-
ing.

Reduction to Rank Learning. We reduce the
pruning function learning to a rank learning prob-
lem. This allows us to leverage powerful and effi-
cient off-the-shelf rank-learners (Liu, 2009). The
reduction is as follows. At each state s∗i on the so-
lution path of a training example (x, y∗), we create
an example by labeling optimal action a∗i ∈ A(s∗i )
as the only relevant action, and then try to learn



a ranking function that can rank actions such that
the relevant action a∗i is in the top b actions, where
b is the input pruning paramter. In other word-
s, we have a rank learning problem, where the
learner’s goal is to optimize the Precision at Top-
b. The training approach creates such an exam-
ple for each state s in the solution path. The set
of aggregate imitation examples collected over al-
l the training data is then given to a rank learner
(e.g., LambdaMART (Burges, 2010)) to learn the
parameters of Fprune by optimizing the Precision
at Top-b loss. See appendix for the pseudocode.

If we can learn a function Fprune that is con-
sistent with these imitation examples, then the
learned pruning function is guaranteed to keep
the solution path within the pruned space for al-
l the training examples. We can also employ
more advanced imitation learning algorithms in-
cluding DAgger (Ross et al., 2011) and SEARN
(Hal Daumé III et al., 2009) if we are provid-
ed with an (approximate) optimal scoring function
F∗score that can pick optimal actions at states that
are not in the solution path (i.e., off-trajectory s-
tates).

5.4 Scoring Function Learning

Given a learned pruning function Fprune, we want
to learn a scoring function that can pick the best
action from the b actions that remain after prun-
ing at each state. We formulate this problem in the
framework of imitation learning (Khardon, 1999).
More formally, let (ŝ0, a∗0), (ŝ1, a

∗
1), · · · , (ŝ∗D,∅)

correspond to the sequence of state-action pairs
along the greedy trajectory obtained by running
the Prune-and-Score approach with Fprune and
F∗score, the optimal scoring function, on a train-
ing example (x, y∗), where ŝ∗D is the best terminal
state in the pruned space. The goal of our imita-
tion training approach is to learn the parameters
of Fscore such that at each state ŝi, a∗i ∈ A′ is
ranked higher than all other actions in A′, where
A′ ⊆ A(ŝi) is the set of b actions that remain after
pruning.

It is important to note that the distribution of
states in the pruned space due to Fprune on the
testing data may be somewhat different from those
on training data. Therefore, we train our scoring
function via cross-validation by training the scor-
ing function on heldout data that was not used to
train the pruning function. This methodology is
commonly employed in Re-Ranking and Stacking

approaches (Collins, 2000; Cohen and de Carval-
ho, 2005).

Our scoring function learning procedure uses
cross validation and consists of the following four
steps. First, we divide the training data D in-
to k folds. Second, we learn k different pruners,
where each pruning function F iprune is learned us-
ing the data from all the folds excluding the ith

fold. Third, we generate ranking examples for
scoring function learning as described above us-
ing each pruning function F iprune on the data it
was not trained on. Finally, we give the aggregate
set of ranking examples R to a rank learner (e.g.,
SVM-Rank or LambdaMART) to learn the scoring
function Fscore. See appendix for the pseudocode.

Approximate Optimal Scoring Function. If the
learned pruning function is not consistent with the
training data, we will encounter states ŝi that are
not on the target path, and we will need some su-
pervision for learning in those cases. As discussed
before in Section 5.1, computing an optimal scor-
ing functionF∗score is intractable for combinatorial
loss functions that are used for coreference resolu-
tion. So we employ an approximate function from
existing work that is amenable to evaluate partial
outputs (Daumé III, 2006). It is a variant of the
ACE scoring function that removes the bipartite
matching step from the ACE metric. Moreover
this score is computed only on the partial coref-
erence output corresponding to the “after state”
s′ resulting from taking action a in state s, i.e.,
F∗score(s, a) = F∗score(s′). To further simplify the
computation, we give uniform weight to the three
types of costs: 1) Credit for correct linking, 2)
Penalty for incorrect linking, and 3) Penalty for
missing links. Intuitively, this is similar to the
correct-link count computed only on a subgraph.
We direct the reader to (Daumé III, 2006) for more
details (see Section 5.5).

6 Experiments and Results

In this section, we evaluate our greedy Prune-
and-Score approach on three benchmark corpora
– OntoNotes 5.0 (Pradhan et al., 2012), ACE 2004
(NIST, 2004), and MUC6 (MUC6, 1995) – and
compare it against the state-of-the-art approaches
for coreference resolution. For OntoNotes data,
we report the results on both gold mentions and
predicted mentions. We also report the results on
gold mentions for ACE 2004 and MUC6 data.



6.1 Experimental Setup
Datasets. For OntoNotes corpus, we employ the
official split for training, validation, and testing.
There are 2802 documents in the training set; 343
documents in the validation set; and 345 docu-
ments in the testing set. The ACE 2004 corpus
contains 443 documents. We follow the (Culot-
ta et al., 2007; Bengtson and Roth, 2008) split
in our experiments by employing 268 documents
for training, 68 documents for validation, and 107
documents (ACE2004-CULOTTA-TEST) for test-
ing. We also evaluate our system on the 128
newswire documents in ACE 2004 corpus for a
fair comparison with the state-of-the-art. The
MUC6 corpus containts 255 documents. We em-
ploy the official test set of 30 documents (MUC6-
TEST) for testing purposes. From the remaining
225 documents, which includes 195 official train-
ing documents and 30 dry-run test documents, we
randomly pick 30 documents for validation, and
use the remaining ones for training.

Evaluation Metrics. We compute three most pop-
ular performance metrics for coreference resolu-
tion: MUC (Vilain et al., 1995), B-Cubed (Bag-
ga and Baldwin, 1998), and Entity-based CEAF
(CEAFφ4) (Luo, 2005). As it is commonly done
in CoNLL shared tasks (Pradhan et al., 2012), we
employ the average F1 score (CoNLL F1) of these
three metrics for comparison purposes. We evalu-
ate all the results using the updated version1 (7.0)
of the coreference scorer.

Features. We built2 our coreference resolver
based on the Easy-first coreference system (Stoy-
anov and Eisner, 2012), which is derived from the
Reconcile system (Stoyanov et al., 2010). We es-
sentially employ the same features as in the Easy-
first system. However, we provide some high-
level details that are necessary for subsequent dis-
cussion. Recall that our features φ(s, a) for both
pruning and scoring functions are defined over
state-action pairs, where each state s consists of
a set of clusters and an action a corresponds to
merging an unprocessed mention m with a clus-
ter C in state s or create one for itself. Therefore,
φ(s, a) defines features over cluster-mention pairs
(C,m). Our feature vector consists of three part-
s: a) mention pair features; b) entity pair features;
and c) a single indicator feature to represent NEW

1http://code.google.com/p/reference-coreference-scorers/
2See http://research.engr.oregonstate.edu/dral/ for our

software.

action (i.e., mention m starts its own cluster). For
mention pair features, we average the pair-wise
features over all links between m and every men-
tion mc in cluster C (often referred to as average-
link). Note that, we cannot employ the best-link
feature representation because we perform offline
training and do not have weights for scoring the
links. For entity pair features, we treat mention
m as a singleton entity and compute features by
pairing it with the entity represented by cluster C
(exactly as in the Easy-first system). The indica-
tor feature will be 1 for the NEW action and 0 for
all other actions.We have a total of 140 features:
90 mention pair features; 49 entity pair features;
and one NEW indicator feature. We believe that
our approach can benefit from employing features
of the mention for the NEW action (Rahman and
Ng, 2011b; Durrett and Klein, 2013). However,
we were constrained by the Reconcile system and
could not leverage these features for the NEW ac-
tion.

Base Rank-Learner. Our pruning and scoring
function learning algorithms need a base rank-
learner. We employ LambdaMART (Burges,
2010), a state-of-the art rank learner from the
RankLib3 library. LambdaMART is a variant of
boosted regression trees. We use a learning rate
of 0.1, specify the maximum number of boost-
ing iterations (or trees) as 1000 noting that its ac-
tual value is automatically decided based on the
validation set, and tune the number of leaves per
tree based on the validation data. Once we fix
the hyper-parameters of LambdaMART, we train
the final model on all of the training data. Lamb-
daMART uses an internal train/validation split of
the input ranking examples to decide when to stop
the boosting iterations. We fixed this ratio to 0.8
noting that the performance is not sensitive to this
parameter. For scoring function learning, we used
5 folds for the cross-validation training.

Pruning Parameter b. The hyper-parameter b
controls the amount of pruning in our Prune-and-
Score approach. We perform experiments with d-
ifferent values of b and pick the best value based
on the performance on the validation set.

Singleton Mention Filter for OntoNotes Cor-
pus. We employ the Illinois-Coref system (Chang
et al., 2012) to extract system mentions for our
OntoNotes experiments, and observe that the num-

3http://sourceforge.net/p/lemur/wiki/RankLib/



ber of predicted mentions is thrice the number of
gold mentions. Since the training data provides the
clustering supervision for only gold mentions, it is
not clear how to train with the system mention-
s that are not part of gold mentions. A common
way of dealing with this problem is to treat all the
extra system mentions as singleton clusters (Dur-
rett and Klein, 2013; Chang et al., 2013). Howev-
er, this solution most likely will not work with our
current feature representation (i.e., NEW action is
represented as a single indicator feature). Recall
that to predict these extra system mentions as s-
ingleton clusters with our incremental clustering
approach, the learned model should first predic-
t a NEW action while processing these mention-
s to form a temporary singleton cluster, and then
refrain from merging any of the subsequent men-
tions with that cluster so that it becomes a single-
ton cluster in the final clustering output. Howev-
er, in OntoNotes corpus, the training data does not
include singleton clusters for the gold mentions.
Therefore, only the large number (57%) of system
mentions that are not part of gold mentions will
constitute the set of singleton clusters. This leads
to a highly imbalanced learning problem because
our model needs to learn (the weight of the sin-
gle indicator feature) to predict NEW as the best
action for a large set of mentions, which will bias
our model to predict large number of NEW actions
during testing. As a result, we will generate many
singleton clusters, which will hurt the recall of the
mention detection after post-processing. There-
fore, we aim to learn a singleton mention filter
that will be used as a pre-processor before training
and testing to overcome this problem. We would
like to point out that our filter is complementary to
other solutions (e.g., employing features that can
discriminate a given mention to be anaphoric or
not in place of our single indicator feature, or us-
ing a customized loss to weight our ranking exam-
ples for cost-sensitive training)(Durrett and Klein,
2013).

Filter Learning. The singleton mention filter is
a classifier that will label a given mention as “s-
ingleton” or not. We represent each mention m
in a document by averaging the mention-pair fea-
tures φ(m,m′) of the k-most similar mentions
(obtained by ranking all other mentions m′ in the
document with a learned ranking functionR given
m) and then learn a decision-tree classifier by opti-
mizing the F1 loss. We learn the mention-ranking

function R by optimizing the recall of positive
pairs for a given k, and employ LambdaMART as
our base ranker. The hyper-parameters are tuned
based on the performance on the validation set.

6.2 Results

We first describe the results of the learned single-
ton mention filter, and then the performance of
our Prune-and-Score approach with and without
the filter. Next, we compare the results of our ap-
proach with several state-of-the-art approaches for
coreference resolution.

Singleton Mention Filter Results. Table 1 shows
the performance of the learned singleton mention
filter with k = 2 noting that the results are ro-
bust for all values of k ≥ 2. As we can see, the
learned filter improves the precision of the men-
tion detection with only small loss in the recall of
gold mentions.

Mention Detection Accuracy
P R F1

Before- 43.18% 86.99% 57.71%
filtering (16664/38596) (16664/19156)
After- 79.02% 80.98% 79.97%
filtering (15516/19640) (15516/19156)

Table 1: Performance of the singleton mention filter on
the OntoNotes 5.0 development set. The numerators of
the fractions in the brackets show the exact numbers of
mentions that are matched with the gold mentions.

Prune-and-Score Results. Table 2 shows the per-
formance of Prune-and-Score approach with and
without the singleton mention filter. We can see
that the results with filter are much better than the
corresponding results without the filter. These re-
sults show that our approach can benefit from hav-
ing a good singleton mention filter.

Filter settings MUC B3 CEAFφ4 CoNLL

OntoNotes 5.0 Dev Set w. Predict Ment.
O.S. (w.o. Filter) 66.73 53.40 44.23 54.79
P&S (w.o. Filter) 65.93 52.96 50.24 56.38
P&S (w. Filter) 71.18 58.87 57.88 62.64

Table 2: Performance of Prune-and-Score approach
with and without the singleton mention filter, and Only-
Score approach without the filter.

Table 3 shows the performance of different con-
figurations of our Prune-and-Score approach. As
we can see, Prune-and-Score gives better results
than the configuration where we employ only the
scoring function (b = ∞) for small values of b.



MUC B3 CEAFφ4 CoNLL
P R F1 P R F1 P R F1 Avg-F1

a. Results on OntoNotes 5.0 Test Set with Predicted Mentions
Prune-and-Score 81.03 66.16 72.84 66.90 51.10 57.94 68.75 44.34 53.91 61.56

Only-Scoring 75.95 61.53 67.98 63.94 47.37 54.42 58.54 49.76 53.79 58.73
HOTCoref 67.46 74.3 70.72 54.96 62.71 58.58 52.27 59.4 55.61 61.63

CPL3M - - 69.48 - - 57.44 - - 53.07 60.00
Berkeley 74.89 67.17 70.82 64.26 53.09 58.14 58.12 52.67 55.27 61.41

Fernandes et al., 2012 75.91 65.83 70.51 65.19 51.55 57.58 57.28 50.82 53.86 60.65
Stanford 65.31 64.11 64.71 56.54 48.58 52.26 46.67 52.29 49.32 55.43

b. Results on OntoNotes 5.0 Test Set with Gold Mentions
Prune-and-Score 88.10 85.85 86.96 76.82 76.16 76.49 80.90 74.06 77.33 80.26

Only-Scoring 86.96 84.52 85.73 74.51 74.25 74.38 79.04 70.67 74.62 78.24
CPL3M - - 84.80 - - 78.74 - - 68.75 77.43

Berkeley 85.73 89.26 87.46 78.23 75.11 76.63 82.89 70.86 76.40 80.16
Stanford 89.94 78.17 83.64 81.75 68.95 74.81 73.97 61.20 66.98 75.14

c. Results on ACE2004 Culotta Test Set with Gold Mentions
Prune-and-Score 85.57 72.68 78.60 90.09 77.02 83.04 74.64 86.02 79.42 80.35

Only-Scoring 82.75 69.25 75.40 88.54 74.22 80.75 73.69 85.22 78.58 78.24
CPL3M - - 78.29 - - 82.20 - - 79.26 79.91

Stanford 82.91 69.90 75.85 89.14 74.05 80.90 75.67 77.45 76.55 77.77

d. Results on ACE2004 Newswire with Gold Mentions
Prune-and-Score 89.72 75.72 82.13 90.89 76.15 82.87 72.43 86.83 78.69 81.23

Only-Scoring 86.92 76.49 81.37 88.10 75.83 81.51 73.15 84.31 78.05 80.31
Easy-first - - 80.1 - - 81.8 - - - -
Stanford 84.75 75.34 79.77 87.50 74.59 80.53 73.32 81.49 77.19 79.16

e. Results on MUC6 Test Set with Gold Mentions
Prune-and-Score 89.53 82.75 86.01 86.48 76.18 81.00 60.74 80.33 68.68 78.56

Only-Scoring 86.77 80.96 83.76 81.72 72.99 77.11 57.56 75.38 64.91 75.26
Easy-first - - 88.2 - - 77.5 - - - -
Stanford 91.19 69.54 78.91 91.07 63.39 74.75 62.43 69.62 65.83 73.16

Table 4: Comparison of Prune-and-Score with state-of-the-art approaches. Metric values reflect version 7 of
CoNLL scorer.

The performance is clearly better than the degen-
erate case (b = ∞) over a wide range of b values,
suggesting that it is not necessary to carefully tune
the parameter b.

Pruning param. b MUC B3 CEAFφ4 CoNLL

OntoNotes 5.0 Dev Set w. Predict Ment.
2 69.12 56.80 56.30 60.74
3 70.50 57.89 57.24 61.88
4 71.00 58.65 57.41 62.35
5 71.18 58.87 57.88 62.64
6 70.93 58.66 57.85 62.48
8 70.12 58.13 57.37 61.87
10 70.24 58.34 56.27 61.61
20 67.97 57.73 56.63 60.78
∞ 67.03 56.31 55.56 59.63

Table 3: Performance of Prune-and-Score approach
with different values of the pruning parameter b. For
b =∞, Prune-and-Score becomes an Only-Scoring al-
gorithm.

Comparison to State-of-the-Art. Table 4
shows the results of our Prune-and-Score ap-

proach compared with the following state-of-the-
art coreference resolution approaches: HOTCoref
system (Björkelund and Kuhn, 2014); Berkeley
system with the FINAL feature set (Durrett and K-
lein, 2013); CPL3M system (Chang et al., 2013);
Stanford system (Lee et al., 2013); Easy-first sys-
tem (Stoyanov and Eisner, 2012); and Fernan-
des et al., 2012 (Fernandes et al., 2012). On-
ly Scoring is the special case of our Prune-and-
Score approach where we employ only the scoring
function. This corresponds to existing incremen-
tal approaches (Daumé III, 2006; Rahman and Ng,
2011b). We report the best published results for
CPL3M system, Easy-first, and Fernandes et al.,
2012. We ran the publicly available software to
generate the results for Berkeley and Stanford sys-
tems with the updated CoNLL scorer. We include
the results of Prune-and-Score for best b on the de-
velopment set with singleton mention filter for the
comparison. In Table 4, ’-’ indicates that we could
not find published results for those cases. We see



that results of the Prune-and-Score approach are
comparable to or better than the state-of-the-art in-
cluding Only-Scoring.

7 Conclusions and Future Work

We introduced the Prune-and-Score approach for
greedy coreference resolution whose main idea
is to learn a pruning function along with a scor-
ing function to effectively guide the search. We
showed that our approach improves over the meth-
ods that only learn a scoring function, and gives
comparable or better results than several state-of-
the-art coreference resolution systems.

Our Prune-and-Score approach is a particular
instantiation of the general idea of learning nearly-
sound constraints for pruning, and leveraging the
learned constraints to learn improved heuristic
functions for guiding the search (See (Chen et
al., 2014) for another instantiation of this idea for
multi-object tracking in videos). Therefore, oth-
er coreference resolution systems (Chang et al.,
2013; Durrett and Klein, 2013; Björkelund and
Kuhn, 2014) can also benefit from this idea. One
way to further improve the peformance of our
approach is to perform a search in the Limited
Discrepancy Search (LDS) space (Doppa et al.,
2014b) using the learned functions.

Future work should apply this general idea to
other natural language processing tasks including
dependency parsing (Nivre et al., 2007) and in-
formation extraction (Li et al., 2013). We would
expect more beneficial behavior with the prun-
ing constraints for problems with large action sets
(e.g., labeled dependency parsing). It would be in-
teresting and useful to generalize this approach to
search spaces where there are multiple target paths
from the initial state to the terminal state, e.g., as
in the Easy-first framework.
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