
NEW FRONTIERS IN ADAPTIVE EXPERIMENTAL DESIGN FOR

MULTI-OBJECTIVE OPTIMIZATION

By

SYRINE BELAKARIA

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2023

©Copyright by SYRINE BELAKARIA, 2023
All Rights Reserved



©Copyright by SYRINE BELAKARIA, 2023
All Rights Reserved



To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of SY-

RINE BELAKARIA find it satisfactory and recommend that it be accepted.

Janardhan Rao Doppa, Ph.D., Chair

Diane Cook, Ph.D.

Ananth Kalyanaraman, Ph.D.

Yolanda Gil, Ph.D.

Subbarao Kambhampati, Ph.D.

ii



ACKNOWLEDGEMENTS

The outcome of my work has required a lot of guidance, assistance, and inspiration

from many people to whom I would like to express special appreciation:

First and foremost, I heartily thank my advisor Prof. Jana Doppa, who believed

in my potential and gave me the opportunity to work on various topics. Without his

guidance and dedicated involvement, this work would have never been accomplished.

I am thankful to him for involving me in several projects, and collaborations, and

teaching me many other aspects of academic life. Working closely with him has

been a valuable learning experience that contributed to my personal and professional

growth. Beyond his scientific advice, Prof. Jana always offered unwavering support

during the most mentally challenging moments of my PhD. Thank you for being a

patient mentor and a great human being.

I have been fortunate to work with many amazing collaborators. Prof Yue Cao

was an exemplary collaborator. I enjoyed working with him and Derek on apply-

ing Bayesian optimization to hard power engineering problems. Thank you for your

continuous encouragement and support. To Prof. Partha Pande and Prof. Deuk

Heo, I learned a lot about hardware design, analog circuit design, and their practical

constraints from you. Thank you for contributing to my professional growth and un-

derstanding of fruitful academic collaborations. To Rishit Sheth and Nicolo Fusi who

have been great mentors at Microsoft research, I enjoyed working with them on prac-

iii



tical problems and learning more about the modeling side of Bayesian optimization.

A special Thank you Prof. Yolanda Gil for her support and her advice.

I have been truly fortunate to work with Aryan Deshwal. He has been an in-

valuable collaborator and research partner, most of my work is a result of research

discussions and brainstorming together. I learned a lot from him and with him about

all aspects of research, from technical knowledge to software and most importantly

enjoying every step of our collaboration. I look forward to continuing our work to-

gether.

My time at Washington State University would not have been the same with-

out the supportive and thriving environment in our research group, the friendship

of Alaleh Ahmadian and Iman Mirzadeh who made the hardship of the pandemic

bearable, and the tremendous emotional support of Taha.

I gratefully acknowledge the support from National Science Foundation (NSF)

grants IIS-1845922, OAC-1910213, and SII-2030159. I was also generously supported

by the IBM PhD Fellowship for the last two years of my PhD studies (2021-2023).

The views expressed in this dissertation are those of the authors and do not reflect

the official policy or position of the NSF and IBM.

Finally, thank you to everyone who contributed to my personal and professional

growth during my long academic journey.

iv



NEW FRONTIERS IN ADAPTIVE EXPERIMENTAL DESIGN FOR

MULTI-OBJECTIVE OPTIMIZATION

Abstract

by Syrine Belakaria, Ph.D.
Washington State University

May 2023

Chair: Janardhan Rao Doppa

The problem of adaptively selecting a sequence of experiments to achieve a goal

(aka adaptive experimental design) arises in many real-world settings. A canonical

example is the active learning paradigm where we need to iteratively collect labeled

data to build predictors with high accuracy. Motivated by the challenges faced by

scientists and engineers, this dissertation studies adaptive experimental design algo-

rithms for the purpose of solving a large-class of multi-objective optimization (MOO)

problems. Such MOO problems enable many science and engineering applications

including drug design, protein engineering, design of materials, and hardware design.

For example, in drug design optimization, we need to find drugs that trade-off ef-

fectiveness, safety, and cost by performing expensive experiments to evaluate each

candidate drug. Similarly, in hardware design optimization, we need to find the
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designs that trade-off performance, energy, and area using expensive computational

simulations to mimic the real hardware.

We have the ability to evaluate any candidate input according to the target objec-

tives by performing a costly experiment, where the cost is measured by the resources

consumed by the experiment (physical or computational). Our overall goal is to ap-

proximate the optimal Pareto set of solutions by minimizing the total resource cost

of conducted experiments. The key challenge is how to select the sequence of ex-

periments under uncertainty. This dissertation develops a suite of novel reasoning

algorithms based on the principles of information gain per unit resource cost and

uncertainty reduction for adaptive experimental design to solve MOO problems. We

appropriately instantiate these principles to derive efficient algorithms for the follow-

ing MOO problem settings, most of which are studied for the first time: 1) The most

basic single-fidelity setting, where experiments are expensive and accurate, and we

can conduct a single experiment in each iteration; 2) The batch setting where a batch

of experiments can be conducted in parallel to accelerate the search process; 3) The

constrained setting where we cannot evaluate constraints to identify feasible inputs

without performing experiments; 4) The discrete multi-fidelity setting where experi-

ments can vary in the amount of resources consumed and their evaluation accuracy;

and 5) The continuous-fidelity setting, where continuous function approximations re-

sult in a huge space of experiments. 6) The budget-aware setting where a limited
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resource budget constraint is enforced requiring us to take a planning approach. Ex-

periments on synthetic and real-world benchmarks from a diverse set of engineering

and industrial domains demonstrate that our algorithms significantly improve re-

source efficiency over prior methods to produce high-quality Pareto solutions.
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CHAPTER ONE

INTRODUCTION

We have witnessed significant progress in building intelligent machines over the

last decade through advances in artificial intelligence (AI) and machine learning (ML).

Some examples include accurate classifiers for image data, effective machine transla-

tion and speech recognition systems for popular languages, the AlphaGo system [171]

that beat the world’s best human player for the game of Go, and the AlphaFold sys-

tem [107] that predict a protein’s 3D structure from its amino acid sequence. The key

ingredient for building these successful systems is the availability of large amounts of

supervised training data (aka Big-data regime ). However, there are many real-world

problems where we have little to no training data (aka Small-data regime) where the

current AI methods are lacking. This dissertation focuses on one class of important

small-data problems referred to as goal-driven adaptive experimental design.

Goal-Driven Adaptive Experimental Design. The problem of adaptively se-

lecting a sequence of experiments to achieve a goal arises in many real-world settings.

We provide three concrete examples with varying goals to illustrate this problem.

• In the active learning paradigm, we need to iteratively collect labeled data from

a human expert to build predictors with high accuracy [160]. Each experiment

corresponds to collecting the output label of an unlabeled input (e.g., image)

from a human. Since each labeling query is expensive in terms of human ef-
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fort, the overall goal is to minimize the number of labeling queries to build an

accurate predictor.

• In A/B testing for marketing purposes, we need to decide which version of an

advertisement is more effective in attracting potential customers. Each experi-

ment corresponds to deploying an advertisement for some fraction of end-users

[16]. Since collecting information about user preference and their level of inter-

action is costly in terms of time and financial impact on the business, the goal

is to uncover the suitable advertisement with the minimum number of tests and

with minimal business loss.

• In black-box function optimization (e.g., hyper-parameter optimization of ML

models), we need to find the hyper-parameter configuration with the highest

accuracy on the validation data [172]. Each experiment corresponds to training

the ML model with a candidate hyper-parameter configuration and evaluating

the accuracy of the trained model on the validation data. Since each experiment

is expensive in terms of computational resources, the overall goal is to minimize

the total computational cost to find the best hyperparameter configuration.

The common challenge for all three adaptive experimental design problems is to

develop an effective decision-making strategy to select one or more candidate exper-

iments in each iteration. This strategy should be adaptive by accounting for the

data collected from past experiments and goal-driven to optimize for the target goal.
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Uncertainty sampling (selecting the unlabeled input for which the classifier trained

from the past labeled data is most uncertain about) is a typical strategy for active

learning [168]. Multi-arm bandit algorithms [141] are commonly used for A/B testing

problems where the key idea is to trade off exploration (selecting choices that weren’t

tried enough) and exploitation (selecting choices that performed well in the past).

Bayesian optimization [165] is an effective framework to solve expensive black-box

optimization problems. The key idea is to build a surrogate statistical model from

past experimental data and use its prediction/uncertainty for unknown inputs in the

search space to decide the next input for evaluation.

Optimizing Expensive Black-box Functions. Real-world expensive function op-

timization problems can be formalized using the following key elements: input search

space (continuous, discrete, hybrid), the number of objectives (single or multiple), the

fidelity of experiments (vary in expense and accuracy of evaluation), unconstrained

or constrained, and blackbox or greybox optimization. We can instantiate a specific

problem setting by selecting one choice for each element.

• Search space. The input search space X can be continuous (all design variables

are continuous), discrete (e.g., sets, sequences, graphs) or hybrid (mixture of

discrete and continuous design variables).

• Number of objectives. In the single-objective setting, we assume an unknown

real-valued objective function f : X 7→ ℜ, which can evaluate each candidate
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design x ∈ X (also called an experiment) to produce an outcome y = f(x).

The overall goal is to find an input x ∈ X that approximately optimizes f by

conducting a limited number of experiments and observing their outcomes. In

multi-objective optimization setting, we need to optimize multiple real-valued

objective functions.

• Number of fidelities. In the single-fidelity setting, each experimental evalu-

ation is expensive and accurate. In the multi-fidelity setting, we can perform

experiments that vary in the amount of resources consumed and the accuracy

of evaluation.

• Unconstrained vs. Constrained. In the unconstrained setting, all candi-

date inputs are valid. However, in the constrained setting, we will have invalid

inputs in the search space and we may not know the validity of input without

performing an experiment.

• Black-box vs. Grey-box optimization. In the black-box setting, we only

model the mapping between candidate inputs x ∈ X and their evaluation y =

F (x). In the grey-box setting, we can model potentially useful side-information

and leverage it to formally reason about the selection of experiments.

Multi-Objective Optimization of Expensive Black-box Functions. Moti-

vated by the challenges faced by scientists and engineers, this dissertation studies
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adaptive experimental design algorithms for the purpose of solving a large-class of

MOO problems where we need to optimize multiple expensive-to-evaluate objective

functions. Many engineering and scientific applications involve making design choices

to optimize multiple objectives. Some examples include designing drugs/vaccines

to optimize efficacy, cost, and safety; designing new materials to optimize strength,

elasticity, and durability; and designing hardware to optimize performance, power,

and area [34, 66] There are a few common challenges in solving these kinds of multi-

objective optimization problems:

1. The objective functions are unknown and we need to perform expensive experi-

ments to evaluate each candidate design choice, where the expense is measured

in terms of the consumed resources (physical or computational). For example,

performing computational simulations and physical lab experiments for hard-

ware optimization and material design applications respectively.

2. The objectives are conflicting in nature and all of them cannot be optimized

simultaneously. Therefore, we need to find the Pareto optimal set of solutions. A

solution is called Pareto optimal if it cannot be improved in any of the objectives

without compromising some other objective.

3. The solutions may need to satisfy black-box constraints, which cannot be eval-

uated without performing experiments. For example, in drug/vaccine design
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applications, we need to find designs that trade-off efficacy and cost while sat-

isfying safety constraints.

4. We have the ability to perform multi-fidelity experiments (discrete or continu-

ous) to evaluate objective functions via cheaper approximations, which vary in

the amount of resources consumed and their accuracy. For example, in hardware

design optimization, we can use multi-fidelity simulators for design evaluations.

We want to leverage this additional freedom to reduce the overall resource cost

for optimization.

5. We might have access to expert knowledge about the structure or behavior

of objective functions. For example, in hyper-parameter tuning of iterative

machine learning models, the validation error function follows a monotonic and

exponentially decaying shape with respect to the number of epochs. This side

information can be leveraged to develop a more effective grey-box optimization

approach.

6. The resource budget available to find the optimized designs is limited. There-

fore, it may be necessary to take a planning view to select the sequence of

experiments. This can be achieved through a non-myopic procedure, which

takes into account the remaining budget and the future candidate experiments

in each iteration.
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Real-world MOO problems come with two or more of the above challenges. The

adaptive experimental design algorithms need to approximate the optimal Pareto set

while minimizing the total resource cost of conducted experiments.

The overarching goal of this dissertation is to develop AI based reasoning methods

for adaptive experimental design to solve a large-class of MOO problems arising in

science, engineering, and industrial domains where there is a need to select expensive

experiments to optimize complex design spaces under resource budget.

The key challenge in solving this class of adaptive experiment design problems

is to select the sequence of experiments to approximate the optimal Pareto set in a

resource-efficient manner. This problem is an instance of sequential decision-making

under uncertainty, where we need to reason about the resources spent in conducting

an experiment and the value of information gathered towards the goal of optimization.

Bayesian Optimization (BO) [166] is an effective framework to solve black-box op-

timization problems with expensive function evaluations. The key idea behind BO is

to build a cheap surrogate statistical model, e.g., Gaussian Process (GP) [189], using

the real experimental data; and employ it to intelligently select the sequence of ex-

periments or function evaluations using an acquisition/utility function, e.g., expected

improvement (EI) and upper-confidence bound (UCB). There is a large body of liter-

ature on single-objective BO algorithms [166] and their applications including hyper-

parameter tuning of machine learning methods [172, 121]. However, there is relatively
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less work on the more challenging problem of BO for multiple objective functions (first

and second challenges) [83], only one prior work on the constrained multi-objective

optimization problem (third challenge), and no prior work on multi-objective opti-

mization in the multi-fidelity, grey-box, and non-myopic settings (fourth, fifth, and

sixth challenges).

Prior work on multi-objective BO is lacking in the following ways. Many algo-

rithms reduce the problem to single-objective optimization by designing appropriate

acquisition functions, e.g., expected improvement in Pareto hypervolume [117, 67].

This can potentially lead to aggressive exploitation behavior. Additionally, previously

developed algorithms to optimize Pareto Hypervolume (PHV) based acquisition func-

tions scale poorly as the number of objectives and the dimensionality of input space

grows. More recent work [43] improves the scalability of PHV-based approaches.

There are also methods that rely on input space entropy based acquisition function

[83] to select the candidate inputs for evaluation. However, it is computationally

expensive to approximate and optimize this acquisition function.

Summary of Dissertation Research. This dissertation develops a suite of novel

reasoning algorithms for adaptive experimental design to solve a large-class of MOO

(single-fidelity, constrained, multi-fidelity, and budget-constrained) problems. Our al-

gorithms are based on the principles of uncertainty reduction and information gain

per unit resource cost.
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First, we propose a general framework for solving MOO problems based on the

principle of output space entropy (OSE) search [185, 87]. The key idea is to select the

input and fidelity vector (one for each objective function, if applicable) that maxi-

mizes the information gain per unit resource cost about the optimal Pareto front in

each iteration. Output space entropy search has many advantages over algorithms

based on input space entropy search [17]: a) it allows much tighter approximation; b)

it is cheaper to compute; and c) it naturally lends itself to robust optimization with

respect to the number of Monte Carlo samples used for acquisition function compu-

tation. We appropriately instantiate the OSE principle to derive efficient algorithms

for solving four qualitatively different MOO problems: the most basic single-fidelity

setting [17], MOO with black-box constraints [26], discrete multi-fidelity setting [21],

and continuous-fidelity setting [26].

Second, we propose an uncertainty-aware search framework for multi-objective

optimization (USeMO) that enables a generalization of single-objective Bayesian op-

timization to the multi-objective setting. The key insight is to perform a two-stage

search procedure to improve the accuracy and computational-efficiency for selecting

candidate inputs for evaluation. First, the algorithm solves a cheap MO optimization

problem defined in terms of the acquisition functions (one for each unknown objec-

tive) to identify a list of promising candidates. Second, it selects the best candidate

from this list based on a measure of uncertainty. Unlike prior methods, USeMO has
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several advantages: a) Does not reduce to a single objective optimization problem;

b) The reduction formulation behind USeMO allows us to leverage a variety of ac-

quisition functions designed for single objective BO; c) Computationally-efficient to

solve MOO problems with many objectives; and d) Improved uncertainty manage-

ment via two-stage search procedure to select the candidate inputs for evaluation.

The versatility of the USeMO framework allowed us to extend it to handle black-box,

white-box, and greybox constraints [18]. We also propose a generalization of USeMO

in two ways: 1) Automatically selecting acquisition function from a given library in

each iteration using a multi-arm bandit approach, and 2) Selecting a diverse batch

of experiments for parallel evaluation in each iteration by configuring Determinantal

Point Processes (DPPs) [123] in the output space.

Finally, to address the challenge of resource budget constraint, we develop a novel

approach for budget-aware BO using a non-myopic reasoning procedure. The key

idea is to use the submodularity property of the lower bound of the Bellman equation

to approximate the lookahead horizon and adapt its length to the remaining budget.

We apply this budget-aware method for hyper-parameter optimization of iterative

machine learning algorithms. We extend this approach to the multi-objective setting

where we approximate the lookahead horizon via a batch multi-objective optimization

approach by exploiting the same submodularity property [43].

Comprehensive experiments on diverse synthetic and real-world benchmarks demon-
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strate that our MOO algorithms are computationally-efficient, and significantly im-

prove the resource-efficiency to produce high-quality Pareto solutions than the state-

of-the-art algorithms.

1.1 Technical Contributions

The main contribution of this dissertation is the development and evaluation of a

suite of multi-objective Bayesian optimization (BO) algorithms to significantly push

the frontiers of the adaptive experimental design research area. Our algorithms are

based on the principles of information gain per unit resource cost and uncertainty

reduction. Specific contributions include:

• Development of two approaches to solve the most basic MOO problem in the

single-fidelity setting, where experiments are expensive and accurate

– MESMO: Max-value Entropy Search for Multi-Objective Bayesian Opti-

mization [17].

– USEMO: Uncertainty-Aware Search framework for Multi-Objective Bayesian

Optimization [22]

– First theoretical analysis to prove a sub-linear regret bound for multi-

objective BO setting [17, 22].

• Development of an approach (generalization of USEMO) to solve MOO prob-

lems by selecting a batch of diverse experiments for parallel evaluations using
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determinantal point processes.

– PDBO: Pareto front-Diverse Batch Multi-Objective Bayesian Optimiza-

tion [29]

• Development of two approaches (extensions of MESMO and USEMO algo-

rithms) to handle MOO problems with black-box constraints, which cannot

be evaluated without performing experiments.

– MESMOC: Max-value Entropy Search for Multi-Objective BO with Con-

straints [26, 20]

– USEMOC: Uncertainty-Aware Search framework for Multi-Objective BO

with Constraints [18]

• Development of multi-fidelity optimization approaches to solve MOO problems

by appropriately leveraging the available side information.

– MF-OSEMO algorithm to solve MOO problems in the discrete multi-

fidelity setting, where experiments can vary in the amount of resources

consumed and their evaluation accuracy [21].

– iMOCA algorithm to solve MOO problems in the continuous-fidelity set-

ting, where continuous function approximations result in a huge space of

experiments with varying cost [19, 26].
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• Development of non-myopic optimization algorithms when the available re-

source budget is limited by viewing the problem from a planning perspective.

– A budget-aware approach to solve hyper-parameter optimization problems

for iterative machine learning algorithms with structured responses in the

form of learning curves. We also leverage the side information in the form

of the structure of the objective functions through appropriate modeling

and reasoning tools [28].

– A non-myopic optimization approach to solve general MOO problems when

the resource budget is limited.

• Applying our algorithms to diverse real-world problems in engineering and in-

dustrial domains in close collaboration with domain experts [200, 23, 93, 55,

195, 143]. Experimental evaluation on diverse synthetic and real-world bench-

mark problems to demonstrate the effectiveness of the proposed algorithms over

existing MOO algorithms.

• Open-source release of the software associated with published research so far:

MESMO1, USEMO2 MESMOC3, MF-OSEMO4, iMOCA5, and BAPI 6.

1https://github.com/belakaria/MESMO
2https://github.com/belakaria/USeMO
3https://github.com/belakaria/MESMOC
4https://github.com/belakaria/MF-OSEMO
5https://github.com/belakaria/iMOCA
6https://github.com/belakaria/BAPI
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Figure 1.1: Overview of the multi-objective optimization (MOO) problem settings
studied in this dissertation and the proposed MOO algorithms along
with Chapter numbers where they are described.

1.2 Outline of the Thesis

The remaining part of the dissertation is organized as follows.

In Chapter 2, we first provide an overview of the problem setup for different

MOO problem settings studied in this dissertation. Next, we discuss the necessary

background material on Bayesian optimization for both single-objective and multi-

objective settings. Finally, we define the evaluation metrics to measure the efficacy

of adaptive experimental design algorithms to solve MOO problems.
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In Chapter 3, we address the most basic MOO problem in the single-fidelity set-

ting, where the goal is to optimize multiple black-box objective functions. To solve

this problem, we propose an algorithm referred to as Max-value Entropy Search for

Multi-objective Optimization (MESMO)[17]. We mathematically describe the output

space entropy-based acquisition function behind MESMO and provide an algorithmic

approach to efficiently compute it. We also provide theoretical analysis to charac-

terize the efficacy of MESMO and present experimental results on several real-world

and synthetic benchmark problems.

In Chapter 4, we present the Uncertainty-Aware Search Framework for Multi-

Objective Bayesian Optimization (USeMO), which is a wrapper approach that can

be instantiated with any acquisition function for single-object optimization. USeMO

addresses the same problem setting as in Chapter 3. First, we provide an overview of

USeMO followed by the details of its two main components. Subsequently, we provide

a theoretical analysis of USeMO in terms of asymptotic regret bounds. Finally, we

provide the experimental evaluation of USeMO on several synthetic and real-world

problems.

In Chapter 5, we describe an algorithmic approach referred to as PDBO which

generalizes the USeMO framework from Chapter 4 in two ways. First, it automatically

selects a single-objective acquisition from a given library in each iteration using a

multi-arm bandit strategy. In contrast, USeMO uses the same acquisition function
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which is specified by the practitioner in each BO iteration. Second, it allows to

select a batch of inputs for evaluation in each iteration for discovering a diverse

Pareto front using determinantal point processes configured for the output space. We

provide experimental results of PDBO and compare with prior methods on several

benchmark problems in terms of both quality and diversity of MOO solutions.

In Chapter 6, we address the MOO problem with constraints, where the goal is

to optimize multiple real-valued objective functions while satisfying several black-box

constraints over the input space. To solve this problem, we propose two algorithms,

namely, Max-value Entropy Search for Multi-objective Optimization with Constraints

(MESMOC) and Uncertainty aware Search Framework for Multi-Objective Bayesian

Optimization with Constraints (USeMOC), which are generalizations of MESMO and

USeMO respectively. We first describe the problem setup and discuss prior work.

Next, we explain the technical details of both MESMOC and USeMOC algorithms

followed by their experimental results on real-world benchmarks.

In Chapter 7, we address the discrete multi-fidelity version of the MOO problem,

where we have access to multiple fidelities for each objective function that vary in

the amount of resources consumed and the accuracy of evaluation. To solve this

problem, we propose an algorithm referred to asMulti-Fidelity Output Space Entropy

Search for Multi-objective Optimization (MF-OSEMO), which is a generalization of

MESMO. We first describe the complete details related to the multi-fidelity MOO
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problem. Subsequently, we explain the details of MF-OSEMO algorithm with two

mathematically different approximations of the corresponding output space entropy-

based acquisition function.

In Chapter 8, we address the continuous-fidelity MOO problem, where we have

access to alternative functions through which we can evaluate cheaper approxima-

tions of objective functions by varying a continuous fidelity variable (e.g., number

of epochs or size of the training set in hyper-parameter tuning problems). To solve

this problem, we propose an algorithm referred to as information-Theoretic Multi-

Objective Bayesian Optimization with Continuous Approximations (iMOCA), which

is a generalization of MF-OSEMO.We first describe the complete details related to the

continuous-fidelity MOO problem. Subsequently, we explain the details of iMOCA

algorithm with two mathematically different approximations of the corresponding

output space entropy-based acquisition function.

In Chapter 9, we address the problem of non-myopic multi-objective Bayesian

optimization. Non-myopic algorithms are particularly well-suited for small resource

budgets as they take a planning perspective and reason about different experimental

plans in a look-ahead manner. We start by proposing a solution to the budgeted non-

myopic Bayesian optimization, then we show how to incorporate side information

from the hyper-parameter optimization problem to build a planning approach for

iterative machine learning models. Subsequently, we propose a more generic solution
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for non-myopic multi-objective optimization problems.

Finally, in Chapter 10, we provide a summary of the dissertation, lessons learned,

and list some important future research directions.
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CHAPTER TWO

PROBLEM SETUP AND BACKGROUND

In this Chapter, we first formally define the MOO problem settings that are ad-

dressed in this dissertation. Next, we provide an overview of the generic Bayesian

optimization framework in the single-objective and multi-objective settings. Finally,

we define the metrics to evaluate the effectiveness of the proposed MOO algorithms.

2.1 Overview of Multi-Objective Optimization

Multi-objective optimization (MOO) problems can be formalized in terms of the fol-

lowing key elements: number of objectives, necessity to satisfy black-box constraints,

availability of cheaper approximations or fidelities (discrete/continuous) for function

evaluations, and availability of side information. Below we provide a brief overview

of different MOO problem settings that are addressed in this dissertation noting that

a more detailed problem setup is specified under the respective chapters.

Basic Multi-objective Optimization Problem. The goal is to maximize real-

valued objective functions f1(x), · · · , fK(x), with K ≥ 2, over continuous space X ⊆

ℜd. Each evaluation of an input x ∈ X produces a vector of objective values y =

(y1, · · · , yK) where yi = fi(x) for all i ∈ {1, · · · , K}. If a budget constraint on the

resource cost is specified, we refer to this variant as Budget-aware MOO.

Batch Multi-objective Optimization Problem. This setting differs from the
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basic multi-objective optimization problem described above in one aspect: we are

allowed to select B inputs for parallel evaluation in each iteration instead of one

input per iteration. Our overall goal is to uncover a high-quality and diverse Pareto

front while minimizing the total number of expensive function evaluations.

MOO Problem with Constraints. This is a generalization of the basic MOO prob-

lem (i.e., no constraints) where the goal is to maximize the K real-valued objective

functions while satisfying L black-box constraints of the form C1(x) ≥ 0, · · · , CL(x) ≥

0. Each evaluation of an input x ∈ X produces a vector of objective values and con-

straint values y = (yf1 , · · · , yfK , yc1 · · · ycL) where yfj = fj(x) for all j ∈ {1, · · · , K}

and yci = Ci(x) for all i ∈ {1, · · · , L}.

MOO Problem with Discrete Multi-fidelity Experiments. This is a general

version of the MOO problem, where we have access to Mj fidelities for each function

fj that vary in the amount of resources consumed and the accuracy of evaluation.

The evaluation of an input x ∈ X with fidelity vector m = [m1, · · · ,mK ] produces

an evaluation vector of K values denoted by ym ≡ [y
(m1)
1 , · · · , y(mK)

K ], where y
(mj)
j =

f
(mj)
j (x) for all j ∈ {1, · · · , K}.

MOO Problem with Continuous-fidelity Experiments. In this general version

of the multi-fidelity setting, we have access to gi(x, zi) where gi is an alternative

function through which we can evaluate cheaper approximations of fi by varying the

fidelity variable zi ∈ Z (continuous function approximations). The evaluation of an
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input x ∈ X with fidelity vector z = [z1, · · · , zK ] produces an evaluation vector of K

values denoted by y ≡ [y1, · · · , yK ], where yi = gi(x, zi) for all i ∈ {1, · · · , K}.

Multi-Objective Optimization Solution. The optimal solution of MOO problem

is a set of points X ∗ ⊂ X such that no point x′ ∈ X \ X ∗ Pareto-dominates a point

x ∈ X ∗. The solution set X ∗ is called the optimal Pareto set and the corresponding set

of function values Y∗ is called the optimal Pareto front. The goal of multi-objective

BO is to approximate X ∗ while minimizing the number of function evaluations.

Table 2.1 contains the mathematical notations used throoughout the dissertation.

2.2 Background on Bayesian Optimization

This dissertation studies adaptive experimental design algorithms for solving the

above-mentioned MOO problems within the framework of Bayesian optimization

(BO). Hence, we provide the necessary background on BO for the reader.

Bayesian Optimization is a very efficient framework to solve global optimization

problems using black-box evaluations of expensive objective functions. Without loss

of generality, let X ⊆ ℜd be an input space. In the single-objective BO formulation,

we are given an unknown real-valued objective function f : X 7→ ℜ, which can eval-

uate each input x ∈ X to produce an evaluation y = f(x). Each evaluation f(x) is

expensive in terms of the consumed resources. For example, in hardware design opti-

mization application, x corresponds to a candidate hardware design with some choices
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to input variables, and f(x) corresponds to running a computationally-expensive sim-

ulation to mimic the real hardware. The main goal is to find an input x∗ ∈ X that

approximately optimizes f by performing a limited number of function evaluations.

BO algorithms learn a cheap surrogate model from training data obtained from past

function evaluations. They intelligently select the next input for evaluation by trad-

ing off exploration (inputs for which the statistical model has high uncertainty) and

exploitation (inputs for which the model has high prediction value) to quickly direct

the search toward optimal inputs. The three key elements of BO framework are:

𝒇 (𝒙)

Blackbox
Function evaluation

𝑥", 𝑦

Learning
Statistical Model GP

Acquisition function 
Optimization

𝐺𝑃
𝑥! = argmax
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Figure 2.1: Overview of the Bayesian optimization framework for the single objec-
tive function setting. In each iteration, we use the statistical model
trained from past data to select the next input xs for function evalua-
tion using the acquisition strategy and update the mode using the new
training example (xs, y).

1) Statistical Model of the true function f(x). Gaussian Process (GP) [189]
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is the most commonly used model. A GP over a space X is a random process from X

to ℜ. It is characterized by a mean function m : X 7→ ℜ and a covariance or kernel

function κ : X × X 7→ ℜ. If a function f is sampled from GP(m,κ), then f(x) is

distributed normally N (m(x), κ(x,x)) for a set of inputs from x ∈ X. The predictive

mean and uncertainty of a GP for a new input xn ∈ X is defined as:

µ(xn) = κxn,X [κX,X + σ2I]−1(Y −m(X)) +m(xn)

σ2(xn) = κxn,xn − κxn,X [κX,X + σ2I]−1κX,xn

where κxn,xn = κ(xn,xn), κX,X = κ(X,X), κxn,X = [κ(xn,xi)]∀i, X is the set of

evaluated inputs and Y is their corresponding function values.

Kernel functions. A kernel function measures the similarity between a pair of

inputs (x,x′) and allows GPs to model correlations between function values for dif-

ferent inputs. Examples of kernel functions that are commonly used over continuous

input spaces are:

Radial Basis Function (RBF): κ(x,x′) = σf · exp(
||x− x′||2

2l2
) (2.1)

Matern 5/2: κ(x,x′) = σf (1 +

√
5||x− x′||

l
+

5||x− x′||2
3l2

)exp(−||x− x′||
l

) (2.2)

Each kernel possesses the hyperparameter σf , the signal variance, which is a scale

factor controlling the range of the function values represented by a GP. The RBF
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kernel and Matern kernel contain a length-scale hyperparameter l that controls the

closeness/similarity of x and x′. l is also known as the smoothness parameter. GPs

can also be used for discrete/hybrid spaces once we define an appropriate kernel

[65, 54]. Some examples include diffusion kernels for categorical spaces [57, 52] and

hybrid spaces [58], dictionary kernels for high-dimensional discrete/hybrid spaces [62],

Kendall and Mallow kernels [61] for permutation spaces, structure-coupled kernel for

rich structured spaces such as molecules [50].

2) Acquisition Function (α) to score the utility of evaluating a candidate

input x ∈ X based on the statistical model. Some popular acquisition functions in the

single-objective BO literature include expected improvement (EI), upper confidence

bound (UCB), lower confidence bound (LCB), Thompson sampling (TS), and max-

value entropy search (MES) [185]. For the sake of completeness, we formally define

the acquisition functions employed in Chapters 4 and 5:

UCB(x) = µ(x) + β1/2σ(x) (2.3)

LCB(x) = µ(x)− β1/2σ(x) (2.4)

TS(x) = f(x) with f(.) ∼ GP (2.5)

EI(x) = σ(x)(γΦ(γ) + ϕ(γ)), γ =
τ − µ(x)

σ(x)
(2.6)

3) Optimization Procedure to select the best scoring candidate input according
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to acquisition function α depending on the statistical model. DIRECT [105] is a very

popular approach for acquisition function optimization.

xs ← argmaxx∈X α(x)

Multi-objective Bayesian Optimization. To handle the multi-objective setting,

BO for single-objective optimization can be extended using the same three key ele-

ments introduced in section 2.2. However, there are two main challenges: 1) How

to build statistical models for multiple expensive-to-evaluate objective functions?;

and 2) How to design a good acquisition function to capture the trade-off between

multiple objectives? To overcome the first challenge, most existing work uses inde-

pendent Gaussian process (GP) for each objective. We provide more details about the

surrogate modeling strategy used in our proposed solutions for each of the problem

settings in the respective chapters. To overcome the second challenge, new acquisition

functions are designed to tackle the challenges of multi-objective problems. In this

dissertation, we propose several acquisition functions to address the problems intro-

duced in Section 2.1. Figure 2.2 illustrates an overview of the Bayesian optimization

process in the multi-objective setting.
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Max-value Entropy Search for Multi-Objective Bayesian Optimization

q Bayesian optimization (BO) is a framework to maximize 
expensive black-box functions using the following elements: 

!

Ø Statistical models as a prior for the functions: Gaussian processes 
(GPs) can provide prediction " ! and uncertainty via variance #(!)

Ø Acquisition function to score the utility of evaluating input !
Ø Optimization procedure to select the best input ! for evaluation

Multi-Objective Bayesian Optimization

q Input space entropy-based acquisition function

q Output space entropy-based acquisition function

q How to sample &∗ ?  
Ø Sample functions from posterior GPs based on random Fourier 

features sampling procedure. We approximate each GP prior as ()* =
, ! -., where . ~ 0(0, 3).

Ø Solve a cheap multi-objective optimization problem over the sampled 
functions ()4 … ()6 to compute sample Pareto front 

q For each function, select the maximum-value in the cheap Pareto front 
78∗ as an upper bound for the truncated Gaussian

q MESMO’s Acquisition Function 

where 9:
; < = =:

;∗ >?; <
@; <

,	B and F are the p.d.f and c.d.f of a standard normal distribution 

q Theoretical Regret Bound
Let G !∗ = | G4, … , G6 | where G8 = ∑JK4-L ()8 !∗ − )8 !J ) . Let P be a distribution 
over vector [74∗, … , 76∗] and let the noise for function evaluation be i.i.d
0 0, # and Q = RS 74∗ > )4 !∗ , … , 76

∗ > )6 !∗

Then with probability at least 1 − V, in WL = ∑JK4-L log[
\
] ^_

number of iterations: 

MESMO Algorithm

qDrawbacks of existing methods
Ø Scalarization: relies on random scalars that can be sub-optimal 
Ø Hypervolume improvement: not scalable for high-dimensional input 

spaces and large number of objective functions
Ø Input space entropy search: maximizes information gain about the 

optimal Pareto set `∗. Relies on approximating a very expensive and 
high-dimensional (a. b) distribution over input space, where a is the 
size of sample Pareto set and b is the dimensionality of input space.

Prior Work and Our Contributions

q Evaluation metrics
Ø The Pareto hypervolume difference: hypervolume between c∗ deb fcJ
Ø G] Indicator: Average distance between points in c∗ deb fcJ

q MESMO vs. State-of-the-art
Ø MESMO consistently performs better than all baselines and also

converges much faster
Ø MESMO is robust to the number of samples: it maintains better 

performance consistently even with a single sample!

Experiments and Results
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next input for evaluation. ParEGO is simple and fast, but more advanced approaches often outperform
it. Many methods optimize the Pareto hypervolume (PHV) metric [5] that captures the quality of a
candidate Pareto set. This is done by extending the standard acquisition functions to PHV objective,
e.g., expected improvement in PHV (EHI) [5] and probability of improvement in PHV (SUR)[17].
Unfortunately, algorithms to optimize PHV based acquisition functions scale very poorly and are
not feasible for more than two objectives. SMSego is relatively faster method [19]. To improve
scalability, the gain in hypervolume is computed over a limited set of points: SMSego finds those
set of points by optimizing the posterior means of the GPs. A common drawback of this family of
algorithms is that reduction to single-objective optimization can potentially lead to more exploitation
behavior with sub-optimal results.

PAL [31] and PESMO [7] are principled algorithms based on information theory. PAL tries to
classify the input points based on the learned models into three categories: Pareto optimal, non-Pareto
optimal, and uncertain. In each iteration, it selects the candidate input for evaluation towards the
goal of minimizing the size of uncertain set. PAL provides theoretical guarantees, but it is only
applicable for input space X with finite set of discrete points. PESMO [7] relies on input space
entropy based acquisition function and iteratively selects the input that maximizes the information
gained about the optimal Pareto set X ⇤. Unfortunately, optimizing this acquisition function poses
significant challenges: a) requires a series of approximations, which can be potentially sub-optimal;
and b) optimization, even after approximations, is expensive c) performance is strongly dependent
on the number of Monte-Carlo samples. In comparison, our proposed output space entropy based
acquisition function overcomes the above challenges, and allows efficient and robust optimization.
More specifically, the time complexities of acquisition function computation in PESMO and MESMO
ignoring the time to solve cheap MO problem that is common for both algorithms are O(SKm3)
and O(SK) respectively, where S is the number of Monte-Carlo samples, K is the number of
objectives, and m is the size of the sample Pareto set in PESMO. Additionally, as demonstrated in
our experiments, MESMO is very robust and performs very well even with one sample.

4 MESMO Algorithm for Multi-Objective Optimization
In this section, we explain the technical details of our proposed MESMO algorithm. We first mathe-
matically describe the output space entropy based acquisition function and provide an algorithmic
approach to efficiently compute it. Subsequently, we theoretically analyze MESMO in terms of
asymptotic regret bounds.

Surrogate models. Gaussian processes (GPs) are shown to be effective surrogate models in prior
work on single and multi-objective BO [8, 27, 26, 25, 7]. Similar to prior work [7], we model the
objective functions f1, f2, · · · , fK using K independent GP models M1, M2, · · · , MK with zero
mean and i.i.d. observation noise. Let D = {(xi,yi)}t�1

i=1 be the training data from past t�1 function
evaluations, where xi 2 X is an input and yi = {y1

i , y2
i , · · · , yK

i } is the output vector resulting from
evaluating functions f1, f2, · · · , fK at xi. We learn surrogate models M1, M2, · · · , MK from D.

Output space entropy based acquisition function. Input space entropy based methods like PESMO
[7] selects the next candidate input xt (for ease of notation, we drop the subscript in below discussion)
by maximizing the information gain about the optimal Pareto set X ⇤. The acquisition function based
on input space entropy is given as follows:

↵(x) = I({x,y}, X ⇤ | D) (4.1)
= H(X ⇤ | D)� Ey[H(X ⇤ | D [ {x,y})] (4.2)
= H(y | D,x)� EX⇤ [H(y | D,x, X ⇤)] (4.3)

Information gain is defined as the expected reduction in entropy H(.) of the posterior distribution
P (X ⇤ | D) over the optimal Pareto set X ⇤ as given in Equations 4.2 and 4.3 (resulting from
symmetric property of information gain). This mathematical formulation relies on a very expensive
and high-dimensional (m · d dimensions) distribution P (X ⇤ | D), where m is size of the optimal
Pareto set X ⇤. Furthermore, optimizing the second term in r.h.s poses significant challenges: a)
requires a series of approximations [7] which can be potentially sub-optimal; and b) optimization,
even after approximations, is expensive c) performance is strongly dependent on the number of
Monte-Carlo samples.

To overcome the above challenges of computing input space entropy based acquisition function, we
take an alternative route and propose to maximize the information gain about the optimal Pareto
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front Y⇤. This is equivalent to expected reduction in entropy over the Pareto front Y⇤, which relies
on a computationally cheap and low-dimensional (m · K dimensions, which is significantly less than
m · d as K ⌧ d in practice) distribution P (Y⇤ | D). Our acquisition function that maximizes the
information gain between the next candidate input for evaluation x and Pareto front Y⇤ is given as:

↵(x) = I({x,y}, Y⇤ | D) (4.4)
= H(Y⇤ | D)� Ey[H(Y⇤ | D [ {x,y})] (4.5)
= H(y | D,x)� EY⇤ [H(y | D,x, Y⇤)] (4.6)

The first term in the r.h.s of equation 4.6 (entropy of a factorizable K-dimensional gaussian distribution
P (y | D,x)) can be computed in closed form as shown below:

H(y | D,x) =
K(1 + ln(2⇡))

2
+

KX

i=1

ln(�i(x)) (4.7)

where �2
i (x) is the predictive variance of ith GP at input x. The second term in the r.h.s of equation 4.6

is an expectation over the Pareto front Y⇤. We can approximately compute this term via Monte-Carlo
sampling as shown below:

EY⇤ [H(y | D,x, Y⇤)] ' 1

S

SX

s=1

[H(y | D,x, Y⇤
s )] (4.8)

where S is the number of samples and Y⇤
s denote a sample Pareto front. The main advantages of our

acquisition function are: computational efficiency and robustness to the number of samples. Our
experiments demonstrate these advantages over input space entropy based acquisition function.

There are two key algorithmic steps to compute Equation 4.8: 1) How to compute Pareto front
samples Y⇤

s ?; and 2) How to compute the entropy with respect to a given Pareto front sample Y⇤
s ?

We provide solutions for these two questions below.

1) Computing Pareto front samples via cheap multi-objective optimization. To compute a
Pareto front sample Y⇤

s , we first sample functions from the posterior GP models via random fourier
features [8, 20] and then solve a cheap multi-objective optimization over the K sampled functions.

Sampling functions from posterior GP. Similar to prior work [8, 7, 26], we employ random
fourier features based sampling procedure. We approximate each GP prior as f̃ = �(x)T ✓, where
✓ ⇠ N(0, I). The key idea behind random fourier features is to construct each function sample
f̃(x) as a finitely parametrized approximation: �(x)T ✓, where ✓ is sampled from its corresponding
posterior distribution conditioned on the data D obtained from past function evaluations: ✓|D ⇠
N(A�1�Tyn,�2A�1), where A = �T� + �2I and �T = [�(x1), · · · ,�(xt�1)].

Cheap MO solver. We sample f̃i from GP model Mi for each of the K functions as described
above. A cheap multi-objective optimization problem over the K sampled functions f̃1, f̃2, · · · , f̃k

is solved to compute sample Pareto front Y⇤
s . This cheap multi-objective optimization also allows us

to capture the interactions between different objectives. We employ the popular NSGA-II algorithm
[3] to solve the MO problem with cheap objective functions noting that any other algorithm can be
used to similar effect.

2) Entropy computation with a sample Pareto front. Let Y⇤
s = {z1, · · · , zm} be the sample

Pareto front, where m is the size of the Pareto front and each zi = {z1
i , · · · , zK

i } is a K-vector
evaluated at the K sampled functions. The following inequality holds for each component yj of the
K-vector y = {y1, · · · , yK} in the entropy term H(y | D,x, Y⇤

s ):

yj  max{zj
1, · · · zj

m} 8j 2 {1, · · · , K} (4.9)

The inequality essentially says that the jth component of y (i.e., yj) is upper-bounded by a value
obtained by taking the maximum of jth components of all m K-vectors in the Pareto front Y⇤

s . This
inequality can be proven by a contradiction argument. Suppose there exists some component yj of
y such that yj > max{zj

1, · · · zj
m}. However, by definition, y is a non-dominated point because no

point dominates it in the jth dimension. This results in y 2 Y⇤
s which is a contradiction. Therefore,

our hypothesis that yj > max{zj
1, · · · zj

m} is incorrect and inequality 4.9 holds.
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Input dimension d

Requires 
approximation

Output dimension k < < d

Sum of truncated 
Gaussians

By combining the inequality 4.9 and the fact that each function is modeled as a GP, we can model
each component yj as a truncated Gaussian distribution since the distribution of yj needs to satisfy
yj  max{zj

1, · · · zj
m}. Furthermore, a common property of entropy measure allows us to decompose

the entropy of a set of independent variables into a sum over entropies of individual variables [2]:

H(y | D,x, Y⇤
s ) '

KX

j=1

H(yj |D,x, max{zj
1, · · · zj

m}) (4.10)

Equation 4.10 and the fact that the entropy of a truncated Gaussian distribution[13] can be computed
in closed form gives the following mathematical expression for the entropy term H(y | D,x, Y⇤

s ).
We provide the complete details of the derivation in the Appendix.

H(y | D,x, Y⇤
s ) '

KX

j=1

"
(1 + ln(2⇡))

2
+ ln(�j(x)) + ln�(�j

s(x))� �j
s(x)�(�j

s(x))

2�(�j
s(x))

#
(4.11)

where �j
s(x) =

yj⇤
s �µj(x)
�j(x) , yj⇤

s = max{zj
1, · · · zj

m}, and � and � are the p.d.f and c.d.f of a standard
normal distribution respectively. By combining equations 4.7 and 4.11 with Equation 4.6, we get the
final form of our acquisition function as shown below:

↵(x) ' 1

S

SX

s=1

KX

j=1

"
�j

s(x)�(�j
s(x))

2�(�j
s(x))

� ln�(�j
s(x))

#
(4.12)

A complete description of the MESMO algorithm is given in Algorithm 1. The blue colored steps
correspond to computation of our output space entropy based acquisition function via sampling.

Algorithm 1 MESMO Algorithm
Input: input space X; K blackbox objective functions f1(x), f2(x), · · · , fK(x); and maximum no.
of iterations Tmax

1: Initialize Gaussian process models M1, M2, · · · , MK by evaluating at N0 initial points
2: for each iteration t = N0 + 1 to Tmax do
3: Select xt  arg maxx2X ↵t(x), where ↵t(.) is computed as:
4: for each sample s 2 1, · · · , S:
5: Sample f̃i ⇠Mi, 8i 2 {1, · · · , K}
6: Y⇤

s  Pareto front of cheap multi-objective optimization over (f̃1, · · · , f̃K)
7: Compute ↵t(.) based on the S samples of Y⇤

s as given in Equation 4.12
8: Evaluate xt: yt  (f1(xt), · · · , fK(xt))
9: Aggregate data: D  D [ {(xt,yt)}

10: Update models M1, M2, · · · , MK

11: t t + 1
12: end for
13: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

4.1 Theoretical Analysis

In this section, we provide a theoretical analysis for the behavior of MESMO algorithm. Multi-
objective optimization literature has multiple metrics to assess the quality of Pareto front approxi-
mation. The two commonly employed metrics include Pareto Hypervolume indicator [26] and R2

indicator[15]. R2 indicator is a natural extension of the cumulative regret measure in single-objective
BO as proposed in the well-known work by Srinivasan et al., [22] to prove convergence results. Prior
work [14] has shown that R2 and Pareto Hypervolume indicator show similar behavior. Indeed,
our experiments validate this claim for MESMO. Therefore, we present the theoretical analysis of
MESMO with respect to R2 indicator. Let x⇤ be a point in the optimal Pareto set X ⇤. Let xt be a
point selected for evaluation by MESMO at the tth iteration. Let R(x⇤) = kR1, · · · , RKk, where
Rj =

PT 0

t=1(fj(x
⇤)� fj(xt)) and k.k is the norm of the K-vector. We discuss asymptotic bounds

for this measure over the input set X.
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BO as proposed in the well-known work by Srinivasan et al., [25] to prove convergence results. Prior
work [17] has shown that R2 and Pareto Hypervolume indicator show similar behavior. Indeed,
our experiments validate this claim for MESMO. Therefore, we present the theoretical analysis of
MESMO with respect to R2 indicator. Let x⇤ be a point in the optimal Pareto set X ⇤. Let xt be a
point selected for evaluation by MESMO at the tth iteration. Let R(x⇤) = kR1, · · · , RKk, where
Rj =

PT 0

t=1(fj(x
⇤)� fj(xt)) and k.k is the norm of the K-vector. We discuss asymptotic bounds

for this measure over the input set X.
Theorem 1. Let P be a distribution over vector [y1⇤, · · · , yK⇤], where each yj⇤ is the maximum value
for function fj among the vectors in the Pareto front obtained by solving the cheap multi-objective op-
timization problem over sampled functions from the K Gaussian process models. Let the observation
noise for function evaluations is i.i.d N (0,�) and w = Pr[

�
y1⇤ > f1(x

⇤)
�
, · · · ,

�
yK⇤ > fK(x⇤)

�
].

If xt is the candidate input selected by MESMO at the tth iteration according to 4.12 and
[y1⇤, · · · , yK⇤] is drawn from P , then with probability atleast 1 � �, in T 0 =

PT
i=1 logw

�
2⇡i

number of iterations

R(x⇤) =

vuut
KX

j=1

 ⇣
vj

t⇤ + ⇣T

⌘2
 

2T�j
T

log(1 + ��2)

!!
(4.13)

where ⇣T = (2 log(⇡T /�))1/2, ⇡i > 0, and
PT

i=1
1
⇡i
 1, vj

t⇤ = maxt vj
t with vj

t =

minx2X
yj⇤�µj,t�1(x)

�j,t�1(x) , and �j
T is the maximum information gain about function fj after T func-

tion evaluations.

We provide details of the proof in the Appendix. The key message of this result is that since each
term Rj in R(x⇤) grows sub-linearly in the asymptotic sense, R(x⇤) which is defined as the norm
also grows sub-linearly.

5 Experiments and Results

In this section, we describe our experimental setup, present results of MESMO on diverse synthetic
and real-world benchmarks, and compare MESMO with existing methods.

5.1 Experimental Setup

Multi-objective BO algorithms. We compare MESMO with existing methods described in the
related work: ParEGO [11], PESMO [7], SMSego [19], EHI [5], and SUR [17]. We employ the
code for these methods from the BO library Spearmint1. For methods requiring PHV computation,
we employ the PyGMO library2. According to PyGMO documentation, the algorithm from [15]
is employed for PHV computation. We did not include PAL [31] as it is known to have similar
performance as SMSego [7] and works only for finite discrete input space.

Statistical models. We use a GP based statistical model with squared exponential (SE) kernel in
all our experiments. The hyper-parameters are estimated after every 5 function evaluations. We
initialize the GP models for all functions by sampling initial points at random from a Sobol grid. This
initialization procedure is same as the one in-built in the Spearmint library.

Synthetic benchmarks. We construct two synthetic multi-objective benchmark problems using a
combination of commonly employed benchmark functions for single-objective optimization3. We
also employ two benchmarks from the general multi-objective optimization literature. We provide
the complete details of these MO benchmarks below.

1) BC-2,2: We evaluate two benchmark functions Branin and Currin. The dimension of input
space d is 2.

2) PRDZPS-6,6: We evaluate six benchmark functions, namely, Powell, Rastrigin, Dixon, Za-
kharov, Perm, and SumSquares. The dimension of input space d is 6.

1https://github.com/HIPS/Spearmint/tree/PESM
2https://esa.github.io/pygmo/
3https://www.sfu.ca/ ssurjano/optimization.html
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Theorem 1. Let P be a distribution over vector [y1⇤, · · · , yK⇤], where each yj⇤ is the maximum value
for function fj among the vectors in the Pareto front obtained by solving the cheap multi-objective op-
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PT
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1
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 1, vj
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t =
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yj⇤�µj,t�1(x)
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We provide details of the proof in the Appendix. The key message of this result is that since each
term Rj in R(x⇤) grows sub-linearly in the asymptotic sense, R(x⇤) which is defined as the norm
also grows sub-linearly.

5 Experiments and Results

In this section, we describe our experimental setup, present results of MESMO on diverse synthetic
and real-world benchmarks, and compare MESMO with existing methods.

5.1 Experimental Setup

Multi-objective BO algorithms. We compare MESMO with existing methods described in the
related work: ParEGO [11], PESMO [7], SMSego [19], EHI [5], and SUR [17]. We employ the
code for these methods from the BO library Spearmint1. For methods requiring PHV computation,
we employ the PyGMO library2. According to PyGMO documentation, the algorithm from [15]
is employed for PHV computation. We did not include PAL [31] as it is known to have similar
performance as SMSego [7] and works only for finite discrete input space.

Statistical models. We use a GP based statistical model with squared exponential (SE) kernel in
all our experiments. The hyper-parameters are estimated after every 5 function evaluations. We
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3https://www.sfu.ca/ ssurjano/optimization.html
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q Acquisition function optimization time
Ø The acquisition function optimization time of MESMO is significantly 

smaller than PESMO for the same number of samples
Ø MESMO with one sample is comparable to ParEGO
Ø The time for PESMO and SMSego increases significantly as the 

number of objective functions grow MO 
Algorithm 

BC-2,2 PRDZPS-6,6

MESMO-1 3.5±0.34 4.56±0.71

MESMO-10 24.4±5.75 38.65±0.65

MESMO-100 242.434±8.9 377.53±4.29

PESMO-1 13.6±3.2 110.4±17.8

PESMO-10 115.23±17.1 614.27±44

PESMO-100 1128.3±15.3 6092.96±53

ParEGO 3.2±1.6 5.3±2.3

SMSego 80.5±2.1 300.43±35.7

Figure 2.2: Overview of the Bayesian optimization process for two objective func-
tions (K=2). We learn one GP surrogate model for each expensive-to-
evaluate objective function. In each iteration, the acquisition strategy
α reasons about the utility of evaluating an unknown input using the
information from the GP models for two objective functions and selects
the input xs with highest utility for function evaluation. The evaluation
of input xs produces (y1, y2) and this new training example is used to
update the statistical models GP1, GP2.

2.3 Evaluation Metrics

To evaluate the proposed MOO algorithms, we employed two known metrics to mea-

sure the quality of Pareto solutions: the Pareto hypervolume indicator and the R2

indicator. Additionally, we propose a new Pareto diversity metric to evaluate the

diversity of the Pareto front.

Pareto hypervolume (PHV) is commonly employed to measure the quality of a

given Pareto front [202]. PHV is defined as the volume between a reference point and

the given Pareto front (set of non-dominated points). The hypervolume indicator can

be used as a performance metric in two different ways. After each iteration t: 1) We

26



report the hypervolume of the estimated Pareto front (Yt) by a given algorithm, and

2) We report the difference between the hypervolume of the ideal Pareto front (Y∗)

and hypervolume of the estimated Pareto front (Yt) by a given algorithm.

PHVdiff = PHV (Y∗)− PHV (Yt) (2.7)

The left part of Figure 2.3 provides an illustration of the hypervolume metric.

R2 Indicator is the average distance between the ideal Pareto front (Y∗) and the

estimated Pareto front (Yt) by a given algorithm [157]. R2 is a distance-based metric

that degenerates to the regret metric presented in our theoretical analysis of regret

bounds. The right part of Figure 2.3 provides an illustration of the R2 metric.

Diversity of Pareto Front: In multi-objective optimization, our goal is to find high-

quality Pareto fronts. However, in several real-world problems, practitioners might

highly care about the diversity of the Pareto front. The diversity of the Pareto front

has not been formally evaluated in any previous work. As one of our contributions,

we introduce an evaluation metric to measure the diversity of the Pareto front.

Diversity is an important criterion for many optimization problems. Prior work

on batch BO both in the single-objective and multi-objective settings focused on

evaluating diversity with respect to the input space [91]. However, in most real-world

MOO problems, diversity in the input space does not necessarily reflect diversity

in the output space. There is little to no work on understanding, formalizing, and
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Objective function 𝑓%

Ideal pareto front

Estimated Pareto front

Hypervolume Difference

Reference point

Ideal
Pareto Front 𝒀∗

Objective function 𝑓%

Estimated
Pareto Front 5𝒀𝒕

Figure 2.3: Illustration of the Pareto hypervolume and the R2 metrics for two objec-
tive functions. The blue points correspond to the Pareto front estimated
by a given algorithm. The red points correspond to the optimal Pareto
front. Left: The gray volume is its corresponding Pareto hypervolume.
The blue area represents the Pareto hypervolume difference metric for
this example. Right: The black arrows represent the distances that are
averaged to compute the R2 metric.

measuring Pareto front diversity in MOO. In most cases, finding a more diverse set

of points in the output space leads to a higher hypervolume [203]. However, a higher

hypervolume indicator does not necessarily correspond to a more diverse Pareto front.

[118] is the only prior work that proposed a diversity-guided approach for batch MOO.

However, the diversity of the produced Pareto front was not evaluated.

To fill this gap, we propose an evaluation metric to assess the Diversity of the

Pareto Front (DPF). Given a Pareto font Yt, DPF is the average pairwise distance

between points (i.e., output vectors) on Pareto front. It is important to clarify that

the pairwise distances are computed in the output space between different vector

pairs (y,y′) ∈ Yt, unlike previously used metrics to assess input space diversity in
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Notation Definition

x,y, f ,m bold notation represents vectors
x input vector of d dimensions
[n] set of first n natural numbers {1, 2, · · · , n}

f1, f2, · · · , fK true objective functions
C1, C2, · · · , CL Constraints functions

f̃j function sampled from the highest fidelity of the jth Gaussian process model
X ∗ true Pareto set
X Input Search space
I Information gain
Y∗ true Pareto front of the objective functions [f1, f2, · · · , fK ]
Y∗

s Pareto front of the sampled functions [f̃1, f̃2, · · · , f̃K ]
Yt Pareto front at iteration t
GPj Gaussian process modeling function/constraint j

Table 2.1: The general mathematical notations used throughout the dissertation.

the single-objective setting [5]. The proposed diversity measure and the hypervolume

metric complement each other and together represent the merits of the Pareto front.

DPF (Yt) =

∑
(i,j)∈I ||yi − yj||

|I| with I = {(i, j)∀i, j ∈ {1 · · · t}, i < j, (yi,yj) ∈ Yt}
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CHAPTER THREE

OUTPUT SPACE ENTROPY SEARCH FOR MULTI-OBJECTIVE BO

In this chapter, we address the most basic MOO problem in the single-fidelity setting,

where the goal is to optimize multiple black-box objective functions by approximating

the true Pareto-set of solutions while minimizing the number of function evaluations.

For example, in hardware design optimization, we need to find designs that trade-off

performance, energy, and area overhead using expensive computational simulations

[34, 66, 114, 101, 51, 142, 102, 128, 129, 167, 41, 113, 36, 103, 132, 10, 40, 9, 11, 97,

93, 95, 96, 98].

We propose a novel approach referred to as Max-value Entropy Search for Multi-

objective Optimization (MESMO) to solve this problem. MESMO employs an output-

space entropy-based acquisition function to efficiently select the sequence of inputs

for evaluation to quickly uncover high-quality Pareto-set solutions. The key idea is

to evaluate the input that maximizes the information gain about the optimal Pareto

front in each iteration. Output space entropy search has many advantages over algo-

rithms based on input space entropy search: a) allows much tighter approximation;

b) is significantly cheaper to compute; and c) naturally lends itself to robust opti-

mization. We also provide theoretical analysis in terms of asymptotic regret bounds

to characterize the efficacy of MESMO. Our experiments on several synthetic and

real-world benchmark problems show that MESMO consistently outperforms state-
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of-the-art algorithms.

3.1 Problem Setup

Basic Multi-Objective Optimization Problem. The goal is to maximize real-

valued objective functions f1(x), f2(x), · · · , fK(x), with K ≥ 2, over continuous

space X ⊆ ℜd. Each evaluation (also called an experiment) of an input x ∈ X

produces a vector of objective values y = (y1, y2, · · · , yK) where yi = fi(x) for all

i ∈ {1, 2, · · · , K}. We say that an point x Pareto-dominates another point x′ if

fi(x) ≥ fi(x
′) ∀i and there exists some j ∈ {1, 2, · · · , K} such that fj(x) > fj(x

′).

The optimal solution of MOO problem is a set of points X ∗ ⊂ X such that no point

x′ ∈ X \X ∗ Pareto-dominates a point x ∈ X ∗. The solution set X ∗ is called the opti-

mal Pareto set and the corresponding set of function values Y∗ is called the optimal

Pareto front. The goal of multi-objective BO is to approximate X ∗ while minimiz-

ing the number of expensive function evaluations. In the application of hardware

design optimization, x ∈ X is a candidate hardware design; evaluation of design x

to get output objectives such as power, performance, and area involve performing

computationally-expensive simulation to mimic the real hardware; and our goal is to

find the optimal Pareto set of hardware designs to trade-off power, performance, and

area. Table 2.1 contains all the mathematical notations used in this section.

Surrogate Models. Gaussian processes (GPs) are shown to be effective surrogate
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models in prior work on single and multi-objective BO [84, 186, 185, 174, 83]. Similar

to prior work [83], we model the objective functions f1, f2, · · · , fK using K indepen-

dent GP models GP1,GP2, · · · ,GPK with zero mean and i.i.d. observation noise.

Let D = {(xi,yi)}t−1
i=1 be the training data from past t−1 function evaluations, where

xi ∈ X is an input and yi = {yi1, yi2, · · · , yiK} is the output vector resulting from eval-

uating functions f1, f2, · · · , fK at xi. We learn surrogate models GP1,GP2, · · · ,GPK

from D.

3.2 Related Work

There is a family of model-based multi-objective BO algorithms that reduce the

problem to single-objective optimization. The ParEGOmethod [117] employs random

scalarization for this purpose: scalar weights of K objective functions are sampled

from a uniform distribution to construct a single-objective function and expected

improvement is employed as the acquisition function to select the next input for eval-

uation. ParEGO is simple and fast, but more advanced approaches often outperform

it. Many methods optimize the Pareto hypervolume (PHV) metric [67] that captures

the quality of a candidate Pareto set. This is done by extending the standard ac-

quisition functions to PHV objective, e.g., expected improvement in PHV (EHI) [67]

and probability of improvement in PHV (SUR) [155] also referred to as EHVI and

HVPI respectively [80]. Unfortunately, algorithms to optimize PHV-based acquisi-

tion functions scale very poorly and are not feasible for more than two objectives.
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SMSego is a relatively faster method [158]. To improve scalability, the gain in hyper-

volume is computed over a limited set of points: SMSego finds those sets of points

by optimizing the posterior means of the GPs. A common drawback of this family of

algorithms is that reduction to single-objective optimization can potentially lead to

more exploitation behavior resulting in sub-optimal solutions.

PAL [206], PESMO [83], and the concurrent works USeMO [22] and MESMO [17]

are principled algorithms based on information theory. PAL tries to classify the input

points based on the learned models into three categories: Pareto optimal, non-Pareto

optimal, and uncertain. In each iteration, it selects the candidate input for evaluation

towards the goal of minimizing the size of the uncertain set. PAL provides theoretical

guarantees, but it is only applicable for input space X with a finite set of discrete

points. USeMO is a general framework that iteratively generates a cheap Pareto front

using the surrogate models and then selects the input with the highest uncertainty

for evaluation. PESMO [83] relies on input space entropy-based acquisition function

and iteratively selects the input that maximizes the information gained about the

optimal Pareto set X ∗. Unfortunately, optimizing this acquisition function poses sig-

nificant challenges: a) it requires a series of approximations, which can be potentially

sub-optimal; b) the optimization, even after approximations, is expensive; and c)

the performance is strongly dependent on the number of Monte-Carlo samples. In

comparison, our proposed output space entropy-based acquisition function partially
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overcomes the above challenges, and allows efficient and robust optimization with

respect to the number of samples used for acquisition function computation. More

specifically, the time complexities of acquisition function computation in PESMO

and MESMO ignoring the time to solve the cheap MO problem that is common for

both algorithms are O(SKm3) and O(SK) respectively, where S is the number of

Monte-Carlo samples, K is the number of objectives, and m is the size of the sam-

ple Pareto set in PESMO. In fact, PESMO formulation relies on an expensive and

high-dimensional (l · d dimensions) distribution over the input space, where l is the

size of the optimal Pareto set X ∗ while MESMO relies on a computationally cheap

and low-dimensional distribution over the output space (l · K dimensions, which is

considerably less than l·d as K ≪ d in practice). Additionally, Belakaria et al. [17]

demonstrated that MESMO is very robust and performs very well even with one

sample.

To overcome the shortcoming of the existing work, we propose two approaches: 1)

Our proposed output space entropy-based acquisition function, MESMO, overcomes

the above challenges and allows efficient and robust optimization. More specifically,

the time complexities of acquisition function computation in PESMO and MESMO

ignoring the time to solve cheap MO problem that is common for both algorithms are

O(SKm3) and O(SK) respectively, where S is the number of Monte-Carlo samples,

K is the number of objectives, and m is the size of the sample Pareto set in PESMO.
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MESMO is also very robust and performs very well even with one sample. The

details of MESMO are provided in section 3.3. 2) Our proposed uncertainty-aware

approach, USEMO, provides a flexible and efficient wrapper framework by enabling

practitioners to leverage approaches from the single objective BO literature to solve

multi-objective BO problems. The details of USeMO are provided in Chapter 4.

3.3 Max-value Entropy Search for Multi-Objective BO

Input space entropy-based methods like PESMO [83] selects the next candidate input

xt (for ease of notation, we drop the subscript in the below discussion) by maximizing

the information gain about the optimal Pareto set X ∗. The acquisition function based

on input space entropy is given as follows:

α(x) = I({x,y},X ∗ | D) (3.1)

= H(X ∗ | D)− Ey[H(X ∗ | D ∪ {x,y})] (3.2)

= H(y | D,x)− EX ∗ [H(y | D,x,X ∗)] (3.3)

Information gain is defined as the expected reduction in entropy H(.)1 of the posterior

distribution P (X ∗ | D) over the optimal Pareto set X ∗ as given in equations (3.2)

and (3.3) (resulting from the symmetric property of information gain). This math-

ematical formulation relies on an expensive and high-dimensional (l · d dimensions)

1The conditioning on D and x in H(y | D,x) is on fixed values and not random variables
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distribution P (X ∗ | D), where l is the size of the optimal Pareto set X ∗. Furthermore,

optimizing the second term in r.h.s poses significant challenges: a) it requires a series

of approximations [83] which can be potentially sub-optimal; and b) the optimization,

even after approximations, is expensive c) the performance is strongly dependent on

the number of Monte-Carlo samples.

To overcome the above challenges of computing input space entropy-based acqui-

sition function, we take an alternative route and propose to maximize the information

gain about the optimal Pareto front Y∗. This is equivalent to the expected reduc-

tion in entropy over the Pareto front Y∗, which relies on a computationally cheap

and low-dimensional (l ·K dimensions, which is considerably less than l · d as K ≪ d

in practice) distribution P (Y∗ | D). Our acquisition function that maximizes the

information gain between the next candidate input for evaluation x and Pareto front

Y∗ is given as:

α(x) = I({x,y},Y∗ | D) (3.4)

= H(Y∗ | D)− Ey[H(Y∗ | D ∪ {x,y})] (3.5)

= H(y | D,x)− EY∗ [H(y | D,x,Y∗)] (3.6)

The first term in the r.h.s of equation (3.6) (entropy of a factorizable K-dimensional
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Gaussian distribution P (y | D,x)) can be computed in closed form as shown below:

H(y | D,x) =
K(1 + ln(2π))

2
+

K∑

j=1

ln(σj(x)) (3.7)

where σ2
i (x) is the predictive variance of ith GP at input x. The second term in the

r.h.s of equation (3.6) is an expectation over the Pareto front Y∗. We can approxi-

mately compute this term via Monte-Carlo sampling as shown below:

EY∗ [H(y | D,x,Y∗)] ≃ 1

S

S∑

s=1

[H(y | D,x,Y∗
s )] (3.8)

where S is the number of samples and Y∗
s denote a sample Pareto front. The main

advantages of our acquisition function are computational efficiency and robustness

to the number of samples. Our experiments demonstrate these advantages over the

input space entropy-based acquisition function.

There are two key algorithmic steps to compute equation (3.8). We want to know:

1) how to compute Pareto front samples Y∗
s ?; and 2) and how to compute the entropy

with respect to a given Pareto front sample Y∗
s ? We provide solutions for these two

questions.

1) Computing Pareto Front Samples via Cheap Multi-Objective Op-

timization. To compute a Pareto front sample Y∗
s , we first sample functions from

the posterior GP models via random Fourier features [84, 159] and then solve a cheap
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multi-objective optimization over the K sampled functions.

Sampling functions from posterior GP. Similar to prior work [84, 83, 185], we

employ random Fourier features based sampling procedure. We approximate each GP

prior as f̃ = ϕ(x)T θ, where θ ∼ N(0, I). The key idea behind random Fourier features

is to construct each function sample f̃(x) as a finitely parameterized approximation:

ϕ(x)T θ, where θ is sampled from its corresponding posterior distribution conditioned

on the data D obtained from past function evaluations: θ|D ∼ N(A−1ΦTyn, σ
2A−1),

where A = ΦTΦ+ σ2I and ΦT = [ϕ(x1), · · · , ϕ(xt−1)].

Cheap MO solver. We sample f̃i from GP model GP i for each of the K

functions as described above. A cheap multi-objective optimization problem over the

K sampled functions f̃1, f̃2, · · · , f̃k is solved to compute sample Pareto front Y∗
s . This

cheap multi-objective optimization also allows us to capture the interactions between

different objectives. We employ the popular NSGA-II algorithm [47] to solve the MO

problem with cheap objective functions noting that any other algorithm can be used

to similar effect.

2) Entropy Computation with a Sample Pareto Front. Let Y∗
s =

{v1, · · · ,vl} be the sample Pareto front, where l is the size of the Pareto front and

each vi = {vi1, · · · , viK} is a K-vector evaluated at the K sampled functions. The

following inequality holds for each component yj of the K-vector y = {y1, · · · , yK}
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in the entropy term H(y | D,x,Y∗
s ):

yj ≤ y∗js ∀j ∈ {1, · · · , K} (3.9)

where y∗js = max{v1j , · · · vlj}. The inequality essentially says that the jth component

of y (i.e., yj) is upper-bounded by a value obtained by taking the maximum of jth

components of all l K-vectors in the Pareto front Y∗
s . This inequality can be proven

by a contradiction argument. Suppose there exists some component yj of y such

that yj > y∗js . However, by definition, y is a non-dominated point because no point

dominates it in the jth dimension. This results in y ∈ Y∗
s , which is a contradiction.

Therefore, our hypothesis that yj > y∗js is incorrect and inequality (3.9) holds.

By combining the inequality (3.9) and the fact that each function is modeled as a

GP, we can approximate each component yj as a truncated Gaussian distribution since

the distribution of yj needs to satisfy yj ≤ y∗js . Furthermore, a common property of

entropy measure allows us to decompose the entropy of a set of independent variables

into a sum over entropies of individual variables [38]:

H(y | D,x,Y∗
s ) =

K∑

j=1

H(yj|D,x, y∗js) (3.10)

The r.h.s is a summation over entropies of K variables {y1, · · · , yK}. The proba-

bility distribution of each variable yj is a truncated Gaussian with upper bound y∗js
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[137]. The differential entropy for each yj is given as:

H(yj | D,x,Y∗
s ) ≃

[
(1 + ln(2π))

2
+ ln(σj(x)) + lnΦ(γj

s(x))−
γj
s(x)ϕ(γ

j
s(x))

2Φ(γj
s(x))

]

(3.11)

Equation (3.10) and equation (3.11) give the following expression ofH(y | D,x,Y∗
s ).

H(y | D,x,Y∗
s ) ≃

K∑

j=1

[
(1 + ln(2π))

2
+ ln(σj(x)) + lnΦ(γj

s(x))−
γj
s(x)ϕ(γ

j
s(x))

2Φ(γj
s(x))

]

(3.12)

where γj
s(x) =

y∗js−µj(x)

σj(x)
, and ϕ and Φ are the p.d.f and c.d.f of a standard normal

distribution respectively. By combining equations (3.7) and (3.12) with equation

(3.6), we get the final form of our acquisition function as shown below:

α(x) ≃ 1

S

S∑

s=1

K∑

j=1

[
γj
s(x)ϕ(γ

j
s(x))

2Φ(γj
s(x))

− lnΦ(γj
s(x))

]
(3.13)

A complete description of the MESMO algorithm is given in Algorithm 1. The blue-

colored steps correspond to the computation of our output space entropy-based ac-

quisition function.
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Algorithm 1 MESMO Algorithm

Input: input space X; K blackbox objective functions f1(x), f2(x), · · · , fK(x); and
maximum no. of iterations Tmax

1: Initialize Gaussian process models GP1, · · · ,GPK by evaluating at N0 initial
points

2: for each iteration t = N0 + 1 to Tmax do
3: Select xt ← argmaxx∈X αt(x), where αt(.) is computed as:
4: for each sample s ∈ 1, · · · , S:
5: Sample f̃j ∼ GPj, ∀j ∈ {1, · · · , K}
6: Y∗

s ← Pareto front of cheap multi-objective optimization over (f̃1, · · · , f̃K)

7: Compute αt(.) based on the S samples of Y∗
s as given in equation (3.13)

8: Evaluate xt: yt ← (f1(xt), · · · , fK(xt))
9: Aggregate data: D ← D ∪ {(xt,yt)}
10: Update models GP1,GP2, · · · ,GPK

11: t← t+ 1
12: end for
13: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

3.4 Theoretical Analysis

In this section, we provide a theoretical analysis of the behavior of the MESMO

algorithm. Multi-objective optimization literature has multiple metrics to assess the

quality of Pareto front approximation. The two commonly employed metrics include

the Pareto Hypervolume indicator [202] and R2 indicator[157]. R2 indicator is a nat-

ural extension of the cumulative regret measure in single-objective BO as proposed

in the well-known work by Srinivasan et al., [174] to prove convergence results. Prior

work [155] has shown that R2 and Pareto Hypervolume indicator show similar behav-

ior. Indeed, our experiments validate this claim for MESMO. Therefore, we present

the theoretical analysis of MESMO with respect to R2 indicator. Let x∗ be a point
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Figure 3.1: Overview of the MESMO algorithm for two objective functions (K=2).
We build statistical models GP1, GP2 for the two objective functions
f1(x) and f2(x) respectively. First, we sample functions from the sta-
tistical models. We compute sample Pareto fronts by solving a cheap
MO problem over the sampled functions. Second, we select the best
candidate input xt that maximizes the information gain. Finally, we
evaluate the functions for xt to get (y1, y2) and update the statistical
models using the new training example.

in the optimal Pareto set X ∗. Let xt be a point selected for evaluation by MESMO

at the tth iteration. Let R(x∗) = ∥R1, · · · , RK∥, where Rj =
∑T ′

t=1(fj(x
∗) − fj(xt))

and ∥.∥ is the norm of the K-vector. We discuss asymptotic bounds for this measure

over the input set X.

Theorem 1 Let P be a distribution over vector [y∗1, · · · , y∗K ], where each y∗j is the

maximum value for the function fj among the vectors in the Pareto front obtained by
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solving the cheap multi-objective optimization problem over sampled functions from

the K Gaussian process models. Let the observation noise for function evaluations be

i.i.d N (0, σ) and w = Pr[(y∗1 > f1(x
∗)) , · · · , (y∗K > fK(x

∗))]. If xt is the candidate

input selected by MESMO at the tth iteration according to 3.13 and [y∗1, · · · , y∗K ] is

drawn from P , then with probability at least 1 − δ, in T ′ =
∑T

i=1 logw
δ

2πi
number of

iterations

R(x∗) =

√√√√
K∑

j=1

(
(
vjt∗ + ζT

)2
(

2Tγj
T

log(1 + σ−2)

))
(3.14)

where ζT = (2 log(πT/δ))
1/2, πi > 0, and

∑T
i=1

1
πi
≤ 1, vjt∗ = maxt v

j
t with vjt =

minx∈X
y∗j−µj,t−1(x)

σj,t−1(x)
, and γj

T is the maximum information gain about function fj after

T function evaluations.

We provide details of the proof in Appendix A. The key message of this result is that

since each term Rj in R(x∗) grows sub-linearly in the asymptotic sense, R(x∗) which

is defined as the norm also grows sub-linearly.

3.5 Experiments and Results

In this section, we describe our experimental setup, present the results of MESMO

on diverse synthetic and real-world benchmarks, and compare MESMO with existing

methods.
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3.5.1 Experimental Setup

Multi-objective BO algorithms. We compare MESMO with existing methods de-

scribed in the related work: ParEGO [117], PESMO [83], SMSego [158], EHI [67], and

SUR [155]. We employ the code for these methods from the BO library Spearmint2.

For methods requiring PHV computation, we employ the PyGMO library3. According

to PyGMO documentation, the algorithm from [149] is employed for PHV computa-

tion. We did not include PAL [206] as it is known to have similar performance as

SMSego [83] and works only for finite discrete input space. The code for our method

is available at (github.com/belakaria/MESMO).

Statistical models. We use a GP-based statistical model with squared exponential

(SE) kernel in all our experiments. The hyper-parameters are estimated after every 5

function evaluations. We initialize the GP models for all functions by sampling initial

points at random from a Sobol grid. This initialization procedure is the same as the

one in-built into the Spearmint library.

Synthetic benchmarks. We construct two synthetic multi-objective benchmark

problems using a combination of commonly employed benchmark functions for single-

objective optimization4. We also employ two benchmarks from the general multi-

objective optimization literature [152, 49]. We provide the complete details of these

2https://github.com/HIPS/Spearmint/tree/PESM
3https://esa.github.io/pygmo/
4https://www.sfu.ca/ ssurjano/optimization.html
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MO benchmarks below.

1) BC-2,2: We evaluate two benchmark functions Branin and Currin. The

dimension of input space d is 2.

2) PRDZPS-6,6: We evaluate six benchmark functions: Powell, Rastrigin,

Dixon, Zakharov, Perm, and SumSquares. The dimension of input space d is 6.

3) OKA2-2,3: We evaluate two functions defined in [152]. The dimension of

input space d is 3.

4) DTLZ1-4,5: We evaluate four functions defined in [49]. The dimension of

input space d is 5.

Real-world benchmarks. We employed four real-world benchmarks with data

available at [206, 164].

1) Hyper-parameter tuning of neural networks. In this benchmark, our

goal is to find a neural network with high accuracy and low prediction time. We

optimize a dense neural network over the MNIST dataset [127]. Hyper-parameters

include the number of hidden layers, the number of neurons per layer, the dropout

probability, the learning rate, and the regularization weight penalties l1 and l2. We

employ 10K instances for validation and 50K instances for training. We train the

network for 100 epochs for evaluating each candidate hyper-parameter values on val-

idation set. We apply a logarithm function to error rates due to their very small

values.
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2) SW-LLVM compiler settings optimization. SW-LLVM is a data set

with 1024 compiler settings [170] determined by d=10 binary inputs. The goal of

this experiment is to find a setting of the LLVM compiler that optimizes the memory

footprint and performance on a given set of software programs. Evaluating these

objectives is very costly and testing all the compiler settings takes days.

3) SNW sorting network optimization. The data set SNW was first

introduced by [205]. The goal is to optimize the area and throughput for the synthesis

of a field-programmable gate array (FPGA) platform. The input space consists of

206 different hardware design implementations of a sorting network. Each design is

defined by d = 4 input variables.

4) Network-on-chip (NOC) optimization. The design space of NoC

dataset [4] consists of 259 implementations of a tree-based network-on-chip. Each

configuration is defined by d = 4 variables: width, complexity, FIFO, and multiplier.

We optimize energy and runtime of application-specific integrated circuits (ASICs)

on the Coremark benchmark workload [4].

Evaluation metrics. We employ two common metrics. The Pareto hypervolume

(PHV) metric measures the quality of a given Pareto front [202] and the R2 metric

degenerates to the regret metric presented in our theoretical analysis. We provide a

detailed definition of the metrics in section 2.3
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3.5.2 Results and Discussion

Figure 3.2: Results of different multi-objective BO algorithms including MESMO
on synthetic benchmarks. The log of the hypervolume difference and the
R2 Indicator are shown with different number of function evaluations.
The mean and variance of 10 different runs are plotted.

We run all experiments 10 times. The mean and variance of the PHV and R2

metrics across different runs are reported as a function of the number of iterations.

MESMO vs. State-of-the-art. We evaluate the performance of MESMO and

PESMO with different number of Monte-Carlo samples for acquisition function op-

timization. Figure 3.2 and 3.3 show the results of all multi-objective BO algorithms

including MESMO for synthetic and real-world benchmarks respectively. We make

47



Figure 3.3: Results of different multi-objective BO algorithms including MESMO
on real-world benchmarks. The log of the hypervolume difference and
R2 Indicator are shown with different number of function evaluations.
The mean and variance of 10 different runs are plotted.

the following empirical observations: 1) MESMO consistently performs better than

all baselines and also converges much faster. For blackbox optimization problems

with expensive function evaluations, faster convergence has practical benefits as it al-

lows the end-user or decision-maker to stop early. 2) Rate of convergence of MESMO

slightly varies with different number of Monte-Carlo samples. However, in all cases,

MESMO performs better than baseline methods. 3) The convergence rate of PESMO

is dramatically affected by the number of Monte-Carlo samples: 100 samples lead

to better results than 10 and 1. In contrast, MESMO maintains a better perfor-
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mance consistently even with a single sample!. The results strongly demonstrate that

MESMO is much more robust to the number of Monte-Carlo samples than PESMO.

4) Performance of ParEGO is very inconsistent. In some cases, it is comparable to

MESMO, but performs poorly on many other cases. This is expected due to random

scalarization.

Comparison of acquisition function optimization time. We compare the run-

time of acquisition function optimization for different multi-objective BO algorithms

including MESMO and PESMO (w/ different number of Monte-Carlo samples). We

do not account for the time to fit GP models since it is same for all the algorithms.

We measure the average acquisition function optimization time across all iterations.

We run all experiments on a machine with the following configuration: Intel i7-7700K

CPU @ 4.20GHz with 8 cores and 32 GB memory. Table 3.1 shows the time in seconds

two for synthetic benchmarks. We present additional time comparison results in Fig-

ure 3.4. We fix the input space dimensions to d = 5 and vary the number of objective

functions to show how different algorithms scale with increasing number of objectives.

We make the following observations: 1) The acquisition function optimization time of

MESMO is significantly smaller than PESMO for the same number of samples. The

difference between corresponding times grow significantly as the number of samples

increase. 2) MESMO with one sample is comparable to ParEGO, which relies on

scalarization to reduce to acquisition function optimization in single-objective BO. 3)
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The time for PESMO and SMSego increases significantly as the number of objectives

grow from two to six, whereas the corresponding growth in time is relatively small

for MESMO.

Table 3.1: Average acquisition function optimization time in seconds.

MO Algorithm BC-2,2 PRDZPS-6,6 MO Algorithm BC-2,2 PRDZPS-6,6

MESMO-1 3.5±0.34 4.56±0.71 PESMO-1 13.6±3.2 110.4±17.8
MESMO-10 24.4±5.75 38.65± 0.65 PESMO-10 115.23±17.1 614.27±44
MESMO-100 242.434± 8.9 377.53± 4.29 PESMO-100 1128.3±15.3 6092.96±53.1
ParEGO 3.2± 1.6 5.3 ± 2.3 SMSego 80.5± 2.1 300.43 ± 35.7

Figure 3.4: Results for acquisition function optimization time of different multi-
objective BO algorithms including MESMO with increasing number of
objective functions for fixed input space dimension d = 5.

3.6 Summary

We introduced a novel and principled approach referred to as MESMO to solve

multi-objective Bayesian optimization problems. The key idea is to employ an output

space entropy-based acquisition function (select the input with maximum information
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gain about the optimal Pareto front) to efficiently select inputs for evaluation. Our

comprehensive experimental results on both synthetic and real-world benchmarks

showed that MESMO yields consistently better results than state-of-the-art methods,

and is more efficient and robust than methods based on input space entropy search.
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CHAPTER FOUR

UNCERTAINTY-AWARE SEARCH FOR MULTI-OBJECTIVE BO

In this chapter, we address the problem of multi-objective black-box optimization

using expensive function evaluations, where the goal is to approximate the true Pareto

set of solutions while minimizing the number of function evaluations. For example, in

hardware design optimization, we need to find the designs that trade-off performance,

energy, and area overhead using expensive simulations.

We propose a novel uncertainty-aware search framework referred to as USeMO to

efficiently select the sequence of inputs for evaluation to solve this problem. The key

insight behind USeMO is a two-stage search procedure to improve the accuracy and

computational-efficiency of sequential decision-making under uncertainty for selecting

candidate inputs for evaluation. USeMO selects the inputs for evaluation as follows.

First, it solves a cheap MO optimization problem defined in terms of the acquisition

functions (one for each unknown objective) to identify a list of promising candidates.

Second, it selects the best candidate from this list based on a measure of uncertainty.

USeMO has several advantages: a) Does not reduce to single objective optimization

problem; b) Allows to leverage a variety of acquisition functions designed for single

objective BO; c) Computationally-efficient to solve MO problems with many objec-

tives; and d) Improved uncertainty management via two-stage search procedure to

select the candidate inputs for evaluation. We also provide theoretical analysis to

52



characterize the efficacy of our approach. We provide an experimental evaluation of

USeMO on several synthetic and real-world problems.

4.1 Overview of USeMO Framework

As shown in Figure 4.1, USeMO is an iterative algorithm that involves four key

steps. First, We build statistical models GP1,GP2, · · · ,GPK for each of the K objec-

tive functions from the training data in the form of past function evaluations. Second,

we select a set of promising candidate inputs Xp by solving a cheap MO optimization

problem defined using the statistical models. Specifically, multiple objectives of the

cheap MO problem correspond to Af(GP1,x),Af(GP2,x), · · · ,Af(GPK ,x) respec-

tively. Any standard acquisition function Af from single-objective BO (e.g., EI, TS)

can be used for this purpose. The Pareto set Xp corresponds to the inputs with differ-

ent trade-offs in the utility space for K unknown functions. Third, we select the best

candidate input xs ∈ Xp from the Pareto set that maximizes some form of uncertainty

measure for evaluation. Fourth, the selected input xs is used for evaluation to get the

corresponding function evaluations: y1=f1(xs), y2=f2(xs),· · · ,yK=fK(xs). The next

iteration starts after the statistical models GP1,GP2, · · · ,GPK are updated using

the new training example: input is xs and output is (y1, y2, · · · , yK). Algorithm 2

provides the algorithmic pseudocode for USeMO.

Advantages. USeMO has many advantages over prior methods. 1) Provides flex-

ibility to plug in any acquisition function for single-objective BO. This allows us to
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leverage existing acquisition functions including EI, TS, and LCB. 2) Unlike methods

that reduce to single-objective optimization, USeMO has a better mechanism to han-

dle uncertainty via a two-stage procedure to select the next candidate for evaluation:

Pareto set obtained by solving cheap MO problem contains all promising candidates

with varying trade-offs in the utility space and the candidate with maximum uncer-

tainty from this list is selected. 3) Computationally efficient to solve MO problems

with many objectives.

Algorithm 2 USeMO Framework

Input: X, input space; f1(x), f2(x), · · · , fK(x), K blackbox objective functions; Af,
acquisition function; and Tmax, maximum no. of iterations

1: Initialize training data of function evaluations D
2: Initialize statistical models GP1,GP2, · · · ,GPK from D
3: for each iteration t = 1 to Tmax do
4: // Solve cheap MO problem with objectives Af(GP1,x), · · · ,Af(GPK ,x) to

get candidate inputs
5: Xp ← minx∈X (Af(GP1,x), · · · ,Af(GPK ,x))
6: // Pick the candidate input with maximum uncertainty
7: Select xt+1 ← argmaxx∈Xp Uβt(x)
8: Evaluate xt+1 : yt+1 ← (f1(xt+1), · · · , fK(xt+1))
9: Aggregate data: D ← D ∪ {(xt+1,yt+1)}
10: Update models GP1,GP2, · · · ,GPK using D
11: t← t+ 1
12: end for
13: return Pareto set and Pareto front of D

4.2 Key Algorithmic Components of USeMO

The two main algorithmic components of USeMO framework are: selecting most

promising candidate inputs by solving a cheap MO problem and picking the best
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Figure 4.1: Overview of the USeMO framework for two objective functions (K=2).
We build statistical models GP1, GP2 for the two objective func-
tions f1(x) and f2(x). In each iteration, we perform the following
steps. First, we construct a cheap MO problem using the statis-
tical models GP1 and GP2 and an input acquisition function Af:
minx∈X (Af(GP1,x),Af(GP2,x)) and employ a cheap MO solver to
find the promising candidate inputs in the form of Pareto set. Second,
we select the best candidate input xs from the Pareto set based on a
measure of uncertainty. Finally, we evaluate the functions for xs to get
ys=(y1, y2) and update the statistical models using the new training
example.

candidate via uncertainty maximization. We describe their details below.

Selection of promising candidate inputs. We employ the statistical models

GP1,GP2, · · · ,GPK towards the goal of selecting promising candidate inputs as fol-

55



lows. Given an acquisition functionAf (e.g., EI), we construct a cheap multi-objective

optimization problem with objectivesAf(GP1,x),Af(GP2,x), · · · ,Af(GPK ,x), where

GP i is the statistical model for the unknown function fi. Since we present the frame-

work as minimization for the sake of technical exposition, all AFs will be minimized.

The Pareto set Xp obtained by solving this cheap MO problem represents the most

promising candidate inputs for evaluation.

Xp ← min
x∈X

(Af(GP1,x), · · · ,Af(GPK ,x)) (4.1)

Each acquisition function Af(GP i,x) is dependent on the corresponding surrogate

model GP i of the unknown objective function fi. Hence, each acquisition function

will carry the information of its associated objective function. As iterations progress,

using more training data, the models GP1,GP2, · · · ,GPK will better mimic the true

objective functions f1, f2, · · · , fK . Therefore, the Pareto set of the acquisition func-

tion space (solution of Equation 4.1) becomes closer to the Pareto set of the true func-

tions X ∗ with increasing iterations. Intuitively, the acquisition function Af(GP i,x)

corresponding to unknown objective function fi tells us the utility of a point x for

optimizing fi. The input minimizing Af(GP i,x) has the highest utility for fi, but

may have a lower utility for a different function fj (j ̸= i). The utility of inputs for

evaluation of fj is captured by its own acquisition function Af(GPj,x). Therefore,

there is a trade-off in the utility space for all K different functions. The Pareto set Xp
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obtained by simultaneously optimizing acquisition functions for all K unknown func-

tions will capture this utility trade-off. As a result, each input x ∈ Xp is a promising

candidate for evaluation towards the goal of solving MOO problem. USeMO employs

the same acquisition function for all K objectives. The main reason is to give equiv-

alent evaluation for all functions in the Pareto front (PF) at each iteration. If we

use different AFs for different objectives, the sampling procedure would be different.

Additionally, the values of various AFs can have considerably different ranges. Thus,

this can result in an unbalanced trade-off between functions in the cheap PF leading

to the same unbalance in our final PF.

Cheap MO solver. We employ the popular NSGA-II algorithm [47] to solve the

MO problem with cheap objective functions noting that any other algorithm can be

used to similar effect. NSGA-II evaluates the cheap objective functions at several

inputs and sorts them into a hierarchy of sub-groups based on the ordering of Pareto

dominance. The similarity between members of each sub-group and their Pareto

dominance is used by the algorithm to move towards more promising parts of the

input space.

Picking the best candidate input. We need to select the best input from the

Pareto set Xp obtained by solving the cheap MO problem. All inputs in Xp are

promising in the sense that they represent the trade-offs in the utility space corre-

sponding to different unknown functions. It is critical to select the input that will
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guide the overall search towards the goal of quickly approximating the true Pareto

set X ∗. We employ a uncertainty measure defined in terms of the statistical models

GP1,GP2, · · · ,GPK to select the most promising candidate input for evaluation. In

single-objective optimization case, the learned model’s uncertainty for an input can

be defined in terms of the variance of the statistical model. For multi-objective op-

timization case, we define the uncertainty measure as the volume of the uncertainty

hyper-rectangle.

Uβt(x) =V OL({(LCB(GP i,x), UCB(GP i,x)}ki=1) (4.2)

where LCB(GP i,x) and UCB(GP i,x) represent the lower confidence bound and

upper confidence bound of the statistical model GP i for an input x as defined in

equations 2.4 and 2.5; and βt is the parameter value to trade-off exploitation and

exploration at iteration t. We employ the adaptive rate recommended by [174] to

set the βt value depending on the iteration number t. We measure the uncertainty

volume measure for all inputs x ∈ Xp and select the input with maximum uncertainty

for function evaluation.

xt+1 = argmaxx∈Xp Uβt(x) (4.3)

58



4.3 Theoretical Analysis

In this section, we provide a theoretical analysis for the behavior of USeMO ap-

proach. MOO literature has multiple metrics to assess the quality of Pareto front ap-

proximation. Most commonly employed metrics include Pareto Hypervolume (PHV)

indicator [202], R2 indicator, and epsilon indicator [155]. Both epsilon and R2 metrics

are instances of distance-based regret, a natural generalization of the regret measure

for single-objective problems. We consider the case of LCB acquisition function and

extend the cumulative regret measure for single-objective BO proposed in the well-

known work by Srinivasan et al., [174] to prove convergence results. However, our ex-

perimental results show the generality of USeMO with different acquisition functions

including TS and EI. Prior work [155] has shown that R2, epsilon, and PHV indica-

tor show similar behavior. Indeed, our experiments validate this claim for UseMO.

We present the theoretical analysis of USeMO in terms of asymptotic regret bounds.

Since the point selected in the proof is arbitrary, it holds for all points. Hence, the

regret bound can be easily adapted for both epsilon and R2 metrics.

Let x∗ be a point in the optimal Pareto set X ∗. Let xt be a point in the Pareto set

Xt estimated by USeMO approach by solving cheap MO problem at the tth iteration.

Let R(x∗) = ∥R1, · · · , RK∥, where Ri =
∑Tmax

t=1 (fi(xt)−fi(x
∗)) and ∥.∥ is the norm of

the K-vector and Tmax is the maximum number of iterations. We discuss asymptotic

bounds for this measure using GP-LCB as an acquisition function over the input set
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X . We provide proof details in Appendix B.

Lemma 1 Given δ ∈ (0, 1) and βt = 2log(|X |π2t2/6δ), the following holds with

probability 1− δ:

|fi(x)− µi,t−1(x)| ≤ β
1/2
t σi,t−1(x) (4.4)

for all1 ≤ i ≤ k,x ∈ X , and t ≥ 1 (4.5)

Theorem 1 If Xt is the Pareto set obtained by solving the cheap multi-objective

optimization problem at t-th iteration, then the following holds with probability 1−δ,

R(x∗) ≤

√√√√
k∑

i=1

CTmaxβTmaxγ
i
Tmax

(4.6)

where C is a constant and γi
Tmax

is the maximum information gain about function fi

after Tmax iterations. Essentially, this theorem suggests that since each term Ri in

R(x∗) grows sub-linearly in the asymptotic sense, R(x∗) which is defined as the norm

also grows sub-linearly. To the best of our knowledge, this is the first work to prove a

sub-linear regret for multi-objective BO setting. We proved this result using the same

AF for all objectives. This is a strong theoretical-proof that USeMO is already the

best in this setting. This is one of the strong reasons that justify the use of single AF

within USeMO framework.
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4.4 Experiments and Results

In this section, we describe our experimental setup and present results of USeMO

on diverse benchmarks.

4.4.1 Experimental Setup

Multi-objective BO algorithms. We compare USeMO with existing methods

including ParEGO [117], PESMO [83], SMSego [158], EHI [67], and SUR [155]. We

employ the code for these methods from the BO library Spearmint1. We present the

results of USeMO with EI and TS acquisition functions — USeMO-TS and USeMO-

EI — noting that results show similar trend with other acquisition functions. We did

not include PAL [206] as it is known to have similar performance as SMSego [83] and

works only for finite discrete input space. The code for our method is available at

(github.com/belakaria/USeMO).

Statistical models. We use a GP based statistical model with squared exponential

(SE) kernel in all our experiments. The hyper-parameters are estimated after every 10

function evaluations. We initialize the GP models for all functions by sampling initial

points at random from a Sobol grid using the in-built procedure in the Spearmint

library. GPs are fitted using normalized objective function values to guarantee that

all objectives are within the same range.

1https://github.com/HIPS/Spearmint/tree/PESM
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Figure 4.2: Results of different multi-objective BO algorithms including USeMO on
synthetic benchmarks. The log of the hypervolume difference and log
of R2 Indicator are shown with different number of function evaluations
(iterations). The mean and variance of 10 different runs are plotted.
The tile of each figure refers to the benchmark name defined in Table
4.1.
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Cheap MO solver. We employ the popular NSGA-II algorithm to solve the cheap

MO problem noting that other solvers can be used to similar effect. For NSGA-II,

the most important parameter is the number of function calls. We experimented with

values varying from 1,000 to 20,000. We noticed that increasing this number does not

result in any performance improvement for USeMO. Therefore, we fixed it to 1500

for all our experiments.

Name Benchmark functions K d

BC-2,2 Branin-Currin 2 2

ZDT1 Zitzler,Deb,Thiele 2 4

AS-2,5 Ackley-Sphere 2 5

AR-2,5 Ackley-Rosenbrock 2 5

RS-2,5 Rosenbrock-Sphere 2 5

ARS-3,5 Ackley-Rosenbrock-Sphere 3 5

DTLZ1 Deb,Thiele,Laumanns,Zitzler 4 3

PRDZPS-6,6 Powell-Rastrigin-Dixon 6 6
Zakharov-Perm-SumSquares

Table 4.1: Details of synthetic benchmarks: Name, benchmark functions, no. of
objectives K, and input dimension d.

Synthetic benchmarks. We construct several synthetic multi-objective (MO) bench-

mark problems using a combination of commonly employed benchmark functions for

single-objective optimization2 and two of the known general MO benchmarks. We

2https://www.sfu.ca/ ssurjano/optimization.html
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provide the complete details of these MO benchmarks in Table 4.1. Due to space

constraints, we present some of the results in the appendix

Figure 4.3: Results of different multi-objective BO algorithms including USeMO on
real-world benchmarks. The log of the hypervolume difference and Log
R2 Indicator are shown with different number of function evaluations
(iterations). The mean and variance of 10 different runs are plotted.
The tile of each figure refers to the name of real-world benchmarks.

Real-world benchmarks. We employed six diverse real-world benchmarks for our

experiments.

1) Hyper-parameter tuning of neural networks. Our goal is to find a neural
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Figure 4.4: Comparison of USeMO-LCB with baseline algorithms. We plot the log
of the hypervolume difference for synthetic and real-world benchmark
problems as a function of the number of evaluations. The mean and
variance of 10 different runs are plotted. The figure title refers to the
benchmark name defined in the experiments section. (Better seen in
color).

network with high accuracy and low prediction time. We optimize a dense neural

network over the MNIST dataset [127]. Hyper-parameters include the number of

hidden layers, the number of neurons per layer, the dropout probability, the learning

rate, and the regularization weight penalties l1 and l2. We employ 10K instances

for validation and 50K instances for training. We train the network for 100 epochs

for evaluating each candidate hyper-parameter values on validation set. We apply a

logarithm function to error rates due to their small values.
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2) SW-LLVM compiler settings optimization. SW-LLVM is a data set with

1024 compiler settings [170] determined by d=10 binary inputs. The goal of this

experiment is to find a setting of the LLVM compiler that optimizes the memory

footprint and performance on a given set of software programs. Evaluating these

objectives is very costly and testing all the settings takes over 20 days.

3) SNW sorting network optimization. The data set SNW was first intro-

duced by [205]. The goal is to optimize the area and throughput for the synthesis

of a field-programmable gate array (FPGA) platform. The input space consists of

206 different hardware design implementations of a sorting network. Each design is

defined by d = 4 input variables.

4) Network-on-chip (NOC) optimization. The design space of NoC dataset

[4] consists of 259 implementations of a tree-based network-on-chip. Each configu-

ration is defined by d = 4 variables: width, complexity, FIFO, and multiplier. We

optimize energy and runtime of application-specific integrated circuits (ASICs) on

the Coremark benchmark workload.

5) Shape memory alloys (SMA) optimization. The materials dataset SMA

consists of 77 different design configurations of shape memory alloys [78]. The goal

is to optimize thermal hysteresis and transition temperature of alloys. Each design is

defined by d = 6 input variables (e.g., atomic size of the alloying elements including

metallic radius and valence electron number).
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6) Piezo-electric materials (PEM) optimization. PEM is a materials dataset

consisting of 704 configurations of Piezoelectric materials [78]. The goal is to optimize

piezoelectric modulus and bandgap of these material designs. Each design configura-

tion is defined by d = 7 input variables (e.g., ionic radii, volume, and density).

Evaluation metrics. We employ two common metrics. The Pareto hypervolume

(PHV) metric measures the quality of a given Pareto front [202] and the R2 metric

degenerates to the regret metric presented in our theoretical analysis. We provide a

detailed definition of the metrics in section 2.3

4.4.2 Results and Discussion

USeMO vs. State-of-the-art. We evaluate the performance of USeMO with dif-

ferent acquisition functions including TS, EI, and LCB. Due to space constraints, we

show the results for USeMO with TS and EI, two very different acquisition functions,

to show the generality and robustness of our approach. We also provide more results

with LCB acquisition function in figure 4.4. Figure 4.2, 4.4 and 4.3 show the results

of all multi-objective BO algorithms including USeMO for synthetic and real-world

benchmarks respectively. We make the following empirical observations: 1) USeMO

consistently performs better than all baselines and also converges much faster. For

blackbox optimization problems with expensive function evaluations, faster conver-

gence has practical benefits as it allows the end-user or decision-maker to stop early.

2) Rate of convergence of USeMO varies with different acquisition functions (i.e., TS
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and EI), but both cases perform better than baseline methods. 3) The convergence

rate of PESMO becomes slower as the dimensionality of input space grows for a fixed

number of objectives, whereas USeMO maintains a consistent convergence behavior.

4) Performance of ParEGO is very inconsistent. In some cases, it is comparable to

USeMO, but performs poorly on many other cases. This is expected due to random

scalarization.

Uncertainty maximization vs. random selection. Recall that USeMO needs

to select one input for evaluation from the promising candidates obtained by solving

a cheap MO problem. We compare uncertainty maximization and random policy for

selection in figure 4.5 . We observe that uncertainty maximization performs better

than random policy. However, in some cases, random policy is competitive, which

shows that all candidates from the solution of cheap MO problem are promising and

improve the efficiency.

Comparison of acquisition function optimization time. We compare the run-

time of acquisition function optimization for different multi-objective BO algorithms

including USeMO. We do not account for the time to fit GP models since it is same

for all the algorithms. We measure the average acquisition function optimization

time across all iterations. we run all experiments on a machine with the following

configuration: Intel i7-7700K CPU @ 4.20GHz with 8 cores and 32 GB memory. Ta-

ble 4.2 shows the time in seconds for synthetic benchmarks. We can see that USeMO
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scales significantly better than state-of-the-art method PESMO. USeMO is compa-

rable to ParEGO, which relies on scalarization to reduce to acquisition optimization

in single-objective BO. The time for PESMO and SMSego increases significantly as

the number of objectives grow beyond two.

aaaaaaaaaaaa
Benchmarks

MO Algorithms

USeMO PESMO ParEGO SMSego

BC-2,2 4.1± 0.7 13.6±3.2 4.2± 1.6 80.5± 2.1

ZDT1 5± 0.3 14.1±2.1 4.8± 1.2 84± 6.7

RS-2,5 5.3±1.4 16.9±1.9 5.7± 1.1 90.2±8.2
ARS-3,5 7.0 ±1.5 34.8±12.6 6.7±1.4 135.0 ±12.4
DTLZ1 9 ±2.4 63.6±10.1 8.2±0.9 215 ±16.2
PRDZPS-6,6 13.9± 1.1 110.4±17.8 12.3 ± 2.3 300.43 ± 35.7

Table 4.2: Acquisition function optimization time in secs.

4.5 Summary

We introduced a novel framework referred to as USeMO to solve multi-objective

Bayesian optimization problems. The key idea is a two-stage search procedure to

improve the accuracy and efficiency of sequential decision-making under uncertainty

for selecting inputs for evaluation. Our experimental results on diverse benchmarks

showed that USeMO yields consistently better results than state-of-the-art methods

and scales gracefully to large-scale MO problems.
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Figure 4.5: Comparison of USeMO with uncertainty maximization and random pol-
icy for selecting the best input from Pareto set obtained by solving cheap
MO problem. We plot the log of the hypervolume difference for several
synthetic benchmark problems as a function of the number of evalu-
ations. The mean and variance of 10 different runs are plotted. The
figure title refers to the benchmark name defined in table 4.1. (Better
seen in color).
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CHAPTER FIVE

PARETO FRONT-DIVERSE BATCH MULTI-OBJECTIVE BO

In many applications, practitioners care about the diversity of solutions, and we have

the infrastructure to perform parallel experiments to accelerate the discovery of high-

quality solutions. In this Chapter, motivated by these observations, we consider the

problem of multi-objective optimization (MOO) of expensive black-box functions with

the goal of discovering high-quality and diverse Pareto fronts where we are allowed

to evaluate a batch of inputs in parallel.

We solve this problem in the framework of Bayesian optimization (BO) and pro-

pose a novel and effective approach referred to as Pareto front-Diverse Batch Multi-

Objective BO (PDBO). PDBO tackles two important challenges: 1) How to auto-

matically select the best acquisition in each iteration of BO, and 2) How to select

a diverse batch of inputs by considering multiple objectives. We propose principled

solutions to address these two challenges. First, PDBO employs a multi-armed bandit

approach to select one acquisition function from a given library. We solve a cheap

MOO problem by assigning the selected acquisition function for each expensive ob-

jective function to obtain a candidate set of inputs for evaluation. Second, it utilizes

Determinantal Point Processes (DPPs) to choose a Pareto-front-diverse batch of in-

puts for evaluation from the candidate set obtained from the first step. The key

parameters for the methods behind these two steps are updated after each round of
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function evaluations. Our experiments on multiple MOO benchmarks demonstrate

that PDBO outperforms prior methods in terms of both the quality and diversity of

Pareto solutions. 1

5.1 Problem setup

Batch Multi-Objective Optimization (MOO). We consider a multi-objective

optimization problem where the goal is to simultaneously optimize multiple conflicting

functions. Let X ⊂ Rd be the input space of d design variables, where each candidate

input x ∈ X is a d-dimensional input vector. And let {f1, · · · , fK} with K ≥ 2 be the

objective functions defined over the input space X where f1(x), · · · , fK(x) : X → R.

We denote the functions evaluation at an input x as y = [y1, · · · , yK ], where yi = fi(x)

for all i ∈ {1, · · · , K}. Without loss of generality, we assume minimization for all

K objective functions. The optimal solution of the MOO problem is a set of inputs

X ∗ ⊂ X such that no input x′ ∈ X \ X ∗ Pareto-dominates another input x ∈ X ∗.

A point x Pareto-dominates another point x′ if and only if ∀j : fj(x) ≤ fj(x
′) and

∃j : fj(x) < fj(x
′). The set of input solutions X ∗ is called the optimal Pareto set

and the corresponding set of function values Y∗ is called the optimal Pareto front.

We are allowed to select B inputs for parallel evaluation in each iteration, and our

overall goal is to uncover a high-quality and diverse Pareto front while minimizing

the total number of expensive function evaluations.

1This work was co-led with Alaleh Ahmadian
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5.2 Related Work

In this section, we describe the closely related work to the problem setup and

proposed approach in this chapter.

Multi-Objective Bayesian Optimization. Compared to single-objective BO,

there is relatively less work on multi-objective BO (MOBO). Prior work builds on

the insights from single-objective BO methods [165, 84, 185, 90] to develop MOBO

methods. Some of the recent work on MOBO include Predictive Entropy Search

for Multi-objective Bayesian Optimization (PESMO) [83], Max-value Entropy Search

for Multi-Objective Bayesian optimization (MESMO) [17], Multi-Objective Regional-

ized Bayesian Optimization (MORBO) [45], Uncertainty-aware Search framework for

Multi-Objective Bayesian Optimization [22], Pareto-Frontier Entropy Search (PFES)

[176], and Expected Hypervolume Improvement [68, 67]. Each of these methods has

been shown to perform well on a variety of MOO problems. We provide a more

thorough description of existing work in the MOO in section 3.2.

Batch Multi-Objective Optimization. The batch BO problem in the multi-

objective setting is even much less studied. Diversity-Guided Efficient Multi-Objective

Optimization (DGEMO) [118] approximates and analyzes a piecewise-continuous

Pareto set representation which allows the algorithm to introduce a batch selec-

tion strategy that optimizes for both hypervolume improvement and diversity of

selected samples. However, Konakovic Lukovic et al. [118] did not study or eval-
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uate the Pareto-front diversity of the produced solutions. qEHVI (Differentiable

Expected Hypervolume Improvement) [43] is an exact computation of the joint EHVI

of q new candidate points (up to Monte-Carlo integration error). While previous

EHVI formulations rely on gradient-free acquisition function optimization or ap-

proximated gradients, qEHVI computes the exact gradients of the MC estimator

via auto-differentiation. qPAREGO is a novel extension of ParEGO [117, 43] that

supports parallel evaluation and constraints. More recent work [134] proposed an

approach to address MOO problems with continuous/infinite Pareto fronts by ap-

proximating the whole Pareto set via a continuous manifold. This approach enables

a better preference-based exploration strategy for practitioners compared to prior

work [1, 154, 12]. However, it is typically unknown to the user if the Pareto front is

dense/continuous, especially in expensive function settings where the data is limited.

It is not known whether any of the proposed batch methods produce diverse Pareto

fronts or not, as they were not evaluated on diversity metrics. We perform an experi-

mental evaluation to answer this question. We propose a novel approach ADAM-BO

that utilizes Determinantal Point Processes to solve the batch multi-objective prob-

lem. Our proposed approach finds a diverse Pareto front while maintaining the quality

of selected designs.

DPPs for Batch Single-Objective BO. Determinantal Point Processes are elegant

probabilistic models that were first studied and introduced by [32, 31]. They charac-
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terize the property of repulsion in a set of vectors and are well-suited for the selection

of a diverse subset of inputs from a predefined set. There has been previous work on

using DPPs for selecting a batch of inputs for evaluation in the single-objective BO

literature [111, 144, 187]. However, to the best of our knowledge, there is no work on

using DPPs for multi-objective BO to uncover diverse Pareto fronts.

Adaptive Acquisition Function Selection. There has been a plethora of research

on finding efficient and reliable acquisition functions (AFs). However, prior work

has shown that no single acquisition function is universally efficient and consistently

outperforms all others [94]. GP-Hedge [85] proposed to use a portfolio of acquisition

functions. The optimization of each AF will nominate an input, and the algorithm

will select one of them for evaluation using the selection probabilities. The GP-

Hedge method uses the Hedge strategy [73], a multi-arm bandit method designed to

choose one action amongst a set of different possibilities using selection probabilities

calculated based on the reward (performance given by function values) collected from

previous evaluations.Vasconcelos et al. [181] extended Hoffman et al. [85] by proposing

to use discounted cumulative reward and Vasconcelos et al. [182] suggested using

Thompson sampling to automatically set the hedge hyperparameter η. The adaptive

acquisition function selection was not extended previously to the context of multi-

objective optimization. We propose a multi-arm bandit strategy with a novel reward

function to dynamically select one acquisition function from a given library for multi-
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objective optimization problems.

5.3 Proposed PDBO Algorithm

In this section, We start by providing an overview of the proposed PDBO algo-

rithm accompanied by an illustrative figure that summarizes the overall workflow.

Next, we explain our algorithms for two key components of PDBO, namely, adaptive

acquisition function selection via a multi-arm bandit strategy and diverse batch se-

lection via determinantal point processes for multi-objective output space diversity.
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Figure 5.1: Overview of PDBO algorithm illustrating its key components explained
in Section 5.3

Overview of PDBO. PDBO is an iterative algorithm. It introduces novel methods

for selecting varying acquisition functions and for bringing the diversity of inputs

into the multi-objective BO setting. The method builds K independent Gaussian

processes GP1, · · · ,GPK as surrogates for each of the objective functions. Its three
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key steps at each iteration t to select B inputs for evaluation are:

1. Solving multiple cheap MOO problems: PDBO takes as input a portfolio of

notable acquisition functions, P = {Af1, · · · ,AfM} from the single-objective BO lit-

erature. It constructsM cheap MOO problems, each corresponding to one acquisition

function. The multiple objectives defining the cheap MOO problems are acquisition

functions respectively corresponding to the K objective functions. Solving cheap

MOO problems will generate M cheap Pareto-sets of solutions X 1
c · · · XM

c .

2. Diverse batch selection: From each cheap Pareto set X j
c , a batch X

Bj

t ⊂ X j
c of

B inputs is selected using a diversity-aware approach based on determinantal point

processes (DPPs). Importantly, the adapted DPP is configured to favor the diversity

in the output space and to handle multiple objective settings by using a principally

fitted convex combination of the kernels of the K Gaussian processes. The convex

combination scalars are strategically set to maximize the likelihood of selecting a

diverse subset of inputs with respect to the Pareto front.

3. Acquisition function selection: From {XBj

t ; ∀ j ∈ [1, · · · ,M ]}, only one nom-

inated subset would be selected using a multi-arm bandit strategy. The keys to this

selection are probabilities p1, · · · , pj, one for each acquisition function to capture their

performance based on past iterations. pj is the probability of selecting the batch gen-

erated by the acquisition function Afj, defined in equation 5.5. These probabilities

are updated based on the discounted cumulative reward rj of each of the respective
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acquisition functions. The reward values rj are updated based on the quality of the

batches nominated by the respective acquisition functions.

Algorithm 3 Pareto front-Diverse Batch Multi-Objective BO (PDBO)
Input: X input space; {f1, · · · , fK}, K black-box objective functions; P = {Af1, · · · ,AfM} portfo-
lio of acquisition functions; B batch size; and Tmax number of iterations

1: Initialize data D0 = {X0,Y0} with N0 initial points
2: for each iteration t ∈ [1, Tmax] do
3: Fit statistical models GP1, · · · ,GPk using Dt−1

4: for each acquisition function Afj ∈ P do
5: X j

c ← argminx∈X (Afj(GP1,x), · · · ,Afj(GPk,x)) // Solve cheap MOO problem

6: X
Bj

t ← DPP-Select(X j
c , {GP1, · · · ,GPk},Dt−1) // Select a batch of inputs from X j

c

using DPPs
7: end for
8: Afj∗ ← Adaptive-AF-Select(Dt−1, {XBj

t−1}Mj=1) // Select an AF using previously aggre-
gated data

9: XB
t = X

Bj∗
t // Choose the batch nominated by Afj∗

10: Y B
t ← {[f1(x), · · · , fk(x)]; ∀ x ∈ XB

t } // Evaluate objective functions for batch of inputs
XB

t

11: Dt = {Xt,Yt} ← {Xt−1,Yt−1} ∪ {(XB
t , Y B

t )}
12: end for
13: return Pareto set XTmax

and Pareto front YTmax

Algorithm 3 provides a pseudocode with high-level steps of the PDBO approach.

The DPP-Select and Adaptive-Af-Select represent the second and third key

steps. The details of these methods and their corresponding pseudocodes are provided

in Sections 5.3.1 and 5.3.2, respectively.

5.3.1 Multi-arm Bandit Strategy for Adaptive Acquisition Function Selection

In this section, we propose a multi-arm bandit approach to adaptively select one

acquisition function (AF) from a given library of AFs in each iteration of PDBO.

Multi-arm Bandit Formulation. We are given a portfolio of M acquisition func-

tions P = {Af1, · · · ,AfM} and our goal is to adaptively select one AF in each
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iteration of PDBO. Each acquisition function in P corresponds to one arm, and we

need to select an arm based on the performance of past selections for solving the MOO

problem. Inspired by the previous work on acquisition function selection and algo-

rithm selection in the single objective setting [85, 181, 182], we propose an adaptive

acquisition function selection approach for the multi-objective setting (see Algorithm

2). We explain the two main steps of this approach below.

Nominating Promising Candidates via Cheap MOO. In each PDBO iteration,

we employ the updated statistical models {GP1 · · · GPK} and the portfolio P to gener-

ate M sets of candidate points. For each acquisition function Afj, the algorithm con-

structs a cheap MOO problem with the objectives defined asAfj(GP1,x) · · ·Afj(GPK ,x).

Assuming minimization, the cheap MOO generateM Pareto-sets of solutions X 1
c · · · XM

c

(one for each acquisition function) defined as:

X j
c ← argmin

x∈X
{Afj(GP1,x), · · · ,Afj(GPK ,x)} (5.1)

We employ the algorithm proposed by Deb et al. [47] to solve cheap MOO problems

defined in 5.1. From each X j
c , a batch X

Bj

t ⊂ X j
c of B points is selected in iteration t

using a diversity-aware approach described in Section 5.3.2. We denote the function

evaluations of inputs in X
Bj

t by Y
Bj

t .

Multi-Objective Reward Update. We employ the relative hypervolume improve-

ment as the quality metric to define our reward. The Pareto hypervolume captures
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the quality of nominated batches from a Pareto-dominance perspective and carries

information about the represented trade-off between the multiple objectives.

Defining the immediate reward as the raw Pareto hypervolume of the nominated

batch IRj
t = HV (Y j

t ) can lead to an undesirable assessment of the suitable acquisition

function since a batch of points can have a large hypervolume value at iteration t

but does not provide a significant improvement over the previous Pareto front Yt−1

while another batch nominated in iteration t − 1 may have a smaller hypervolume

HV (Y j
t−1) yet provides a higher improvement over Yt−2. Additionally, initial iterations

might provide drastic hypervolume improvements even if the selected points are not

optimal. To mitigate these issues, we use the relative hypervolume improvement

as the immediate reward instead of the hypervolume. In each iteration, t of the

BO algorithm, the immediate reward IRj
t for each acquisition function Afj; ∀ j ∈

{1 · · ·M} is defined as follows.

IRj
t =

HV (Ỹt−1 ∪ Ỹ j
t )−HV (Ỹt−1)

HV (Ỹt−1)
(5.2)

where Ỹt−1 is the Pareto front at iteration t− 1 and Ỹ j
t is the evaluation of the batch

of points Xj
t nominated by Afj computed using the predictive mean of the updated

GP based statistical models.

As the optimization progresses, the statistical models provide a better represen-

tation of the objective functions, and the batches nominated by each acquisition
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function become more informative about the quality of its selections. Therefore, the

impact of the early iterations may become irrelevant later. Consequently, we employ

a discounted cumulative reward for each acquisition function Afj at iteration t is

defined as gjt .

gjt = γgjt−1 + IRj
t =

∑

t′≤t

γt′−1IRj
t′ (5.3)

Where γ is a decay rate that trades off past and recent improvements. The use of the

decay rate can lead to equal or comparable rewards in advanced iterations, causing

the algorithm to select the acquisition function randomly. To address this problem,

the discounted cumulative reward gjt should be normalized [181]. The rewards at the

first iteration are all initialized to zero and then updated at each iteration t using the

following expression:

rjt =
gjt − gjmax

gjmax − gjmin

(5.4)

where gjmax = max({gjt′ , t′ ∈ [1, t]}) and gjmin = min({gjt′ , t′ ∈ [1, t]}).

Finally, the probability of selection of each AF at each iteration t is calculated

using equation 5.5.

pjt =
exp(ηrjt )∑M
l=1 exp(ηr

l
t)

for j = 1 . . .M (5.5)

Remark. It is important to note that we are using a full information multi-

arm bandit strategy that requires the reward to be updated for all possible actions

(i.e., for all acquisition functions) at each iteration. Since we evaluate only the batch

nominated by the selected AF, we achieve this by computing the reward using the
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Algorithm 4 Adaptive-AF-Select

Input: training data Dt; Batches nominated by different AFs {XBj

t ,∀j ∈
{1 · · ·M}}
1: if t == 0 then
2: rjt = 0 for j = 1 · · ·M
3: else
4: Compute rewards: rjt for j = 1 · · ·M using Equation 5.4

5: Update probabilities: pjt =
exp(ηrjt )∑M
l=1 exp(ηrlt)

for j = 1 · · ·M
6: end if
7: Select an acquisition function Afj∗ according to the probabilities {pjt}Mj=1

8: return Afj∗

predictive mean functions of the updated surrogate models. For this reason, we solve

a cheap MOO problem for each Afj ∈ P even though the acquisition function is

selected based on the data from the previous iterations. Algorithm 4 provides the

pseudocode of the adaptive acquisition function selection based on the estimated

rewards and probabilities.

5.3.2 Determinantal Point Processes for Batch Selection

In this section, we explain our approach to select a batch of diverse inputs by

configuring DPPs to promote output space diversity.

Determinantal Point Processes. (DPPs) [123] are probabilistic measures that

characterize the property of repulsion in a set of vectors. DPPs are well-suited to

model samples of a diverse subset of k points from a predefined set of n of points.

Given a similarity function over a pair of points, DPPs assign a high probability

of selection to the most diverse subsets according to the similarity function. The

similarity function is typically defined as a kernel. Formally, given a DPP kernel
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defined over a set S of n elements, the k-DPP distribution is defined as selecting a

subset S ′ of size k with S ′ ⊂ S with probability proportional to the determinant of

the kernel:

Pr(S ′) =
det(κ(S ′))∑
|s|=k det(κ(s))

(5.6)

[111] introduced and formalized the use of DPP in the context of batch BO for

the single-objective setting. Given the surrogate GP of the objective function, the

covariance of the GP is used as the similarity function for the DPP. The approach

selects the first point in the batch by maximizing the UCB acquisition function. Next,

it creates a set of points referred to as relevance region by bounding the search space

with the maximizer of the LCB acquisition function and manually discretizing the

bounded space into a grid of n points. DPP selects the remaining (k − 1) points out

of the n points in the relevance region.

[187, 151, 144] used similar techniques to apply DPPs to high-dimensional and

discrete spaces. There exist two approaches to selecting a diverse subset with a

fixed size via DPP: 1) Choosing the subset that maximizes the determinant, typically

referred to as DPP-max; and 2) Sampling with the determinantal probability measure

referred to as DPP-sample. In this paper, we will focus on DPP-max. Although

selecting the subset that maximizes the determinant is an NP-Hard problem, several

approximations were proposed [147]. A greedy strategy [111] provides an approximate

83



solution and was adopted in several Bayesian optimization papers [187].

Limitations of Prior Work and Challenges for MOO. We list the key limita-

tions of prior methods for DPP-based batch selection in the single-objective setting as

they are applicable to the multi-objective setting too. L1) How can we overcome the

limitation of selecting the first point separately regardless of the DPP diversity? L2)

How can we prevent the potential limitation of under-explored search space caused

by the discretization of the space to create the relevance region set?

The key challenges to employing DPPs for batch selection in the multi-objective

optimization setting include C1) How to define a kernel that captures the diversity

for multiple objectives given that we have K separate surrogate models and their

corresponding kernel? C2) How can the DPP kernel capture the Pareto front diversity

and the trade-off between the objectives without compromising the Pareto quality of

selected points?

DPPs for Multi-objective BO. Below, we propose principled methods to overcome

the limitations of prior work on DPPs for batch selection (L1 and L2) and address

the two challenges (C1 and C2).

Multi-objective Relevance Region. Our proposed algorithm naturally mitigates

the two limitations of the single-objective DPP approach. Recall that the first step

of PDBO algorithm (section 5.3.1) proposes to generate cheap approximate Pareto-

sets which capture the trade-offs between the objectives in the utility space and might
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include, with high probability, optimal points [22, 118]. We consider the cheap Pareto

sets as the multi-objective relevance region. Our approach allows for generating the

relevance region without manually discretizing the search space. Also, the full batch is

selected from the multi-objective relevance region leading to a better diversity among

all the points in the batch.

Multi-objective DPP Kernel Fitting. To overcome the challenges of using DPPs in

the MOO setting, we build a new kernel κdpp that is defined as a convex combination

of the K kernels of the statistical models (GPs) representing each of the black-box

objective functions. Let Λ = [λ1, · · · , λK ] be a vector of size K where each λi cor-

responds to the convex combination scalar associated with kernel κi of the objective

function fi. The DPP kernel κDPP is defined as:

κDPP =
K∑

i=1

λi · κi st.
i=K∑

i=1

λi = 1 (5.7)

The hyperparameters of the kernels κi ∀ i ∈ {1, 2, · · ·K} are fixed during the fitting

of the Gaussian processes. In order to set the convex combination scalars Λ in a

principled manner that promotes diverse batch selection, we propose to set the Λ to

the values that maximize the log marginal likelihood of selecting points with the high-

est individual hypervolume contribution. The individual hypervolume contribution

(HVC) of each point in the evaluated Pareto front Yt (via evaluated training data

Dt) is the reduction in hypervolume if the point is removed from the Pareto front.

85



HVC is considered a Pareto front (PF) diversity indicator [45]. Points in crowded

regions of the Pareto front have smaller HVC values. Therefore, more Pareto front

points with high HVC indicate more output space coverage and consequently, higher

PF diversity. We provide an illustration in Figure 5.2.

reference point

B

O
bj

ec
tiv

e 
Fu

nc
tio

n 
𝐹 !

Objective Function 𝐹"

Pareto-front 𝑆!

𝑆"

A

Figure 5.2: Sections S1 and S2 show the individual hypervolume contribution of
points A and B, respectively. This figure shows that points with higher
individual hypervolume contributions are also more diverse.

HV C(y) = HV (Yt)−HV (Yt \ {y}) ∀ y ∈ Yt (5.8)

Given equation 5.8, we can construct the training set for the fitting of Λ. Let Ct

= [HV C(y); ∀ y ∈ Yt] be a vector of the individual hypervolume contributions of

currently evaluated points Xt ∈ Dt.

Λ∗ = argminΛ∈[0,1]K log p(Ct|Xt) s.t
K∑

i=1

λi = 1 (5.9)

where log p(Ct|Xt) = −
1

2
CT

t κ
−1
DPPCt −

1

2
log |κDPP | −

n

2
log 2π
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Algorithm 5 provides the pseudo-code for building the DPP kernel and selecting the

diverse batch from a given candidate/cheap Pareto set Xc.

Algorithm 5 DPP-Select
Input: cheap Pareto set Xc; surrogate models GP1, · · · ,GPk; data
Dt.

1: Ct = [HV C(y), ∀ y ∈ Yt] // Calculate the individual hypervolume contribution for each input
∈ Dt

2: κDPP =
∑K

i=1 λi · κi st.
∑K

i=1 λi = 1 // Construct κDPP as a convex combination of function
kernels

3: Λ∗ = argminΛ∈[0,1]K log p(Ct|Xt) s.t
∑K

i=1 λi = 1 // Select λi values by maximizing the LML

4: Use the fitted κDPP kernel to select the most diverse points XB
t from the cheap Pareto set Xc

via DPP-max
5: return the selected B inputs, XB

t

5.4 Experiments and Results

In this section, we provide experimental details and compare PDBO to the relevant

state-of-the-art methods on multiple MOO benchmarks and varying batch sizes. We

evaluate all methods using the hypervolume indicator and the Pareto front diversity

(PFD) measure explained in section 5.1.

Benchmarks. We conduct experiments on benchmarks with varying numbers of

input and output dimensions to show the versatility and flexibility of our method.

We use ZDT-1 (d=25, k=2), ZDT-2 (d=4, k=2), ZDT-3 (d=12, k=2) [204], DTLZ-

1 (d=10, k=4), DTLZ-3 (d=9, k=4), DTLZ-5 (d=12, k=6) [49] and the gear train

design problem (d=4, k=3) [46]. In the ablation studies, we provide additional ex-

periments with ZDT-1, ZDT-2, and ZDT-3 where we vary the number of input space

dimensions, additional experiments with DTLZ-1, DTLZ-3, and DTLZ-5 where we
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vary the input and output dimensions.

Baselines. We compare our method to the available state-of-the-art batch multi-

objective optimization methods. DGEMO, qEHVI, qPAREGO, and USEMO-EI. We

also include NSGA-II as the evolutionary algorithm baseline and random point selec-

tion. We set the hyperparameters of our method to γ = 0.7 and τ = 4 as recommended

by Hoffman et al. [85], Vasconcelos et al. [181]. We define the acquisition functions

portfolio as P={EI, TS, UCB, ID}

Experimental Setup. All experiments are initialized with five random in-

puts/evaluations and run for at least 250 function evaluations. We conduct exper-

iments with four different batch sizes B ∈ {2, 4, 8, 16} and adjust the number of

iterations accordingly. For instance, when using a batch size of two, we run the al-

gorithm for 125 iterations. Each experiment is repeated 25 times, and we report the

average and standard deviation of the hypervolume indicator and the PFD metric.

To solve the constrained optimization problem in the DPP algorithm, we utilize an

implementation of the Byrd-Omojokun Trust-Region Sequential Quadratic Program-

ming (SQP) method [124, 148] from the Python SciPy library [183]. For baselines,

we use the codes and hyperparameters provided in the open-source repositories of

DGEMO 2 and Botorch 3. The reference point for each benchmark is included in

table 5.1.

2https://github.com/yunshengtian/DGEMO
3https://github.com/pytorch/botorch

88



Problem Name Reference Point

ZDT-1 [11.0, 11.0]

ZDT-2 [11.0, 11.0]

ZDT-3 [11.0, 11.0]

DTLZ-1 [400.0, ..., 400.0]

DTLZ-3 [10000.0, ..., 10000.0]

DTLZ-5 [10.0, ..., 10.0]

Gear Train Design [6.6764, 59.0, 0.4633]

Table 5.1: The multi-objective functions used for the experiments and their refer-
ence points

5.4.1 Results and Discussion

Our experimental results in Figure 5.3 demonstrates that PDBO outperforms all

the baseline methods in most experiments with respect to the Hypervolume indi-

cator and provides a competitive performance on the others. Additionally, PDBO

outperforms all baselines with respect to the Pareto-front diversity metric.

We compare PDBO with state-of-the-art methods introduced in section 5.4 in

terms of the Pareto front diversity. It is noteworthy that aside from DGEMO, none

of the other baseline methods have a claim of Pareto front diversity. Figure 5.4 shows

that PDBO outperforms all existing methods on the Pareto front diversity measure.

Advantages. PDBO is fast and effective in producing high-quality and diverse

Pareto fronts. While outperforming the baseline methods, it can also be used with

any number of input and output dimensions as well as being flexible to run with

any batch size. The two state-of-the-art methods are DGEMO and qEHVI. The
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DGEMO method fails to run for experiments with more than three objective func-

tions as the graph cut algorithm consistently crashes (same observation was made by

[44]). qEHVI fails to run with batch sizes higher than eight as the method becomes

extremely memory-consuming even with GPUs. Therefore, PDBO’s ability to easily

run with any input and output dimensions as well as any batch size is an advantage

for practitioners. PDBO is capable of proactively creating a diverse Pareto front while

improving or maintaining the quality of Pareto front.

Ablation Studies. We provide additional results of ablation studies. Since the

proposed algorithm relies on two main contributions (adaptive acquisition function

selection and multi-objective batch selection via DPPs), we study the contribution of

each component to the overall performance by running them separately.

Merits of the adaptive acquisition function selection strategy. We show that the

adaptive acquisition function selection method introduced in section 5.3.1 outperforms

the variant of PDBO with static acquisition functions from the portfolio. To isolate

the impact of this part from the batch selection, we built this ablation with respect

to the USEMO baseline due to its flexibility and effectiveness with a wide variety

of different acquisition functions. We use a batch size of one and use a portfolio

P = {EI, TS, LCB, ID}. We run USEMO-UCB, USEMO-TS, USEMO-ID, and

USEMO-EI as baselines. Then, we show the effectiveness of our adaptive acquisition

function selection method by adding the adaptive selection approach introduced in
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5.3.1 to USEMO. Therefore we are only comparing the static acquisition functions

choice to the adaptive acquisition function selection. The results of this ablation,

reported in figure 5.5, show that the multi-arm bandit strategy always performs better

than the other acquisition functions or converges to the performance as the best-

performing acquisition function.

Merits of the DPP-based batch selection for MOO. Similar to the previous ablation,

we use the USEMO-EI baseline to isolate the impact of the DPP selection from the

adaptive acquisition function selection. USEMO-EI solves a cheap MOO between K

EI acquisition function using NSGA-II which produces an approximate cheap Pareto

set. It later selects the next input to evaluate using an uncertainty metric. We

substitute the input selection strategy proposed in USEMO with our DPP selection

strategy and compare both strategies. We perform the ablation using several batch

sizes B = {2, 4, 8, 16}. The results reported in figures 5.6, 5.7 and 5.8, show that the

proposed DPP selection strategy (referred to as DPP-EI) outperforms the USEMO

selection strategy on the diversity measure while improving the hypervolume quality.

5.5 Summary

We proposed the Pareto front-Diverse Batch Multi-Objective BO (PDBO) method

based on the BO framework. It employs a full information multi-arm bandit algorithm

with discounted reward to adaptively select the most suitable acquisition function in

each iteration. We additionally proposed an appropriate reward based on the relative
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hypervolume contribution of each acquisition function and a multi-objective DPP

approach configured to select a batch of Pareto-diverse inputs for evaluation in each

iteration. Experimental results on multiple benchmarks demonstrate that PDBO

outperforms prior methods in terms of both diversity and quality of the Pareto-front

solutions.
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Figure 5.3: Hypervolume results evaluated on multiple benchmarks and batch sizes
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Figure 5.4: DPF results for all benchmarks
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Figure 5.5: Acquisition functions comparison results
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Figure 5.6: DPF and hypervolume results for DTLZ1 problem, d = 13, K = 5

Figure 5.7: DPF and hypervolume results - DTLZ3 problem, d = 8, K = 4

Figure 5.8: DPF and hypervolume results - ZDT1 problem, d = 3, K = 2
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CHAPTER SIX

CONSTRAINED MULTI-OBJECTIVE BO

In this Chapter, we address the MOO problem with constraints, where the goal is to

optimize multiple real-valued objective functions while satisfying several black-box

constraints over the input space. For example, in aviation power system design appli-

cations, we need to find the designs that trade-off total energy and mass while satisfy-

ing specific thresholds for motor temperature and voltage of cells. This optimization

requires performing expensive computational simulations to evaluate designs.

To solve this problem, we propose two algorithms, namely, Max-value Entropy

Search for Multi-objective Optimization with Constraints (MESMOC) and Uncer-

tainty aware Search Framework for Multi-Objective Bayesian Optimization with Con-

straints (USeMOC), which are generalizations of MESMO and USeMO respectively.

MESMOC employs an output-space entropy-based acquisition function to efficiently

select the sequence of inputs for evaluation to uncover high-quality pareto-set solu-

tions while satisfying constraints. USeMOC selection method consists of solving a

cheap constrained MO optimization problem via surrogate models of the true func-

tions to identify the most promising candidates and picking the best candidate based

on a measure of uncertainty. In what follows, we first describe the problem setup

and discuss prior work. Then, we explain the technical details of both MESMOC and

USeMOC algorithms. We applied the proposed algorithms to the design of a multi-
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output switched-capacitor voltage regulator and the design of the power system of an

unmanned areal vehicle.

6.1 Problem Setup

MOO Problem with Constraints This is a generalization of the basic MOO prob-

lem, where we need to satisfy some black-box constraints. Our goal is to maximize

real-valued objective functions f1(x), f2(x), · · · , fK(x), with K ≥ 2, while satisfying

L black-box constraints of the form C1(x) ≥ 0, C2(x) ≥ 0, · · · , CL(x) ≥ 0 over contin-

uous space X ⊆ ℜd. Each evaluation of an input x ∈ X produces a vector of objective

values and constraint values y = (yf1 , yf2 , · · · , yfK , yc1 · · · ycL) where yfj = fj(x) for all

j ∈ {1, 2, · · · , K} and yci = Ci(x) for all i ∈ {1, 2, · · · , L}.We say that a valid input

x (satisfies all constraints) Pareto-dominates another input x′ if fj(x) ≥ fj(x
′) ∀j

and there exists some j ∈ {1, 2, · · · , K} such that fj(x) > fj(x
′). The goal of multi-

objective BO with constraints is to approximate the Pareto set over valid inputs X ∗

while minimizing the number of expensive function evaluations. For example, in elec-

tric aviation power system design applications, we need to find designs that trade

off total energy and mass while satisfying specific thresholds for motor temperature

and voltage of cells. Table 2.1 contains all the mathematical notations used in this

section.

Surrogate Models. We model the objective functions and black-box constraints

by independent GP models GPf1 ,GPf2 , · · · ,GPfK and GPc1 ,GPc2 , · · · ,GPfK with
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zero mean and i.i.d. observation noise. Let D = {(xi,yi)}t−1
i=1 be the training

data from past t−1 function evaluations, where xi ∈ X is an input and yi =

{yif1 , · · · , yifK , yic1 , · · · yicL} is the output vector resulting from evaluating the objec-

tive functions and constraints at xi. We learn surrogate models from D.

6.2 Related Work

There exists very limited prior work to address constrained MOO problems [75,

70]. PESMOC [75] is the current state-of-the-art method for this problem setting.

PESMOC extends the information-theoretic approach PESMO that relies on the prin-

ciple of input space entropy search to the constrained setting. As a consequence, it

inherits the drawbacks of PESMO. MESMOC+ [71] is a concurrent work that also em-

ploys the principle of output space entropy search to solve constrained multi-objective

optimization problems. However, our proposed MESMOC approach uses a completely

different approximation of the information gain leading to a different expression of

the acquisition function. This method employs a series of complex mathematical

approximations based on Assumed Density Filtering (ADF).

To overcome the shortcomings of the existing work, we propose two approaches:

1) Our proposed MESMOC algorithm uses the truncated Gaussian distribution ap-

proximation that results in a closed-form expression, fast, and easy to implement

acquisition function. Additionally, the ADF based method [71] considers blackbox

constraints only in the acquisition function definition while MESMOC addresses the
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constraints both in the acquisition function expression and in the acquisition function

optimization process to ensure the selection of valid inputs. 2) Our proposed uncer-

tainty aware approach, USEMOC, provides a flexible and fast framework enabling

practitioners to leverage approaches from the single-objective BO literature and also

handles both white-box and grey-box constraints.

6.3 Max-value Entropy Search for MOO with Constraints

6.3.1 MESMOC Acquisition Function

To overcome the challenges of computing input space entropy-based acquisition

function, MESMO [17] proposed to maximize the information gain about the optimal

Pareto front. However, MESMO did not address the challenge of constrained Pareto

front. We propose an extension of MESMO’s acquisition function to maximize the

information gain between the next candidate input for evaluation x and constrained

Pareto front Y∗ given as:

α(x) = I({x,y},Y∗ | D) = H(y | D,x)− EY∗ [H(y | D,x,Y∗)] (6.1)

In this case, the output vector y isK+L dimensional: y = (yf1 , yf2 , · · · , yfK , yc1 · · · ycL)

where yfj = fj(x) for all j ∈ {1, 2, · · · , K} and yci = Ci(x) for all i ∈ {1, 2, · · · , L}.

Consequently, the first term in the r.h.s of equation (6.1), entropy of a factorizable
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(K + L)-dimensional Gaussian distribution P (y | D,x, can be computed in closed

form as shown below:

H(y | D,x) =
(K + L)(1 + ln(2π))

2
+

K∑

j=1

ln(σfj(x)) +
L∑

i=1

ln(σci(x)) (6.2)

where σ2
fj
(x) and σ2

ci
(x) are the predictive variances of jth function and ith constraint

GPs respectively at input x.

The l.h.s of equation (6.1) can be decomposed in a similar way to equation (3.8).

There are two key algorithmic steps to compute this part of the equation: 1) The first

is how to compute Pareto front samples Y∗
s ?; and 2) The second is how to compute

the entropy with respect to a given Pareto front sample Y∗
s ? We provide solutions for

these two questions below.

1) Computing Pareto Front Samples via Cheap Multi-Objective Op-

timization. To compute a Pareto front sample Y∗
s , we first sample functions and

constraints from the posterior GP models via random Fourier features [84, 159] and

then solve a cheap constrained multi-objective optimization over the K sampled func-

tions and L sampled constraints.

Cheap MO solver. We sample f̃i from GP model GPfj for each of the K func-

tions and C̃i from GP model GPci for each of the L constraints. A cheap constrained

multi-objective optimization problem over the K sampled functions f̃1, f̃2, · · · , f̃K

and the L sampled constraints C̃1, C̃2, · · · , C̃L is solved to compute the sample Pareto
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front Y∗
s . We employ the popular constrained NSGA-II algorithm [47, 48] to solve the

constrained MO problem with cheap sampled objective functions and constrained.

2) Entropy Computation with a Sample Pareto Front. Let Y∗
s =

{v1, · · · ,vl} be the sample Pareto front, where l is the size of the Pareto front and

each vi is a (K + L)-vector evaluated at the K sampled functions and L sampled

constraints vi = {vif1 , · · · , vifK , vic1 , · · · , vicL}. The following inequality holds for each

component yj of the (K + L)-vector y = {yf1 , · · · , yfK , yc1 , · · · ycL} in the entropy

term H(y | D,x,Y∗
s ):

yj ≤ max{v1j , · · · vlj} ∀j ∈ {f1, · · · , fK , c1, · · · , cL} (6.3)

The inequality essentially says that the jth component of y (i.e., yj) is upper-

bounded by a value obtained by taking the maximum of jth components of all l (K+

L)-vectors in the Pareto front Y∗
s . This inequality had been proven by a contradiction

for MESMO [17] for j ∈ {f1, · · · , fK}. We assume the same for j ∈ {c1, · · · , cL}.

By combining the inequality (6.3) and the fact that each function is modeled as

an independent GP, we can approximate each component yj as a truncated Gaussian

distribution since the distribution of yj needs to satisfy yj ≤ max{v1j , · · · vlj}. Let

yci∗s = max{v1ci , · · · vlci} and y
fj∗
s = max{v1fj , · · · vlfj}. Furthermore, a common prop-

erty of entropy measure allows us to decompose the entropy of a set of independent
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variables into a sum over entropies of individual variables [38]:

H(y | D,x,Y∗
s ) =

K∑

j=1

H(yfj |D,x, yfj∗s ) +
C∑

i=1

H(yci |D,x, yci∗s ) (6.4)

The r.h.s is a summation over entropies of (K+L)-variables y = {yf1 , · · · , yfK , yc1 , · · · ycL}.

The differential entropy for each yj is the entropy of a truncated Gaussian distribution

[137] and given by the following equations:

H(yfj |D,x, yfj∗s ) ≃
[
(1 + ln(2π))

2
+ ln(σfj(x)) + lnΦ(γfj

s (x))− γ
fj
s (x)ϕ(γ

fj
s (x))

2Φ(γ
fj
s (x))

]

(6.5)

H(yci|D,x, yci∗s ) ≃
[
(1 + ln(2π))

2
+ ln(σci(x)) + lnΦ(γci

s (x))−
γci
s (x)ϕ(γ

ci
s (x))

2Φ(γci
s (x))

]

(6.6)

Consequently we have:

H(y | D,x,Y∗
s ) ≃

K∑

j=1

[
(1 + ln(2π))

2
+ ln(σfj(x)) + lnΦ(γfj

s (x))− γ
fj
s (x)ϕ(γ

fj
s (x))

2Φ(γ
fj
s (x))

]

+
L∑

i=1

[
(1 + ln(2π))

2
+ ln(σci(x)) + lnΦ(γci

s (x))−
γci
s (x)ϕ(γ

ci
s (x))

2Φ(γci
s (x))

]

(6.7)
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where γci
s (x) =

y
ci∗
s −µci (x)

σci (x)
, γ

fj
s (x) =

y
fj∗
s −µfj

(x)

σfj
(x)

, ϕ and Φ are the p.d.f and c.d.f of

a standard normal distribution respectively. By combining equations (6.2) and (6.7)

with equation (6.1), we get the final form of our acquisition function as shown below:

α(x) ≃ 1

S

S∑

s=1

[
K∑

j=1

γ
fj
s (x)ϕ(γ

fj
s (x))

2Φ(γ
fj
s (x))

− lnΦ(γfj
s (x)) +

L∑

i=1

γci
s (x)ϕ(γ

ci
s (x))

2Φ(γci
s (x))

− lnΦ(γci
s (x))

]

(6.8)

Finding feasible initial designs. The acquisition function defined in equation 6.8

will build constrained Pareto front samples Y∗
s by sampling functions and constraints

from the Gaussian process posterior. The posterior of the GP is built based on the

current training data D. The truncated Gaussian approximation defined in Equations

6.5 and 6.6 requires the upper bound y
fj∗
s and yci∗s to be defined. However, in the

early Bayesian optimization iterations of the algorithm, the configurations evaluated

may not include any feasible design parameters. This is especially true for scenarios

where the fraction of feasible design configurations in the entire design space is very

small. In such cases, the sampling process of the constrained Pareto fronts Y∗
s is

susceptible to failure because the surrogate models did not gather any knowledge

about feasible regions of the design space yet. Consequently, the upper bounds y
fj∗
s

and yci∗s are not well-defined and the acquisition function in 6.8 is not well-defined.

Intuitively, the algorithm should first aim at identifying feasible design configurations
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by maximizing the probability of satisfying all the constraints. We define a special

case of our acquisition function for such challenging scenarios as shown below:

αprob(x) =
L∏

i=1

Pr(Ci(x) ≥ 0) (6.9)

This acquisition function enables an efficient feasibility search due to its exploita-

tion characteristics [74, 3]. Given that the probability of constraint satisfaction is

binary (0 or 1), the algorithm will be able to quickly prune unfeasible regions of the

design space and move to other promising regions until it identifies feasible design

configurations. This approach will enable a more efficient search over feasible regions

later and accurate computation of the acquisition function.

Acquisition function optimization. Given that the constraints are black-box,

selecting a valid input might still be challenging even with a well-designed acquisition

function. In order to increase the chances of selecting a valid input, we constrain the

acquisition function optimization with the predictive mean of the constraints.

x← argmaxx∈X α(x) (6.10)

s.t(µc1 ≥ 0, · · · , µcL ≥ 0)

A complete description of the MESMOC algorithm is given in Algorithm 6.
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Algorithm 6 MESMOC Algorithm

Input: input space X; K blackbox functions f1(x), · · · , fK(x); L blackbox constraints
C1(x), · · · , CL(x); and maximum no. of iterations Tmax

1: Initialize Gaussian process models GPf1 ,GPf2 , · · · ,GPfK and
GPc1 ,GPc2 , · · · ,GPcL by evaluating at N0 initial points

2: for each iteration t = N0 + 1 to Tmax do
3: if feasible design parameters xfeasible /∈ D then
4: Select design parameters xt ← argmaxx∈X αprob(x) # eq. 6.9
5: else
6: Select xt ← argmaxx∈X αt(x)

s.t (µc1 ≥ 0, · · · , µcL ≥ 0)
7: αt(.) is computed as:
8: for each sample s ∈ 1, · · · , S:
9: Sample f̃j ∼ GPfj , ∀j ∈ {1, · · · , K}
10: Sample C̃i ∼ GPci , ∀i ∈ {1, · · · , L}
11: // Solve cheap MOO over (f̃1, · · · , f̃K) constrained by (C̃1, · · · , C̃L)
12: Y∗

s ← argmaxx∈X (f̃1, · · · , f̃K)
s.t (C̃1 ≥ 0, · · · , C̃L ≥ 0)

13: Compute αt(.) based on the S samples of Y∗
s as given in equation (6.8)

14: end if
15: Evaluate xt; yt ← (f1(xt), · · · , fK(xt), C1(xt), · · · , CL(xt))
16: Aggregate data: D ← D ∪ {(xt,yt)}
17: Update models GPf1 ,GPf2 , · · · ,GPfK and GPc1 ,GPc2 , · · · ,GPcL

18: t← t+ 1
19: end for
20: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

6.3.2 Experiments and Results of MESMOC

Experimental Setup: In this section, we compare MESMOC with PESMOC [75],

the state-of-the-art BO algorithm for solving constrained MO problems and MES-

MOC+ [71], the concurrent approach which also relies on the same principle of

output space entropy search. Due to lack of BO approaches for constrained MO

setting, we also compare to known genetic algorithms: NSGA-II [47] and MOEAD
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[198]. However, they require large number of function evaluations to converge which

is not practical for the optimization of expensive functions. We employ a GP based

statistical model with squared exponential (SE) kernel in all our experiments. The

hyper-parameters are estimated after every five function evaluations (iterations). We

initialize the GP models for all functions by sampling the initial points at random. We

employ the code for PESMOC and MESMOC+ from the BO library Spearmint1. We

employ NSGA-II and MOEAD from the Platypus library2. Our code for MESMOC

is available at the following Github repository 3. We provide additional details about

the algorithms parameters, libraries, and computational resources in the Appendix

C.2.2.

Real-world Engineering Design Problems

Below we provide the details of the two real-world problems and associated opti-

mization tasks that are employed for our experimental evaluation.

1) Electrified Aviation Power System Design. We consider optimizing the

design of electrified aviation power system of unmanned aerial vehicle (UAV) via a

time-based static simulation. The UAV system architecture consists of a central Li-

ion battery pack, hex-bridge DC-AC inverters, PMSM motors, and necessary wiring

[24, 27]. Each candidate input consists of a set of 5 (d=5) variable design parameters

1github.com/EduardoGarrido90/Spearmint
2platypus.readthedocs.io/en/latest/getting-started.html#installing-platypus
3github.com/belakaria/MESMOC
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such as the battery pack configuration (battery cells in series, battery cells in parallel)

and motor size (number of motors, motor stator winding length, motor stator winding

turns). We minimize two objective functions: mass and total energy. This problem

has 5 black-box constraints:

C0 : Maximum final depth of discharge ≤ 75%

C1 : Minimum cell voltage ≥ 3V

C2 : Maximum motor temperature ≤ 125◦C

C3 : Maximum inverter temperature ≤ 120◦C

C5 : Maximum modulation index ≤ 1.3

2) Analog Circuit Optimization Domain. We consider optimizing the design of a

multi-output switched-capacitor voltage regulator via Cadence circuit simulator that

imitates the real hardware [25]. This circuit relies on a dynamic frequency switching

clock. Each candidate circuit design is defined by 33 input variables (d=33). The

first 24 variables are the width, length, and unit of the eight capacitors of the circuit

Wi, Li,Mi ∀i ∈ 1 · · · 8. The remaining input variables are four output voltage refer-

ences Vrefi ∀i ∈ 1 · · · 4 and four resistances Ri ∀i ∈ 1 · · · 4 and a switching frequency

f . We optimize nine objectives: maximize efficiency Eff , maximize four output volt-

ages Vo1 · · ·Vo4 , and minimize four output ripples OR1 · · ·OR4. Our problem has a
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total of nine constraints. Since some of the constraints have upper bounds and lower

bounds, they are defined in the problem by 14 different constraints:

C0 : Cptotal ≃ 20nF with Cptotal =
8∑

i=1

(1.955WiLi + 0.54(Wi + Li))Mi

C1 to C4 : Voi ≥ Vrefi ∀ ∈ 1 · · · 4

C5 to C8 : ORlb ≤ ORi ∀i ∈ 1 · · · 4

C9 to C12 : ORi ≤ ORub ∀i ∈ 1 · · · 4

C13 : Eff ≤ 100%

where ORlb and ORub are the predefined lower-bound and upper-bound of ORi re-

spectively. Cptotal is the total capacitance of the circuit.

Results and Discussion We evaluate the performance of our algorithm and the

baselines using the Pareto hypervolume (PHV) metric. PHV is a commonly employed

metric to measure the quality of a given Pareto front [202]. We provide a detailed

definition of the metrics in section 2.3. Figure 6.1 shows that MESMOC outperforms

existing baselines. It recovers a better Pareto front with a significant gain in the

number of function evaluations. Both of these experiments are motivated by real-

world engineering applications where further analysis of the designs in the Pareto

front is crucial.

1) Electrified Aviation Power System Design. In this setting, the input space
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is discrete with 250,000 combinations of design parameters. Out of the entire design

space, only 9% of design combinations passed all the constraints and only five points

are in the optimal Pareto front. From a domain expert perspective, satisfying all the

constraints is critical. Hence, the results reported for the hypervolume include only

points that satisfy all the constraints. Despite the hardness of the problem, 90% (180

out of 200 inputs) of the designs selected by MESMOC satisfy all the constraints

while for MESMOC+, PESMOC, MOEAD, and NSGA-II, this was 49% (98 out of

200), 1.5% (3 out of 200 inputs), 9.5% (19 out of 200 inputs), and 7.5% (15 out of

200 inputs) respectively. MESMOC was not able to recover all the five points from

the optimal Pareto front. However, it was able to closely approximate the optimal

Pareto front and recover better designs than the baselines.

2) Analog Circuit Design Optimization. In this setting, the input space is

continuous, consequently there is an infinite number of candidate designs. From a

domain expert perspective, satisfying all the constraints is not critical and is impos-

sible to achieve. The main goal is to satisfy most of the constraints (and getting close

to satisfying the threshold for violated constraints) while reaching the best possible

objective values. Therefore, the results reported for the hypervolume include all the

evaluated points. In this experiment, the efficiency of circuit is the most important

objective function. The table in Figure 2 shows the optimized circuit parameters

from different algorithms.
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Figure 6.1: Results of different constrained multi-objective algorithms including
MESMOC. The PHV metric is shown as a function of the number
function evaluations.

performance objectives are plotted, measured, and calculated 
from Cadence to ensure the accuracy of the results.    
Baselines. We compare our USeMOC algorithm with the state-
of-the-art multi-objective evolutionary algorithms NSGA-II 
[13] and MOEA/D [14]. NSGA-II evaluates the objective 
functions at several input designs and sorts them into a 
hierarchy of sub-groups based on the ordering of Pareto 
dominance. The similarity between members of each sub-group 
and their Pareto dominance is used by the algorithm to move 
towards more promising parts of the input space. MOEA/D 
decomposes a multi-objective optimization problem into a 
number of scalar optimization sub-problems and optimizes 
them simultaneously. Each sub-problem is optimized by only 
using the information from its neighboring sub-problems. We 
employ the NSGA-II and MOEA/D code from the known 
python library Platypus.  

Prior work has proposed surrogate models-based 
optimization methods in the context of circuit optimization 
[13,14]. However, none of these algorithms consider 
constrained optimization setting. Consequently, we cannot 
compare USeMOC with these methods in a fair manner. 
Setup for USeMOC. We employ a Gaussian process (GP) 
based statistical model with squared exponential (SE) kernel in 
all our experiments. The SE kernel is defined as 𝜅(𝑥, 𝑥U) = 𝑠 ⋅

𝑒𝑥𝑝 �9V<9<
$V
%

%>%
� , where 𝑠  and 𝜎  correspond to scale and 

bandwidth parameters. These hyper-parameters are estimated 
after every 10 function evaluations. We initialize the GP model 
using five inputs chosen randomly. 
Evaluation Metrics. To measure the performance of baselines 
and USeMOC, we employ two different metrics, one measuring 
the accuracy of solutions and another one measuring the 
efficiency in terms of the number of simulations.   
1) Pareto hypervolume (PHV) is a commonly employed metric 
to measure the quality of a given Pareto front [12]. PHV is 
defined as the volume between a reference point and the given 
Pareto front. After each iteration 𝑡 (or the number of circuit 

simulations), we measure the PHV for all algorithms. We 
evaluate all algorithms for 100 circuit simulations.  
2) Percentage gain in simulations is the fraction of simulations 
our ML-based optimization algorithm (USeMOC) is saving to 
reach the PHV accuracy of solutions at the convergence point 
of baseline algorithm employed for comparison.  
Results and Discussion. We evaluate the performance of 
USeMOC with three different acquisition functions (EI, LCB, 
and TS) to show the generality and robustness of our approach. 
We also provide results for the percentage gain in simulations 
achieved by USeMOC when compared to each baseline method 
in Table 1. We also applied the same algorithms on the circuit 
with fixed frequency. The best performing algorithm was 
USeMOC with EI. Therefore, we include those results in our 
comparison. Fig. 5 shows the PHV indicator achieved by 
different multi-objective methods including USeMOC as a 
function of the number of circuit simulations. We make the 
following observations: 1) USeMOC with EI, LCB, and TS 
acquisition functions perform significantly better than all 
baseline methods. 2) USeMOC produces better quality Pareto 
designs than all baselines using a smaller number of circuit 
simulations. This result shows the efficiency of our ML based 
optimization approach. USeMOC achieves percentage gain in 
simulations w.r.t baseline methods of 94%.  
3) The optimized circuit with dynamic frequency performs 
better than the optimized circuit with fixed frequency. The 
dynamic frequency reduces the switching loss of SCVR without 
compromising other performance by applying the proposed 
framework. We achieve percentage gain in simulations w.r.t to 
circuit with fixed frequency of 90%.  
B. Quality of Optimized SCVR Circuits  

The SCVR is implemented in the industry-provided process 
design kit (PDK) and shows better efficiency and output ripples. 
Due to the huge number of parameters and design specs in the 
analog circuit design optimization, traditional methods will be 
very expensive. Our results show huge practical benefits in 
terms of faster convergence and better-quality Pareto designs. 

 UseMOC-EI 
(fixed freq.) 

MOEAD 
(dynamic freq.) 

NSGA-II 
(dynamic freq.) 

gain in simulations 90% 94% 94% 
Table 1. Percentage gain in simulations achieved by our USeMOC algorithm 
when compared with each baseline and circuit with fixed and dynamic freq. 

  
Fig. 5. Results of different multi-objective algorithms. The hypervolume 
Indicator is shown as a function of the number of circuit simulation. 

SPECS NSGA-II PESMOC MESMOC 
𝑉!"#$(V) 0.6 0.5 0.52 0.53 0.63 0.52 
𝑉!"#%(V) 0.55 0.62 0.55 0.61 0.51 0.53 

𝑉!"#&(V) 1.06 1.06 1.07 1.12 1.05 1.13 
𝑉!"#'(V) 1.07 1.09 1.09 1.06 1.05 1.06 

𝑉($(mV) 699.6 713.1 677.10 760.60 678.40 551.62 
𝑉(% (mV) 700.4 712.2 690.70 725.70 520.61 632.80 
𝑉(& (V) 1.10 1.06 1.08 1.15 1.12 1.16 
𝑉(' (V) 1.09 1.09 1.08 0.99 1.14 1.08 
Eff (%) 73.26 71.85 76.20 74.82 88.81 88.53 

Table 2. Comparison table of optimized four-output SCVR parameters obtained by NSGA-II 
and USeMOC-EI. For dynamic frequency optimization, NSGA-II has optimized switching 
frequency at 70MHz and 130MHz and USeMOC-EI has it at 30MHz and 70MHz (optimized 
points are selected from the Pareto set prioritized by efficiency, resulting in the different load, 
switching frequency, and flying capacitor assignment). 
 

 

Figure 6.2: Comparison table of optimized circuit parameters obtained from differ-
ent algorithms (designs are selected from the Pareto set prioritized by
efficiency)

All algorithms can generate design parameters for the circuit that meets the volt-

age reference requirements. The optimized circuit using MESMOC can achieve the

highest conversion efficiency of 88.81% (12.61% improvement when compared with

PESMOC with fixed frequency optimization and 17.86% improvement when com-

pared with NSGA-II) with similar output ripples. The circuit with optimized pa-

111



rameters can generate the target output voltages within the range of 0.52V to 0.76V

(1/3x ratio) and 0.99V to 1.17V (2/3x ratio) under the loads varying from 14 Ohms

to 1697 Ohms.

6.4 Uncertainty-aware Search Framework for Constrained MOO

In this section, we propose an extension of USeMO framework to handle constraints.

Constraints in real-world problems usually take one of the following three forms:

[Type 1] Ci is a function of the input x and can be expressed declaratively (i.e., white-

box constraint); [Type 2] Ci is black-box constraint; and [Type 3] Ci is a function

of both the input x and a combination of the black-box objective functions. The

proposed algorithm USeMOC is capable of handling the three types of constraints.

In the following, we provide an overview of USeMOC followed by the details of its

two main components and an experimental evaluation of an analog circuit design

problem.

6.4.1 Overview of USeMOC Framework

USeMOC is an iterative algorithm that involves four key steps. First, We build

statistical models GP1,GP2, · · · ,GPK for each of the K objective functions from

the training data in the form of past function evaluations. Second, we select a set

of promising candidate inputs Xp by solving a constrained cheap MO optimization

problem defined using the statistical models. Specifically, multiple objectives of the
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cheap MO problem correspond to Af(GP1,x),Af(GP2,x), · · · ,Af(GPK ,x) respec-

tively. Any standard acquisition function Af from single-objective BO (e.g., EI,

LCB) can be used for this purpose. Additionally, if the constraint is black-box, it is

modeled by a GP GPci and its predictive mean µci(x) is used instead for reasoning.

If the value of a constraint Ci depends on the evaluation of one (or more) objectives

fi(x), we employ the predictive mean µi(x). The Pareto set Xp corresponds to the

inputs with different trade-offs in the utility space for K unknown functions satis-

fying the constraints. Third, we select the best candidate input xs ∈ Xp from the

Pareto set that maximizes some form of uncertainty measure for evaluation. Fourth,

the selected input xs is used for evaluation to get the corresponding function evalu-

ations: y1=f1(xs), y2=f2(xs),· · · ,yK=fK(xs). Algorithm 7 provides the algorithmic

pseudocode for USeMOC.

Advantages. USeMOC has many advantages over prior methods. 1) Provides

flexibility to plug-in any acquisition function for single-objective BO. This allows us

to leverage existing acquisition functions including EI and LCB. 2) Computationally-

efficient to solve constrained MO problems with many objectives. 3) Can handle all

three types of constraints (i.e., type 1, type 2, and type 3).

6.4.2 Key Algorithmic Components of USeMOC

The two main algorithmic components of USeMOC framework are: selecting the

most promising candidate inputs by solving a cheap constrained MO problem and
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Algorithm 7 USeMOC Framework

Input: X , input space; f1(x), f2(x), · · · , fK(x), K blackbox objective functions; Af,
acquisition function; and Tmax, maximum no. of iterations

1: Initialize training data of function evaluations D
2: Initialize statistical models GP1, · · · ,GPK , ,GPc0 , · · · ,GPcm from D
3: for each iteration t=1 to Tmax do
4: // Solve constrained cheap MO problem with objectives

Af(GP1,x), · · · ,Af(GPK ,x) to get candidate inputs
5: Xp ← argminx∈X (Af(GP1,x), · · · ,Af(GPK ,x))

s.t µc0 , · · · , µcm , Cm+1 · · · , CL

6: // Pick the candidate input with maximum uncertainty
7: Select xt+1 ← argmaxx∈Xp Uβt(x)
8: Evaluate xt+1: yt+1 ← (f1(xt+1), · · · , fK(xt+1)), Ct+1 ←

(C0(xt+1), · · · , CL(xt+1))
9: Aggregate data: D ← D ∪ {(xt+1,yt+1, Ct+1)}
10: Update models GP1, · · · ,GPK ,GPc0 , · · · ,GPcm using D
11: t← t+ 1
12: end for
13: return Pareto set and Pareto front of D

picking the best candidate via uncertainty maximization. We describe their details

below.

Selection of promising candidates. We employ the statistical models GP1, · · · ,GPK

towards the goal of selecting promising candidate inputs as follows. Given an acqui-

sition function Af (e.g., EI), we construct a constrained cheap multi-objective op-

timization problem with objectives Af(GP1,x), · · · ,Af(GPK ,x), where GP i is the

statistical model for the unknown function fi and C1, C2, · · · , CL are the problem

constraints. Generally, there are three types of constraints:

• [Type 1] Ci is a function of the input x and can be expressed declaratively

(white-box constraint). Such a constraint will take the same form as in the
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cheap MO problem.

• [Type 2] Ci is black-box constraint. In this case, it will be modeled by an

independent GP GPci and predictive mean of its model µci can be used in the

optimization process.

• [Type 3] Ci is a function of both the input x and a combination of the black-

box objective functions. Since verifying constraint Ci depends on the evaluation

of one (or more) objectives fj, we employ the predictive mean(s) µi(x) instead.

Without loss of generality and for the sake of notation in Algorithm 7, we suppose

that the first m constraints with 0 ≤ m ≤ L are black-box.

Since we present the framework as minimization, all AFs will be minimized. The

Pareto set Xp obtained by solving this cheap constrained MO problem represents the

most promising candidate inputs for evaluation.

Xp ← argminx∈X (Af(GP1,x), · · · ,Af(GPK ,x)) (6.11)

s.t µc0 , · · · , µcm , Cm+1 · · · , CL

Each acquisition function Af(GP i,x) is dependent on the corresponding surrogate

model GP i of the unknown objective function fi. Hence, each acquisition function

will carry the information of its associated objective function. As iterations progress,

using more training data, the models GP1,GP2, · · · ,GPK will better mimic the true
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objective functions f1, f2, · · · , fK . Therefore, the Pareto set of the acquisition func-

tion space (solution of Equation 6.11) becomes closer to the Pareto set of the true

functions X ∗ with increasing iterations.

Intuitively, the acquisition function Af(GP i,x) corresponding to unknown objec-

tive function fi tells us the utility of a point x for optimizing fi. The input minimizing

Af(GP i,x) has the highest utility for fi, but may have a lower utility for a different

function fj (j ̸= i). The utility of inputs for evaluation of fj is captured by its own

acquisition function Af(GPj,x). Therefore, there is a trade-off in the utility space for

all K different functions. The Pareto set Xp obtained by simultaneously optimizing

acquisition functions for all K unknown functions will capture this utility trade-off.

As a result, each input x ∈ Xp is a promising candidate for evaluation towards the

goal of solving MOO problem. USeMOC employs the same acquisition function for

all K objectives. The main reason is to give equivalent evaluation for all functions in

the Pareto front (PF) at each iteration. If we use different AFs for different objec-

tives, the sampling procedure would be different. Additionally, the values of various

AFs can have considerably different ranges. Thus, this can result in an unbalanced

trade-off between functions in the cheap PF leading to the same unbalance in our

final PF.

Cheap constrained MO solver. We employ the constrained version of the popular

NSGA-II algorithm ([47, 48]) to solve the MO problem with cheap objective functions
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and cheap constraints noting that any other algorithm can be used.

Picking the best candidate input. We need to select the best input from the

Pareto set Xp obtained by solving the cheap MO problem. All inputs in Xp are

promising in the sense that they represent the trade-offs in the utility space corre-

sponding to different unknown functions. It is critical to select the input that will

guide the overall search towards the goal of quickly approximating the true Pareto

set X ∗. We employ a uncertainty measure defined in terms of the statistical models

GP1,GP2, · · · ,GPK to select the most promising candidate input for evaluation. In

single-objective optimization case, the learned model’s uncertainty for an input can

be defined in terms of the variance of the statistical model. For multi-objective op-

timization case, we define the uncertainty measure as the volume of the uncertainty

hyper-rectangle.

Uβt(x) =V OL({(LCB(GP i,x), UCB(GP i,x)}ki=1) (6.12)

where LCB(GP i,x) and UCB(GP i,x) represent the lower confidence bound and upper

confidence bound of the statistical model GP i for an input x as defined in equations

2.4 and 2.5; and βt is the parameter value to trade-off exploitation and exploration at

iteration t. We employ the adaptive rate recommended by ([174]) to set the βt value

depending on the iteration number t. We measure the uncertainty volume measure

for all inputs x ∈ Xp and select the input with maximum uncertainty for function
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evaluation.

xt+1 = argmaxx∈Xp Uβt(x) (6.13)

6.4.3 Experiments and Results of USeMOC

In this section, we discuss the experimental evaluation of USeMOC and prior

methods on a real-world analog circuit design optimization task. The code for USe-

MOC is available in github repository: github.com/belakaria/USEMOC.

Analog circuit optimization domain. We consider optimizing the design of a

multi-output switched-capacitor voltage regulator via Cadence circuit simulator that

imitates the real hardware [25]. Each candidate circuit design is defined by 32 input

variables (d=32). The first 24 variables are the width, length, and unit of the eight

capacitors of the circuitWi, Li,Mi ∀i ∈ 1 · · · 8. The remaining input variables are four

output voltage references Vrefi ∀i ∈ 1 · · · 4 and four resistances Ri ∀i ∈ 1 · · · 4. We

optimize nine objectives: maximize efficiency Eff , maximize four output voltages

Vo1 · · ·Vo4 , and minimize four output ripples OR1 · · ·OR4. Our problem has a total
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of fourteen constraints:

C0 : Cptotal ≃ 20nF with Cptotal =
8∑

i=1

(1.955WiLi + 0.54(Wi + Li))Mi

C1 to C4 : Voi ≥ Vrefi ∀ ∈ 1 · · · 4

C5 to C8 : ORlb ≤ ORi ∀i ∈ 1 · · · 4

C9 to C12 : ORi ≤ ORub ∀i ∈ 1 · · · 4

C13 : Eff ≤ 100%

where ORlb and ORub are the predefined lower-bound and upper-bound of ORi re-

spectively. Cptotal is the total capacitance of the circuit. In this problem, C0 is

a white-box constraint (Type 1), while remaining constraints are combinations of

black-box objectives (Type 3).

Multi-objective BO algorithms. We compare USeMOC with the existing BO

method PESMOC. Due to lack of BO approaches for constrained MO, we compare

to known genetic algorithms (NSGA-II and MOEAD). However, they require large

number of function evaluations to converge which is not practical for optimization of

expensive functions.

Evaluation Metrics. To measure the performance of baselines and USeMOC, we

employ two different metrics, one measuring the accuracy of solutions and another one

measuring the efficiency in terms of the number of simulations. 1) Pareto hypervolume
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(PHV) is a commonly employed metric to measure the quality of a given Pareto front

[202]. After each iteration t (or number of simulations), we measure the PHV for all

algorithms. We evaluate all algorithms for 100 circuit simulations. 2) Percentage gain

in simulations is the fraction of simulations our BO algorithm USeMOC is saving to

reach the PHV accuracy of solutions at the convergence point of baseline algorithm

employed for comparison.

Results and Discussion. We evaluate the performance of USeMOC with two

different acquisition functions (EI and LCB) to show the generality and robustness

of our approach. We also provide results for the percentage gain in simulations

achieved by USeMOC when compared to each baseline method. Figure 6.3 shows the

PHV metric achieved by different multi-objective methods including USeMOC as a

function of the number of circuit simulations. We make the following observations:

1) USeMOC with both EI and LCB acquisition functions perform significantly better

than all baseline methods. 2) USeMOC is able to uncover a better Pareto solutions

than baselines using significantly less number of circuit simulations. This result shows

the efficiency of our approach. Table 6.1 shows that USeMOC achieves percentage

gain in simulations w.r.t baseline methods ranging from 90 to 93%.

The analog circuit is implemented in the industry-provided process design kit (PDK)

and shows better efficiency and output ripples. Since MOEAD is the best performing

baseline optimization method, we use it for the rest of the experimental analysis. Ta-

120



ble 6.4 illustrates the simulated performance of circuit optimized by MOEAD (best

baseline) and USeMOC-EI (best variant of our proposed algorithm). Results of both

algorithms meet the voltage reference and ripple requirements (100mV) . Compared

to MOEAD, the optimized circuit with USeMOC-EI can achieve a higher conversion

efficiency of 76.2 % (5.25 % higher than MOEAD, highlighted in red color) with sim-

ilar output ripples. The optimized circuits can generate the target output voltages

within the range of 0.52V-0.61V (1/3x ratio) and 1.07V-1.12V (2/3x ratio) under

the loads varying from 14 Ohms to 1697 Ohms (highlighted in black and green col-

ors). Thus, the capability of USeMOC to optimize the parameters of circuit under

different output voltage/current conditions is clearly validated. Future work includes

improving USeMOC to solve more challenging problems [24, 27].

Method MOEAD NSGA-II PESMOC

Gain in simulations 90.7% 93.3% 92.5%

Table 6.1: Percentage gain in simulations achieved by our USeMOC compared to
baselines.

6.5 Summary

We introduced two principled approaches to solving multi-objective Bayesian op-

timization problems with constraints. The first approach is named MESMOC where

the key idea is to employ an output space entropy-based acquisition function to effi-

ciently select valid inputs for evaluation, to enforce constraints during the acquisition
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Figure 6.3: Results of different multi-objective algorithms including USeMOC. The
hypervolume metric is shown as a function of the number of circuit
design simulations.

hypervolume (PHV) is a commonly employed metric to 
measure the quality of a given Pareto front [12]. PHV is defined 
as the volume between a reference point and the given Pareto 
front. After each iteration 𝑡 (or the number of circuit 
simulations), we measure the PHV for all algorithms. We 
evaluate all algorithms for 100 circuit simulations.  
2) Percentage gain in simulations is the fraction of simulations 
our ML-based optimization algorithm (URMAC) is saving to 
reach the PHV accuracy of solutions at the convergence point 
of baseline algorithm employed for comparison.  
Results and Discussion. We evaluate the performance of 
URMAC with two different acquisition functions (EI and LCB) 
to show the generality and robustness of our approach. We also 
provide results for the percentage gain in simulations achieved
by URMAC when compared to each baseline method in Table 
1. Fig. 5 shows the PHV metric achieved by different multi-
objective methods including URMAC as a function of the
number of circuit simulations. We make the following 
observations: 1) URMAC with both EI and LCB acquisition 
functions perform significantly better than all baseline methods.
2) URMAC produces better quality Pareto designs than all 
baselines using less number of circuit simulations. 3) URMAC 
is able to uncover the best Pareto solutions from baselines using
significantly less number of circuit simulations. This result 
shows the efficiency of our ML based optimization approach. 
URMAC achieves percentage gain in simulations w.r.t baseline 
methods ranging from 90% to 95%. The SCVR is implemented 
in the industry-provided process design kit (PDK) and shows 
better efficiency and output ripples. Due to the huge number of 
parameters and design specs in the analog circuit design 
optimization, traditional methods will be very expensive. Our 
results show huge practical benefits in terms of faster 
convergence and better quality Pareto designs. Since MOEAD 
is the best performing baseline optimization method, we use it 
for the rest of the experimental analysis. 
B. Quality of Optimized SCVR Circuits via ML-based Circuit 

Design Optimization 
Table 2 illustrates the simulated performance of four-output 
SCVR with FCCT and cloud-capacitor method optimized by 
MOEAD (best baseline) and URMAC-EI (best variant of our 
proposed algorithm). 𝑉[\1($/9) and 𝑅($/9) are the reference
voltages and  load resistances of the four outputs. 𝑉(+$/+9) and 
OR(1-4) are simulated output voltages and ripples. “Eff” stands 
for the overall efficiency of the four-output SCVR (total output 
power vs. input power). Results of both algorithms meet the 
voltage reference and ripple requirements (100mV) . Compared 
to MOEAD, the optimized SCVR with URMAC-EI can 
achieve a higher conversion efficiency of 76.2% (5.25% higher 
than MOEAD, highlight in red color) with similar output 
ripples. The optimized SCVRs can generate the target output 
voltages within the range of 0.52V-0.61V (1/3x ratio) and 
1.07V-1.12V (2/3x ratio) under the loads varying from 14Ohms 
to 1697Ohms (highlight in black and green colors). Thus, the
capability of URMAC to optimize the parameters of SCVR
under different output voltage/current conditions is clearly 
verified. Importantly, our ML-based  optimization framework

combined with the proposed SCVR provides a scalable solution 
to find optimized on-chip PMS designs for complex high-
performance computing systems. 

V. CONCLUSIONS 
This paper studied a novel multi-output SCVR combined with
a flying capacitor crossing technique (FCCT), cloud-capacitor 
method, and a novel ML-based circuit design optimization 
framework towards the goal of improving the efficiency of 
PMS for highly integrated SoCs. Results show that power loss 
of the proposed SCVR is reduced by more than 40% when
compared to conventional multiple single-output SCVRs. Our 
ML-based circuit design optimization framework is able to 
achieve more than 90% reduction in the number of simulations 
needed to find optimized circuit parameters of the proposed 
SCVR, and is also able to uncover significantly efficient circuit 
designs when compared to baseline optimization algorithms. 

SPECS MOEAD USEMOC-EI 
𝑉[\1$(V) 0.53 0.6 0.6 0.52 0.53 0.56 
𝑉[\1%(V) 0.55 0.51 0.59 0.55 0.61 0.57 
𝑉[\18(V) 1.14 1.06 1.07 1.07 1.12 1.11 
𝑉[\19(V) 1.22 1.16 1.14 1.09 1.06 1.1 
𝑅$(Ohm) 144 1668 1012 207 1198 619 
𝑅%(Ohm) 758 620 559 306 1697 89 
𝑅8(Ohm) 247 66 10 67 1379 70 
𝑅9(Ohm) 222 144 1830 42 14 301 
𝑉+$(mV) 551.5 702.18 775.01 677.10 760.60 656.9 
𝑉+% (mV) 612.2 671.01 912.22 690.70 725.70 569.4 
𝑉+8 (V) 1.17 1.09 867.96 1.08 1.15 1.14 
𝑉+9 (V) 1.117 1.12 1.12 1.08 0.99 1.13 

OR1(mV) 52.69 11.39 0.496 2.50 4.20 11.30 
OR2(mV) 9.32 4.52 0.984 3.50 5.00 15.90 
OR3(mV) 64.96 96.57 28.199 58.9 87.1 75.7 
OR4(mV) 4.75 4.80 1.05 80.7 25.1 74.3 

Eff (%) 70.95 65.94 64.61 76.2003 74.82 73.71 
Table 2: Comparison table of optimized four-output SCVR parameters obtained 
by MOEAD and URMAC-EI implemented in TSMC 180nm CMOS 
technology. (designs are selected from the Pareto set prioritized by efficiency) 
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Figure 6.4: Comparison table of optimized circuit parameters obtained by MOEAD
and USeMOC-EI (designs are selected from the Pareto set prioritized
by efficiency)

function optimization, and to accelerate the discovery of initial valid inputs by max-

imizing the probability of constraint satisfaction. The second approach is named

USeMOC where the key idea is to solve a cheap constrained multi-objective problem
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over acquisition functions to find promising candidates and then select the input with

the highest uncertainty for evaluation. We provided real-world experiments on analog

circuit design and unmanned aviation power systems design optimization problems

and demonstrated the efficacy of our proposed algorithms.
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CHAPTER SEVEN

DISCRETE FIDELITY MULTI-OBJECTIVE BO

In this Chapter, we study the novel problem of blackbox optimization of multiple

objectives via multi-fidelity function evaluations that vary in the amount of resources

consumed and their accuracy. The overall goal is to approximate the true Pareto

set of solutions by minimizing the resources consumed for function evaluations. For

example, in power system design optimization, we need to find designs that trade-off

cost, size, efficiency, and thermal tolerance using multi-fidelity simulators for design

evaluations.

We propose a novel approach referred as Multi-Fidelity Output Space Entropy

Search for Multi-objective Optimization (MF-OSEMO) to solve this problem. The

key idea is to select the sequence of candidate input and fidelity-vector pairs that

maximize the information gain about the true Pareto front per unit resource cost. We

provide two qualitatively different approximations to efficiently compute the entropy,

which is a key step for MF-OSEMO. These approximations make different trade-offs

in terms of accuracy and computational-efficiency: one has a closed-form expression

and another employs numerical integration. We evaluate both approximations on

several synthetic and real-world benchmark problems.
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7.1 Problem Setup

Discrete Multi-Fidelity MOO Problem. This is a general version of the MOO

problem, where we have access to Mj fidelities for each function fj that vary in the

amount of resources consumed and the accuracy of evaluation. The evaluation of

an input x ∈ X with fidelity vector m = [m1,m2, · · · ,mK ] produces an evaluation

vector of K values denoted by ym ≡ [y
(m1)
1 , · · · , y(mK)

K ], where y
(mj)
j = f

(mj)
j (x) for all

j ∈ {1, 2, · · · , K}. Let λ
(mj)
j be the cost of evaluating ith function fj at mj ∈ [Mj]

fidelity, where mj=Mj corresponds to the highest fidelity for fj. Our goal is to

approximate the optimal Pareto set X ∗ over the highest fidelities functions while

minimizing the overall cost of function evaluations (experiments). For example, in

power system design optimization, we need to find designs that trade-off cost, size,

efficiency, and thermal tolerance using multi-fidelity simulators for design evaluations.

Table 7.1 contains all the mathematical notations used in this section (MF-OSEMO).

Cost of Function Evaluations. The total normalized evaluation cost is λ(m) ≡
∑K

j=1 λ
(mj)
j /λ

(Mj)
j . We normalize the total cost since the cost units can be different

for different objectives (e.g. cost unit for f1 is computation time while cost unit for

f2 could be memory space size). If the cost is known, it can be directly injected in

the latter expression. However, in some real-world settings, the cost of a function

evaluation can only be known after the function evaluation. For example, in hyper-

parameter tuning of a neural network, the cost of the experiment is defined by the
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Notation Definition

f
(m1)
1 , f

(m1)
2 , · · · , f (mK)

K functions the mj fidelity of the true objective functions

f̃
(mj)
j function sampled from jth Gaussian process model at mjth fidelity

M1,M2, · · · ,MK no. of fidelities for each function
m = [m1,m2, · · · ,mK ] fidelity vector where each fidelity mj ∈ [Mj]

y
mj

j jth function fj evaluated at mjth fidelity where mj ∈ [Mj]

ym output vector equivalent to [y
(m1)
1 , · · · , y(mK)

K ]

λ
(mj)
j cost of evaluating jth function fj at mjth fidelity

λ(m) total normalized cost λ(m) ≡∑K
j=1

(
λ
(mj)
j /λ

(Mj)
j

)

Y∗ true pareto front of the objective functions [f1, f2, · · · , fK ] (the highest fidelities )

Y∗
s Pareto front of the sampled highest fidelities [f̃1, f̃2, · · · , f̃K ]

Table 7.1: Table describing additional mathematical notations used in this section
(MF-OSEMO).

training and inference time. However, we cannot know the exact needed time until

after the experiment is finalized. In this case, the cost can be modeled by an inde-

pendent Gaussian process. The predictive mean can be used during the optimization.

Our goal is to approximate X ∗ by minimizing the overall cost of function evaluations.

Let D = {(xi,y
(m)
i )}t−1

i=1 be the training data from past t−1 function evaluations,

where xi ∈ X is an input and y
(m)
i = [y

(m1)
1 , · · · , y(mK)

K ] is the output vector resulting

from evaluating functions f
(m1)
1 , f

(m2)
2 , · · · , f (mk)

K at xi. Gaussian processes (GPs) are

known to be effective surrogate models in prior work on single and multi-objective

BO [174, 83]. We learn K surrogate models GP1,GP2, · · · ,GPK from D, where each

GPj corresponds to the jth function fj. In our setting, each function has multiple

fidelities. So one ideal property desired for the surrogate model of a single function is

to take into account all the fidelities in a single model. Multi-fidelity GPs (MF-GP)

are capable of modeling functions with multiple fidelities in a single model. Hence,
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each of our surrogate model GPj is a multi-fidelity GP.

Specifically, we use the MF-GP model as proposed in [112, 179]. We describe the

complete details of the MF-GP model below for the sake of completeness. One key

thing to note about MF-GP model is that the kernel function (κ((xi,mi), (xj,mj)))

is dependent on both the input and the fidelity. For a given input x, the MF-

GP model returns a vector (one for each fidelity) of predictive mean, a vector of

predictive variance, and a matrix of predictive covariance. The MF-GP model has

two advantages. The first is that all fidelities are integrated into one single GP.

The second is that difference among fidelities are adaptively estimated without any

additional feature representation for fidelities. It should be noted that we employ an

independent multi-fidelity GP for each function.

We describe full details of a MF-GP model for one objective function fj (without loss

of generality) below:

Let y
(1)
j (x), . . . , y

(Mj)
j (x) represent the values obtained by evaluating the function

fj at its 1st, 2nd, . . . ,Mjth fidelity respectively. In a MF-GP model, each fidelity is

represented by a Gaussian process and the observation is modeled as

y
(mj)
j (x) = f

(mj)
j (x) + ϵ, ϵ ∼ N (0, σ2

noise).

Let f
(1)
j ∼ GP (0, κ1(x,x

′)) be a Gaussian process for the 1st fidelity i.e. mj = 1,

where κ1 : Rd × Rd → R is a suitable kernel. The output for successively fidelities
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mj = 2, . . . ,Mj is recursively defined as

f
(mj)
j (x) = f

(mj−1)
j (x) + f

(mj−1)
je

(x), (7.1)

where, f
(mj−1)
je

∼ GP (0, κe(x,x
′)) with κe : Rd×Rd → R. It is assumed that f

(mj−1)
je

is conditionally independent from all fidelities lower than mj. As a result, the kernel

for a pair of points evaluated at the same fidelity becomes:

κmj
(x,x′) ≡ κ1(x,x

′) + (mj − 1)κe(x,x
′) (7.2)

and as a result, the output for mjth fidelity is also modeled as a Gaussian process:

f
(mj)
j ∼ GP (0, κmj

(x,x′)).

The kernel function for a pair of inputs evaluated at different fidelities mj and m′
j is:

κ((x,mj), (x
′,m′

j)) = cov
(
f
(mj)
j (x), f

(m′
j)

j (x′)
)
= κmj

(x,x′)

where mj ≤ m′
j and cov represents covariance. Using a kernel matrix K ∈ Rn×n in

which the p, q element is defined by κ((x,mp
j), (x

′,mq
j)), all fidelities f

(1)
j , . . . , f

(Mj)
j

can be integrated into one common Gaussian process by which predictive mean and
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variance are obtained as

µ(mj)(x) = K + σ2
noiseI

−1Y, (7.3)

σ2(mj)

(x) = κ((x,mj), (x,mj))− k(mj)
n (x)⊤K + σ2

noiseI
−1k(mj)

n (x), (7.4)

where k
(mj)
n (x) ≡ (κ((x,mj), (x1,mj1)), . . . , κ((x,mj), (xn,mjn)))

⊤ and

Y = (y
(mj1

)

1 (x1), . . . , y
(mjn )
n (xn))

⊤. We also define σ2
(mjm

′
j)

(x) as the predictive covari-

ance between (x,mj) and (x,m′
j), i.e., covariance for identical x at different fidelities:

σ2(mjm
′
j)(x) = κ((x,mj), (x,m

′
j))− k(mj)

n (x)⊤K + σ2
noiseI

−1k
(m′

j)
n (x). (7.5)

7.2 Related Work

Multi-fidelity Single-Objective Optimization. Acquisition functions (AFs) for

single-fidelity and single-objective BO are extensively studied [166]. AFs can be

broadly classified into two categories. First, myopic AFs rely on improving a “local”

measure of utility (e.g., expected improvement). Second, non-myopic AFs measure

the “global” utility of evaluating a candidate input for solving the black-box opti-

mization problem (e.g., predictive entropy search). Canonical examples of myopic

acquisition function include expected improvement (EI) and upper-confidence bound

(UCB). EI was extended to multi-fidelity setting [89, 156, 125]. The popular GP-
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UCB method [174] was also extended to multi-fidelity setting with discrete fidelities

[108] and continuous fidelities [109]. Entropy based methods fall under the category

of non-myopic AFs. Some examples include entropy search (ES) [82] and predictive

entropy search (PES) [84]. Their multi-fidelity extensions include MT-ES [177, 116]

and MF-PES [199, 136]. Unfortunately, they inherit the computational difficulties of

the original ES and PES. Max-value entropy search (MES) [185] and output space

predictive entropy search [87] are recent approaches that rely on the principle of out-

put space entropy (OSE) search. Prior work [185] has shown the advantages of OSE

search in terms of compute-time, robustness, and accuracy over input space entropy

search methods. Recent work [173] proposed a general approach based on mutual in-

formation. Takeno et al. [179] extended MES to multi-fidelity setting and showed its

effectiveness over MF-PES. MUMBO [140] extended MES to the continuous-fidelity

and multi-task setting.

Multi-fidelity Multi-Objective Optimization. Prior work outside ML literature

has considered domain-specific methods that employ single-fidelity multi-objective

approaches in the context of multi-fidelity setting by using the lower fidelities only as

an initialization [119, 8]. Specifically, Ariyarit and et al. [8] employs the single-fidelity

algorithm based on expected hypervolume improvement acquisition function and Kon-

togiannis et al. [119] employs an algorithm that is very similar to SMSego. Also, both

these methods model all fidelities with the same GP and assume that higher fidelity
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evaluation is a sum of lower-fidelity evaluation and offset error. These are strong

assumptions and may not hold in general multi-fidelity settings including the prob-

lems from our experimental evaluation. Our proposed MF-OSEMO [21] and iMOCA

algorithms (generalized versions of MESMO [17] solve MOO problem in discrete and

continuous-fidelity settings respectively using the principle of output space entropy

search and leverage some technical ideas from the prior work on single-objective opti-

mization. We are not aware of any prior work on generic discrete/continuous-fidelity

algorithms for MOO problems in the BO literature.

7.3 MF-OSEMO Algorithm with Two Approximations

We describe our proposed acquisition function for the multi-fidelity MOO problem

setting. We leverage the information-theoretic principle of output space information

gain to develop an efficient and robust acquisition function. This method is applicable

for the general case, where at each iteration, the objective functions can be evaluated

at different fidelities.

The key idea behind the proposed acquisition function is to find the pair {x,m}

that maximizes the information gain about the Pareto front of the highest fideli-

ties (denoted by Y∗) per unit cost, where {x,m} represents a candidate input x

evaluated at a vector of fidelities m = [m1,m2, · · · ,mK ]. This idea can be expressed
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mathematically as given below:

α(x,m) = I({x,y(m)},Y∗ | D)/λ(m) (7.6)

where λ(m) is the total normalized cost of evaluating the objective functions at m and

D is the data collected so far. Figure 7.1 provides an overview of the MF-OSEMO

algorithm. The information gain in equation (7.6) is defined as the expected reduction

in entropy H(.) of the posterior distribution P (Y∗ | D) as a result of evaluating x at

fidelity vector m:

I({x,y(m)},Y∗ | D) = H(Y∗ | D)− Ey(m) [H(Y∗ | D ∪ {x,y(m)})] (7.7)

= H(y(m) | D,x)− EY∗ [H(y(m) | D,x,Y∗)] (7.8)

equation (7.8) follows from equation (7.7) as a result of the symmetric property of

information gain. The first term in the r.h.s of equation (7.8) is the entropy of

a factorizable K-dimensional Gaussian distribution P (y(m) | D,x)) which can be

computed in closed form as shown below:

H(y(m) | D,x) =
K(1 + ln(2π))

2
+

K∑

j=1

ln(σ
(mj)
j (x)) (7.9)

where σ
(mj)
j (x) is the predictive variance of jth surrogate model GPj at input x and
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Figure 7.1: Overview of the MF-OSEMO algorithm for two objective functions
(K=2). We build multi-fidelity statistical models MFGP1, MFGP2

for the two objective functions f1(x) and f2(x) with M1 and M2 fildeli-
ties respectively. First, we sample highest fidelity functions from the
statistical models. We compute sample pareto fronts by solving a cheap
MO problem over the sampled functions. Second, we select the best
candidate input xt and fidelity vector mt = (m1,m2) that maximizes
the information gain per unit cost . Finally, we evaluate the functions
for xt at fidelitiesmt to get (y

(m1)
1 , y

(m2)
2 ) and update the statistical mod-

els using the new training example.

fidelity mj. The second term in the r.h.s of equation (7.8) is an expectation over the

Pareto front of the highest fidelities Y∗. We can approximately compute this term

via Monte-Carlo sampling as shown below:

EY∗ [H(y(m) | D,x,Y∗)] ≃ 1

S

S∑

s=1

[H(y(m) | D,x,Y∗
s )] (7.10)
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where S is the number of samples and Y∗
s denote a sample Pareto front obtained over

the highest fidelity functions sample from K surrogate models. The main advantages

of our acquisition function are: cost efficiency, computational-efficiency, and robust-

ness to the number of samples. Our experiments demonstrate these advantages over

state-of-the-art single-fidelity AFs for multi-objective optimization.

There are two key algorithmic steps to compute equation (7.10). The first is

computing Pareto front samples Y∗
s ; and the second is computing the entropy with

respect to a given Pareto front sample Y∗
s . We provide solutions for these two steps

below.

1) Computing Pareto Front Samples via Cheap Multi-Objective op-

timization. To compute a Pareto front sample Y∗
s , we first sample highest fidelity

functions from the posterior MF-GP models via random Fourier features [84, 159]

and then solve a cheap multi-objective optimization over the K sampled high fidelity

functions. It is important to note that we are sampling only the highest fidelity

function from each MF-GP surrogate model.

Sampling functions from the posterior of MF-GP model. Similar to prior

work [84, 83, 185], we employ random Fourier features based sampling procedure.

We approximate each GP prior of the highest fidelity as f̃ (M) = ϕ(x)T θ, where θ ∼

N(0, I). The key idea behind random Fourier features is to construct each function

sample f̃ (M)(x) as a finitely parametrized approximation: ϕ(x)T θ, where θ is sampled
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from its corresponding posterior distribution conditioned on the dataD obtained from

past function evaluations: θ|D ∼ N(A−1ΦTyn, σ
2A−1), where A = ΦTΦ+ σ2I and

ΦT = [ϕ(x1), · · · , ϕ(xt−1)].

Cheap MO solver. We sample f̃
(Mi)
i from each surrogate modelMF − GP i as

described above. A cheap multi-objective optimization problem over the K sampled

functions f̃
(M1)
1 , f̃

(M2)
2 , · · · , f̃ (MK)

K is solved to compute the sample Pareto front Y∗
s .

This cheap multi-objective optimization also allows us to capture the interactions

between different objectives. We employ the popular NSGA-II algorithm [47] to solve

the MO problem with cheap objective functions noting that any other algorithm can

be used.

2) Entropy Computation with a Sample Pareto Front. Let Y∗
s =

{v1, · · · ,vl} be the sample Pareto front, where l is the size of the Pareto front

and each vi = {vi1, · · · , viK} is a K-vector evaluated at the K sampled high fidelity

functions. The following inequality holds for each component y
(mj)
j of the K-vector

y(m) = {y(m1)
1 , · · · , y(mk)

K } in the entropy term H(y(m) | D,x,Y∗
s ):

y
(mj)
j ≤ y∗js ∀j ∈ {1, · · · , K} (7.11)

where y∗js = max{v1j , · · · vlj}. The inequality essentially says that the jth component

of ym (i.e., y
mj

j ) is upper-bounded by a value obtained by taking the maximum of

jth components of all l vectors {v1, · · · ,vl} in the Pareto front Y∗
s . The proof of 7.11
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can be divided into two cases:

Case I. If yj is evaluated at its highest fidelity (i.e mj = Mj), inequality (7.11)

can be proven by a contradiction argument. Suppose there exists some component

y
(Mj)
j of y(M) such that y

(Mj)
j > y∗js . However, by definition, y(M) is a non-dominated

point because no point dominates it in the jth dimension. This results in y(M) ∈ Y∗
s

which is a contradiction. Therefore, our hypothesis that y
(Mj)
j > y∗js is incorrect and

inequality (7.11) holds.

Case II. If yj is evaluated at one of its lower fidelities (i.e, mj ̸= Mj), the proof

follows from the assumption that the value of lower fidelity of a objective is usually

smaller than the corresponding higher fidelity, i.e., y
(mj)
j ≤ y

(Mj)
j ≤ y∗js . This is es-

pecially true for most real-world experiments. For example, in optimizing a neural

network’s accuracy with respect to its hyperparameters, a commonly employed fi-

delity is the number of data samples used for training. It is reasonable to believe that

the accuracy is always higher for the higher fidelity (more data samples to train on)

when compared to a lower fidelity (less data samples). By combining the inequal-

ity (7.11) and the fact that each function is modeled as an independent MF-GP, a

common property of entropy measure allows us to decompose the entropy of a set of

independent variables into a sum over entropies of individual variables [38]:

H(y(m) | D,x,Y∗
s ) =

K∑

j=1

H(y
(mj)
j |D,x, y∗js) (7.12)
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The computation of equation (7.12) requires the computation of the entropy of

p(y
(mj)
j |D,x, y∗js). This is a conditional distribution that depends on the value of

mj and can be expressed as H(y
(mj)
j |D,x, y

(mj)
j ≤ y∗js). This entropy is dealt with in

two cases.

First, for mj = Mj, the density function of this probability is approximated by

truncated Gaussian distribution and its entropy can be expressed as [137]:

H(y
(Mj)
j |D,x, y

(Mj)
j ≤ y∗js) ≃

(1 + ln(2π))

2
+ ln(σ

(Mj)
j (x)) + lnΦ(γ(Mj)

s (x))

− γ
(Mj)
s (x)ϕ(γ

(Mj)
s (x))

2Φ(γ
(Mj)
s (x))

(7.13)

where γ
(Mj)
s (x) =

y∗js−µ
(Mj)

j (x)

σ
(Mj)

j (x)
, and ϕ and Φ are the p.d.f and c.d.f of a standard normal

distribution respectively.

Second, for mj ̸= Mj, the density function of p(y
(mj)
j |D,x, y∗js) can be computed

using two different approximations as described below.

Approximation 1 (MF-OSEMO-TG): As a consequence ofCase II, which states

that y
(mj)
j ≤ y∗js also holds for all lower fidelities, the entropy of p(y

(mj)
j |D,x, y∗js)

can also be approximated by the entropy of a truncated Gaussian distribution and
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expressed as follow:

H(y
(mj)
j |D,x, y

(mj)
j ≤ y∗js) ≃

(1 + ln(2π))

2
+ ln(σ

(mj)
j (x)) + lnΦ(γ(mj)

s (x))

− γ
(mj)
s (x)ϕ(γ

(mj)
s (x))

2Φ(γ
(mj)
s (x))

(7.14)

where γ
(mj)
s (x) =

y∗js−µ
(mj)

j (x)

σ
(mj)

j (x)
.

Approximation 2 (MF-OSEMO-NI): Although equation (7.14) is sufficient for

computing the entropy for mj ̸= Mj, it can be improved by conditioning on a tighter

inequality y
(Mj)
j ≤ y∗js as compared to the general one, i.e., y

(mj)
j ≤ y∗js . As we show

below, this improvement comes at the expense of not obtaining a final closed-form

expression, but it can be efficiently computed via numerical integration. We apply the

derivation of the entropy based on numerical integration for single-objective problem,

proposed in [179], for the multi-objective setting.

Now, for calculating H(y
(mj)
j |D,x, y

(mj)
j ≤ y∗js) by replacing p(y

(mj)
j |D,x, y

(mj)
j ≤ y∗js)

with p(y
(mj)
j |D,x, y

(Mj)
j ≤ y∗js) and using Bayes’ theorem, we have:

p(y
(mj)
j |D,x, y

(Mj)
j ≤ y∗js) =

p(y
(Mj)
j ≤ y∗js|y

(mj)
j , D,x)p(y

(mj)
j , D,x)

p(y
(Mj)
j ≤ y∗js|D,x)

(7.15)

Both the densities, p(y
(Mj)
j ≤ y∗js|D,x) and p(y

(mj)
j , D,x) can be obtained from the
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predictive distribution of MF-GP model and is given as follows:

p(y
(mj)
j , D,x) =

ϕ(γ
(mj)
j (x))

σ
(mj)
j

(7.16)

p(y
(Mj)
j ≤ y∗js|D,x) = Φ(γ(Mj)

s (x))) (7.17)

where γ
(mj)
j (x) =

y
(mj)

j −µ
(mj)

j (x)

σ
(mj)

j (x)
. Since MF-GP represents all fidelities as one unified

Gaussian process, the joint marginal distribution p(y
(Mj)
j , y

(mj)
j |D,x) can be imme-

diately obtained from the posterior distribution of the corresponding model GPj as

given below:

p(y
(Mj)
j |y(mj)

j ,x, D) ∼ N (µj(x), s
2
j(x)) (7.18)

where µj(x) =
σ2

(mjMj)

j (x)(y
(mj)

j −µ
mj
j (x))

σ2
(mj)

j (x)
and s2j(x) = σ2(Mj)

j (x) − (σ2
(mjMj)

j (x))2

σ2
(mj)

j (x)
. As a

result, p(y
(Mj)
j ≤ y∗js|y

(mj)
j , D,x) is expressed as the cumulative distribution of the

Gaussian in (7.18):

p(y
(Mj)
j ≤ y∗js|y

(mj)
j , D,x) = Φ(

y∗js − µj(x)

sj(x)
) (7.19)

By substituting (7.16), (7.17), and 7.19 into (7.15) we get:

H(y
(mj)
j |D,x, y

(Mj)
j ≤ y∗js) = −

∫
Ψ(y

(mj)
j ) log(Ψ(y

(mj)
j ))dy

(mj)
j (7.20)
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With Ψ(y
(mj)
j ) = Φ(

y∗js−µj(x)

sj(x)
)
Φ(γ

(Mj)
s (x)))ϕ(γ

(mj)

j (x))

σ
(mj)

j

. Since this integral is over one-

dimension variable y
(mj)
j , numerical integration can result in a tight approximation.

A complete description of the MF-OSEMO algorithm is given in Algorithm 8.

The blue colored steps correspond to computation of our acquisition function via

sampling.

7.4 Experiments and Results

In this section, we describe our experimental setup, and present results of MF-

OSEMO and baseline methods.

7.4.1 Experimental Setup

Baselines. We compare MF-OSEMO with state-of-the-art single-fidelity MO algo-

rithms: ParEGO [117], PESMO [83], SMSego [158], EHI [67], and SUR [155]. We

employ the code for these methods from the BO library Spearmint1.

Statistical models. We use MF-GP models as described in section 8.1. We employ

squared exponential (SE) kernels in all our experiments. The hyper-parameters are

estimated after every 5 function evaluations. We initialize the MF-GP models for all

functions by sampling initial points at random from a Sobol grid. We Initialise each

of the lower fidelities with 5 points and the highest fidelity with only one point.

Synthetic benchmarks. We construct two synthetic benchmark problems using a

1https://github.com/HIPS/Spearmint/tree/PESM
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Algorithm 8 MF-OSEMO Algorithm
Input: input space X; K blackbox objective functions where each function fj has mul-

tiple fidelities Mj

(
{f (1)

1 (x), · · · , f (M1)
1 (x)}, · · · , {f (1)

K (x), · · · , f (MK)
K (x)}

)
; and total budget

λTotal

1: Initialize multi-fidelity Gaussian process models GP1, · · · ,GPK by evaluating at initial points
D

2: While λt ≤ λtotal do
3: for each sample s ∈ 1, · · · , S:
4: Sample highest-fidelity functions f̃

(Mi)
i ∼ GPi, ∀i ∈ {1, · · · ,K}

5: Y∗
s ← Pareto front of cheap multi-objective optimization over (f̃

(M1)
1 , · · · , f̃ (MK)

K )
6: Find the next point to evaluate: select (xt,mt)← argmaxx∈X,m αt(x,m,Y∗)
7: Update the total cost consumed: λt ← λt + λ(mt)

8: Aggregate data: D ← D ∪ {(xt,y
m
t )}

9: Update models GP1, · · · ,GPK

10: t← t+ 1
11: end while
12: return Pareto front and Pareto set of f1(x), · · · , fK(x) based on D
13: Procedure αt(x,m,Y∗

s )
14: // Computes information gain (I) about the posterior of true Pareto front (Y∗) per unit cost as

a result of evaluating x
15: // I = H1 - H2; where H1 = Entropy of y(m) conditioned on D and x

// and H2 = Expected entropy of y(m) conditioned on D, x and (Y∗)

16: Set H1 = H(y(m) | D,x) = K(1 + ln(2π))/2 +
∑K

j=1 ln(σ
(mj)
j (x)) (entropy of K-factorizable

Gaussian)

17: To compute H2 ≃ 1
S

∑S
s=1

∑K
j=1 H(y

(mj)
j |D,x, y∗js), initialize H2 = 0

18: for each sample Y∗
s do

19: for j ∈ 1 · · ·K do
20: Set y∗js = maximum of jth component of all vectors in Y∗

s

21: If mj = Mj // if evaluating jth function at highest fidelity

22: H2 += H(y
(Mj)
j |D,x, y

(Mj)
j ≤ y∗js) (entropy of truncated Gaussian

p(y
(Mj)
j |D,x, y

(Mj)
j ≤ y∗js))

23: If mj ̸= Mj // if evaluating jth function at lower fidelity
24: // two approximations are provided
25: If approximation = TG

26: H2 += H(y
(mj)
j |D,x, y

(mj)
j ≤ y∗js) (entropy of truncated Gaussian

p(y
(Mj)
j |D,x, y

(mj)
j ≤ y∗js))

27: If approximation = NI

28: H2 += H(y
(mj)
j |D,x, y

(Mj)
j ≤ y∗js) (entropy computed via numerical integration)

29: end for
30: end for
31: Divide by number of samples: H2 = H2/S
32: return (H1 −H2)/λ

(m)
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combination of commonly employed benchmark functions for multi-fidelity and single-

objective optimization 2, and two of the known general MO benchmarks [79]. Their

complete details are provided in Table 7.2.

Real-world benchmarks. We consider two challenging problems that are described

below.

1) Rocket launching simulation. We consider the simulation study of a rocket

[81] being launched from the Earth’s surface. Input variables for simulation are mass

of fuel, launch height, and launch angle. Output objectives are the time taken to

return to Earth’s surface, the angular distance travelled with respect to the centre

of the Earth, and the absolute difference between the launch angle and the radius

at the point of launch. However, these simulations are computationally expensive

and can take up to several hours. The simulator has a tolerance parameter that can

be adjusted to perform multi-fidelity simulations: small tolerance means accurate

simulations, but long runtime. We employ two tolerance parameter values to create

two fidelities for each objective: cost of two fidelities are 0.05 minutes and 30 minutes

respectively.

2) Network-on-chip (NOC) optimization. Designing good communication

infrastructure is important to improve the quality of hardware designs. This is typi-

cally done using cycle-accurate simulators that imitate the real hardware. We consider

a design space of NoC dataset consisting of 1024 implementation of a network-on-chip

2https://www.sfu.ca/ ssurjano/optimization.html
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[35]. Each configuration is defined by ten input variables (d=10). We optimize two

objectives: latency and energy. This benchmark has two fidelities with costs 3 mins

and 45 mins respectively.

Name k d Benchmark functions p Costs

BC 2 2
Branin
Currin

2
2

[1, 10]
[1, 10]

SPP 3 4
Shekel
Park 1
Park 2

3
2
2

[0.1, 1, 10]
[1, 10]
[1, 10]

ZDT3 2 6 Zitzler,Deb,Thiele 22 [1, 10]2

DTLZ1 6 5 Deb,Thiele,Laumanns,Zitzler 36 [0.1, 1, 10]6

Table 7.2: Details of synthetic benchmarks: Name, benchmark functions, no. of
objectives k, input dimension d, number fidelities p, and costs of different
fidelities for each function.

7.4.2 Results and Discussion

To evaluate the performance of MF-OSEMO, we employ a common multi-objective

metric used in practice. The Pareto hypervolume (PHV) metric measures the quality

of a given Pareto front [202]. We provide a detailed definition of the metrics in

section 2.3 As a function of the cost of evaluations, we report the difference between

the hypervolume of the ideal Pareto front (Y∗) and hypervolume of the best reached

Pareto front estimated by optimizing the posterior mean of the models at the highest

fidelities [83]. The posterior means are optimized over a randomly generated grid of
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Figure 7.2: Results of MF-OSEMO and single-fidelity multi-objective BO algo-
rithms on synthetic benchmarks and real-world problems. The log of
the hypervolume difference is shown with varying cost.

10,000 points. We also provide the cost reduction factor, which is the ratio between

the worst cost at which MF-OSEMO converges (worst case for MF-OSEMO), and

the earliest cost for which any of the single-fidelity baselines converge (best case for

baseline) after running all algorithms for very large costs. We run all experiments 10

times. The mean and variance of the PHV metrics across different runs are reported

as a function of the total cost consumed. Since in all our experiments, the costs of

different functions are on the same scale, we plot results against the sum of the costs.

MF-OSEMO vs. State-of-the-art. We compare the performance of MF-OSEMO-

TG and MF-OSEMO-NI with single-fidelity MO methods. Figure 7.2 shows the re-
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sults of all multi-objective BO algorithms including MF-OSEMO for synthetic and

real-world benchmarks. We observe that: 1) MF-OSEMO consistently performs bet-

ter than all baselines. Both the variants of MF-OSEMO converge at a much lower

cost. 2) Rates of convergence of MF-OSEMO-TG and MF-OSEMO-NI are slightly

different. However, in all cases, MF-OSEMO performs better than baseline methods.

We notice that in few cases (e.g., both real-world benchmarks), MF-OSEMO-TG

converges earlier than MF-OSEMO-NI. This demonstrates that even with loose ap-

proximation, using the MF-OSEMO-TG can provide consistently competitive results

using less computation time.

Name BC SPP ZDT3 DTLZ1 Rocket NOC

λ 4.2 190 380 100 250 1200

λB 2000 1950 2000 800 4000 10000

Λ 99.79% 90.25% 81% 87.5% 93.75% 88%

Table 7.3: Convergence costs for MF-OSEMO and baselines, and cost reduction
factor achieved by MF-OSEMO: worst convergence cost for MF-OSEMO
λ, best convergence cost from all baselines methods λB, and cost reduction
factor Λ.

Cost reduction factor. Some of the baselines will eventually converge if they are

run for a much larger cost. In table 7.3, we provide the cost reduction factor to

show the percentage of cost-gain achieved by using MF-OSEMO when compared to

single-fidelity baselines. Although the metric gives advantage to baselines, the results

in the table show a consistently high gain ranging from 81% to 99.8%.
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Robustness of MF-OSEMO. We evaluate the performance of MF-OSEMO and

PESMO with different number of Monte-Carlo samples (MCS). We provide results

for two synthetic benchmarks BC and ZDT3 in figure 7.2 with 1, 10, and 100 MCS for

PESMO, MF-OSEMO-TG, and MF-OSEMO-NI. For clarity of figures, we provided

those results in two diffrent figures side by side. We notice that the convergence

rate of PESMO is dramatically affected by the number of Monte-Carlo samples: 100

samples lead to better results than 10 and 1. However, MF-OSEMO-TG and MF-

OSEMO-NI maintain a better performance consistently even with a single sample.

These results strongly demonstrate that our proposed method is much more robust

to the number of MCS.

7.5 Summary

We introduced a novel and principled approach referred as MF-OSEMO to solve

multi-fidelity multi-objective Bayesian optimization problems. The key idea is to

employ an output space entropy-based acquisition function to efficiently select inputs

and fidelity vectors for evaluation. Our experimental results on both synthetic and

real-world benchmarks showed that MF-OSEMO yields consistently better results

than state-of-the-art single-fidelity methods.

146



CHAPTER EIGHT

CONTINUOUS FIDELITY MULTI-OBJECTIVE BO

Many real-world applications involve black-box optimization of multiple objectives

using continuous function approximations that trade-off accuracy and resource cost

of evaluation. For example, in rocket launching research, we need to find designs that

trade off return time and angular distance using continuous-fidelity simulators (e.g.,

varying tolerance parameter to trade-off simulation time and accuracy) for design

evaluations[196, 56]. The goal is to approximate the optimal Pareto set by minimizing

the cost of evaluations.

In this Chapter, we propose a novel approach referred to as information-Theoretic

Multi-Objective Bayesian Optimization with Continuous Approximations (iMOCA)

to solve this problem. The key idea is to select the sequence of input and function

approximations for multiple objectives which maximize the information gain per unit

cost for the optimal Pareto front. To efficiently compute entropy, which is an im-

portant step for iMOCA, we develop two qualitatively different approximations that

make different trade-offs in terms of computation-time and accuracy. iMOCA extends

the single-fidelity multi-objective algorithm MESMO and its discrete-fidelity version

MF-OSEMO to the more general continuous-fidelity setting. We evaluate iMOCA

and compare it to existing approaches including MESMO and MF-OSEMO.
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8.1 Problem Setup

Continuous-Fidelity MOO Problem. The continuous-fidelity MOO problem is

the general version of the discrete multi-fidelity setting where we have access to

gi(x, zi) where gi is an alternative function through which we can evaluate cheaper

approximations of fi by varying the fidelity variable zi ∈ Z (continuous function ap-

proximations). Without loss of generality, let Z=[0, 1] be the fidelity space. Fidelities

for each function fi vary in the amount of resources consumed and the accuracy of

evaluation, where zi=0 and z∗i=1 refer to the lowest and highest fidelity respectively.

At the highest fidelity z∗i , gi(x, z
∗
i ) = fi(x). The evaluation of an input x ∈ X with

fidelity vector z = [z1, z2, · · · , zK ] produces an evaluation vector of K values denoted

by y ≡ [y1, y2, · · · , yK ], where yi = gi(x, zi) for all i ∈ {1, 2, · · · , K}. Let Ci(x, zi) be

the cost of evaluating gi(x, zi). Our goal is to approximate the optimal Pareto set

X ∗ over the highest fidelities functions while minimizing the overall cost of function

evaluations (experiments). For example, in rocket launching research, we need to find

designs that trade-off return time and angular distance using continuous-fidelity sim-

ulators (e.g., varying tolerance parameter to trade-off simulation time and accuracy)

for design evaluations. Table 8.1 contains all the mathematical notations used in this

section (iMOCA).

Cost of Function Evaluations. The total normalized cost of function evaluation

is C(x, z) =∑K
i=1 (Ci(x, zi)/Ci(x, z∗i )). We normalize the cost of each function by the
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cost of its highest fidelity because the cost units of different objectives can be different.

If the cost is known, it can be directly injected in the latter expression. However, in

some real-world settings, the cost of a function evaluation can be only known after

the function evaluation. In this case, the cost can be modeled by an independent

Gaussian process. The predictive mean can be used during the optimization. The

final goal is to recover X ∗ while minimizing the total cost of function evaluations.

Continuous-Fidelity GPs as Surrogate Models. Let D = {(xi,yi, zi)}t−1
i=1 be

the training data from past t-1 function evaluations, where xi ∈ X is an input

and yi = [y1, y2, · · · , yK ] is the output vector resulting from evaluating functions

g1, g2, · · · , gK for xi at fidelities z1, z2, · · · , zK respectively. We learn K surrogate

statistical models GP1, · · · ,GPK from D, where each model GPj corresponds to the

jth function gj. Continuous fidelity GPs (CF-GPs) are capable of modeling functions

with continuous fidelities within a single model. Hence, we employ CF-GPs to build

surrogate statistical models for each function. Specifically, we use the CF-GP model

proposed in [109]. W.l.o.g, we assume that our functions gj are defined over the

spaces X = [0, 1]d and Z = [0, 1]. Let gj ∼ GPj(0, κj) such that yj = gj(zj,x) + ϵ,

where ϵ ∼ N (0, η2) and κ : (Z × X )2 → R is the prior covariance matrix defined on

the product of input and fidelity spaces.

κj([zj,x], [z
′
j,x

′]) = κjX (x,x
′) · κjZ(zj, z

′
j)
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where κjX , κjZ are radial kernels over X and Z spaces respectively. Z controls the

smoothness of gj over the fidelity space to be able to share information across different

fidelities. A key advantage of this model is that it integrates all fidelities into one

single GP for information sharing. We denote the posterior mean and standard

deviation of gj conditioned on D by µgj(x, zj) and σgj(x, zj). We denote the posterior

mean and standard deviation of the highest fidelity functions fj(x) = gj(x, z
∗
j ) by

µfj(x) = µgj(x, z
∗
j ) and σfj(x) = σgj(x, z

∗
j ) respectively. We define σ2

gj ,fj
(x) as the

predictive co-variance between a lower fidelity zj and the highest fidelity z∗j at the

same x.

Notation Definition

g1, g2, · · · , gK General objective functions with low and high fidelities
g̃j Function sampled from the jth Gaussian process model at fidelity zj

z1, z2, · · · , zK The fidelity variables for each function
z Fidelities vector

z∗ = [z∗1 , z
∗
2 , · · · , z∗K ] Fidelities vector with all fidelities at their highest value
yj jth function gj evaluated at fidelity zj

y = [y1, y2, · · · , yK ] Output vector resulting from evaluating g1, g2, · · · , gK
for xi at fidelities z1, z2, · · · , zK respectively

f = [f1, f2, · · · , fK ] Output vector resulting from evaluating functions f1, f2, · · · , fK
or equivalently g1, g2, · · · , gK for xi at fidelities z

∗
1 , z

∗
2 , · · · , z∗K respectively

Cj(x, zj) Cost of evaluating jth function gj at fidelity zj
C(x, z) Total normalized cost C(x, z) =∑K

i=1 (Ci(x, zi)/Ci(x, z∗i ))
Z Fidelity space

Z(j)
t Reduced fidelity space for function gj at iteration t
Zr Reduced fidelity space
ξ Information gap

β
(j)
t Exploration/exploitation parameter for function gj at iteration t

Table 8.1: Mathematical notations and their associated definition used in this sec-
tion (iMOCA)
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8.2 iMOCA Algorithm with Two Approximations

We first describe the key idea behind our proposed iMOCA algorithm including

the main challenges. Next, we present our algorithmic solution to address those

challenges.

Key Idea of iMOCA: The acquisition function behind iMOCA employs principle

of output space entropy search to select the sequence of input and fidelity-vector (one

for each objective) pairs. iMOCA is applicable for solving MO problems in both

continuous and discrete fidelity settings. The key idea is to find the pair {xt, zt} that

maximizes the information gain I per unit cost about the Pareto front of the highest

fidelities (denoted by Y∗), where {xt, zt} represents a candidate input xt evaluated at

a vector of fidelities zt = [z1, z2, · · · , zK ] at iteration t. Importantly, iMOCA performs

joint search over input space X and reduced fidelity space Zr over fidelity vectors for

this selection.

(xt, zt)← argmaxx∈X ,z∈Zr αt(x, z) , where αt(x, z) = I({x,y, z},Y∗|D)/C(x, z)

(8.1)

In the following sections, we describe the details and steps of our proposed algorithm

iMOCA. We start by explaining the bottlenecks of continuous fidelity optimization

due to the infinite size of the fidelity space followed by describing a principled approach
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to reduce the fidelity space. Subsequently, we present the computational steps of our

proposed acquisition function: Information gain per unit cost for each candidate input

and fidelity-vector pair.

8.2.1 Approach to Reduce Fidelity Search Space

In this work, we focus primarily on MO problems with continuous fidelity space.

The continuity of this space results in infinite number of fidelity choices. Thus, select-

ing an informative and meaningful fidelity becomes a major bottleneck. Therefore, we

reduce the search space over fidelity-vector variables in a principled manner guided by

the learned statistical models [109]. Our fidelity space reduction method is inspired

from BOCA for single-objective optimization [109]. We apply the method in BOCA

to each of the objective functions to be optimized in MO setting.

A favourable setting for continuous-fidelity methods would be for the lower fi-

delities gj to be informative about the highest fidelity fj. Let hj be the bandwith

parameter of the fidelity kernel κjZ and let ξ : Z → [0, 1] be a measure of the gap

in information about gj(., z
∗
j ) when queried at zj ̸= z∗j with ξ(zj) ≈ ∥zj−z∗j ∥

hj
for the

squared exponential kernels [109]. A larger hj will result in gj being smoother across

Z. Consequently, lower fidelities will be more informative about fj and the informa-

tion gap ξ(zj) will be smaller.

To determine an informative fidelity for each function in iteration t, we reduce the
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space Z and select zj from the subset Z(j)
t defined as follows:

Z(j)
t (x) = {{zj ∈ Z\{z∗j }, σgj(x, zj) > γ(zj), ξ(zj) > β

(j)
t ∥ξ∥∞} ∪ {z∗j }} (8.2)

where γ(zj) = ξ(zj)(
Cj(x,zj)
Cj(x,z∗j )

)q and q = 1
pj+d+2

with pj, d the dimensions of Z and X re-

spectively. Without loss of generality, we assume that pj = 1. β
(j)
t =

√
0.5d · log (2tl + 1)

is the exploration/exploitation parameter [109]. where, l is the effective L1 diameter

of X and is computed by scaling each dimension by the inverse of the bandwidth

of the SE kernel for that dimension. We denote by Zr = {Z(j)
t , j ∈ {1 . . . K}}, the

reduced fidelity space for all K functions.

We filter out the fidelities for each objective function at BO iteration t using the

above-mentioned two conditions. We provide intuitive explanation of these conditions

below.

The first condition σgj(x, zj) > γ(zj): A reasonable multi-fidelity strategy would

query the cheaper fidelities in the beginning to learn about the function gj by con-

suming the least possible cost budget and later query from higher fidelities in order to

gain more accurate information. Since the final goal is to optimize fj, the algorithm

should also query from the highest-fidelity. However, the algorithm might never query

from higher fidelities due to their high cost. This condition will make sure that lower

fidelities are likely to be queried, but not excessively and the algorithm will move

toward querying higher fidelities as iterations progress. Since γ(zj) is monotonically
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increasing in Cj, this condition can be easily satisfied by cheap fidelities. However,

if a fidelity is very far from z∗j , then the information gap ξ will increase and hence,

uninformative fidelities would be discarded. Therefore, γ(zj) will guarantee achieving

a good trade-off between resource cost and information.

The second condition ξ(zj) > β
(j)
t ∥ξ∥∞: We recall that if the first subset of Z(j)

t is

empty, the algorithm will automatically evaluate the highest-fidelity z∗j . However, if

it is not empty, and since the fidelity space is continuous (infinite number of choices

for zj), the algorithm might query fidelities that are very close to z∗j and would cost

nearly the same as z∗j without being as informative as z∗j . The goal of this condition

is to prevent such situations by excluding fidelities in the small neighborhood of z∗j

and querying z∗j instead. Since β
(j)
t increases with t and ξ is increasing as we move

away from z∗j , this neighborhood is shrinking and the algorithm will eventually query

z∗j .

8.2.2 Naive-CFMO: A Simple Continuous-Fidelity MO Baseline

In this section, we first describe a simple baseline approach referred to as Naive-

CFMO to solve continuous-fidelity MO problems by combining the above-mentioned

fidelity space reduction approach with existing multi-objective BO methods. Next, we

explain the key drawbacks of Naive-CFMO and how our proposed iMOCA algorithm

overcomes them.

A straightforward way to construct a continuous-fidelity MO method is to perform
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a two-step selection process similar to the continuous-fidelity single-objective BO

algorithm proposed in [109]:

Step 1) Select the input x that maximizes the acquisition function at the highest

fidelity. This can be done using any existing multi-objective BO algorithm.

Step 2) Evaluate x at the cheapest valid fidelity for each function in the re-

duced fidelity space Z(j)
t (x) computed using the reduction approach mentioned in

the previous section. Since we are studying information gain based methods in this

work, we instantiate Naive-CFMO using the state-of-the-art information-theoretic

MESMO algorithm [17] for Step 1. Algorithm 9 shows the complete pseudo-code of

Naive-CFMO.

Drawbacks of Naive-CFMO: Unfortunately, Naive-CFMO has two major draw-

backs.

• The acquisition function solely relies on the highest-fidelity fj. Therefore, it

does not capture and leverage the statistical relation between different fidelities

and full-information provided by the global function gj.

• Generally, there is a dependency between the fidelity space and the input space

in continuous-fidelity problems. Therefore, selecting an input that maximizes

the highest-fidelity and then evaluating it at a different fidelity can result in

a mismatch in the evaluation process leading to poor performance and slower

convergence.
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iMOCA vs. Naive-CFMO: Our proposed iMOCA algorithm overcomes the draw-

backs of Naive-CFMO as follows.

• iMOCA’s acquisition function maximizes the information gain per unit cost

across all fidelities by capturing the relation between fidelities and the impact

of resource cost on information gain.

• iMOCA performs joint search over input and fidelity space to select the input

variable x ∈ X and fidelity variables z ∈ Zr while maximizing the proposed ac-

quisition function. Indeed, our experimental results demonstrate the advantages

of iMOCA over Naive-CFMO.

8.2.3 Information-Theoretic Continuous-Fidelity Acquisition Function

In this section, we explain the technical details of the acquisition function behind

iMOCA. We propose two approximations for the computation of information gain per

unit cost.

The information gain in equation (8.1) is defined as the expected reduction in

entropy H(.) of the posterior distribution P (Y∗|D) due to evaluating x at fidelity

vector z. Based on the symmetric property of information gain, the latter can be

rewritten as follows:
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I({x,y, z},Y∗|D) = H(y|D,x, z)− EY∗ [H(y|D,x, z,Y∗)] (8.3)

In equation (8.3), the first term is the entropy of a K-dimensional Gaussian distribu-

tion that can be computed in closed form as follows:

H(y|D,x, z) =
K∑

j=1

ln(
√
2πe σgj(x, zj)) (8.4)

In equation (8.3), the second term is an expectation over the Pareto front of the

highest fidelities Y∗. This term can be approximated using Monte-Carlo sampling:

EY∗ [H(y|D,x, z,Y∗)] ≃ 1

S

S∑

s=1

[H(y|D,x, z,Y∗
s )] (8.5)

where S is the number of samples and Y∗
s denote a sample Pareto front obtained

over the highest fidelity functions sampled from K surrogate models. To compute

equation (8.5), we provide algorithmic solutions to construct Pareto front samples Y∗
s

and to compute the entropy with respect to a given Pareto front sample Y∗
s .

1) Computing Pareto Front Samples: We first sample highest fidelity functions
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f̃1, · · · , f̃K from the posterior CF-GP models via random Fourier features [84, 159].

This is done similar to prior work [83, 185]. We solve a cheap MO optimization prob-

lem over the K sampled functions f̃1, · · · , f̃K using the popular NSGA-II algorithm

[47] to compute the sample Pareto front Y∗
s .

2) Entropy Computation for a Given Pareto Front Sample: Let Y∗
s =

{v1, · · · ,vl} be the sample Pareto front, where l is the size of the Pareto front and

each vi = {vi1, · · · , viK} is a K-vector evaluated at the K sampled highest-fidelity

functions. The following inequality holds for each component yj of y = (y1, · · · , yK)

in the entropy term H(y|D,x, z,Y∗
s ):

yj ≤ f j∗
s ∀j ∈ {1, · · · , K} (8.6)

where f j∗
s = max{v1j , · · · vlj}. Essentially, this inequality says that the jth component

of y (i.e., yj) is upper-bounded by a value, which is the maximum of jth components

of all l vectors {v1, · · · ,vl} in the Pareto front Y∗
s . Inequality (8.6) holds by the same

proof of (7.11). For the ease of notation, we drop the dependency on x and z. We

use fj to denote fj(x) = gj(x, z
∗
j ), the evaluation of the highest fidelity at x and yj to

denote gj(x, zj) the evaluation of gj at a lower fidelity zj ̸= z∗j .

By combining the inequality (8.6) and the fact that each function is modeled as an

independent CF-GP, a common property of entropy measure allows us to decompose

the entropy of a set of independent variables into a sum over entropies of individual
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variables [38]:

H(y|D,x, z,Y∗
s ) =

K∑

j=1

H(yj|D,x, zj, f
j∗
s ) (8.7)

The computation of (8.7) requires the computation of the entropy of p(yj|D,x, zj, f
j∗
s ).

This is a conditional distribution that depends on the value of zj and can be expressed

as H(yj|D,x, zj, yj ≤ f j∗
s ). This entropy can be computed using two different approx-

imations as described below.

Truncated Gaussian Approximation (iMOCA-T): As a consequence of

(8.6), which states that yj ≤ f j∗
s also holds for all fidelities, the entropy of p(yj|D,x, zj, f

j∗
s )

can also be approximated by the entropy of a truncated Gaussian distribution and

expressed as follows:

H(yj|D,x, zj, yj ≤ f j∗
s ) ≃ ln(

√
2πe σgj) + lnΦ(γ(gj)

s )− γ
(gj)
s ϕ(γ

(gj)
s )

2Φ(γ
(gj)
s )

where γ(gj)
s =

f j∗
s − µgj

σgj

(8.8)

From equations (8.5), (8.4), and (8.8), we get the final expression of iMOCA-T as

shown below:

αt(x, z,Y∗) ≃ 1

C(x, z)S
K∑

j=1

S∑

s=1

[
γ
(gj)
s ϕ(γ

(gj)
s )

2Φ(γ
(gj)
s )

− ln(Φ(γ(gj)
s ))

]
(8.9)
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Extended-skew Gaussian Approximation (iMOCA-E): Although equation

(8.9) is sufficient for computing the entropy, this entropy can be mathematically

interpreted and computed with a different approximation. The condition yj ≤ f j∗
s ,

is originally expressed as fj ≤ f j∗
s . Substituting this condition with it’s original

equivalent, the entropy becomes H(yj|D,x, zj, fj ≤ f j∗
s ). Since yj is an evaluation of

the function gj while fj is an evaluation of the function fj, we observe that yj|fj ≤ f j∗
s

can be approximated by an extended-skew Gaussian (ESG) distribution [140, 15]. It

has been shown that the differential entropy of an ESG does not have a closed-

form expression [6]. Therefore, we derive a simplified expression where most of the

terms are analytical by manipulating the components of the entropy. We apply the

derivation of the entropy based on ESG formulation, proposed in [140], for the multi-

objective setting.

In order to simplify the calculationH(yj|D,x, zj, fj ≤ f j∗
s ), we start by deriving an

expression for its probability distribution. Based on the definition of the conditional

distribution of a bi-variate normal, fj|yj is normally distributed with mean µfj +

σfj

σgj
τ(yj − µgj) and variance σ2

fj
(1− τ)2, where τ =

σ2
gj ,fj

σgjσfj
is the predictive correlation

between yj and fj. We can now write the cumulative distribution function for yj|fj ≤
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f j∗
s as shown below:

P (yj ≤ u|fj ≤ f j∗
s ) =

P (yj ≤ u, fj ≤ f j∗
s )

P (fj ≤ f j∗
s )

=

∫ u

−∞ ϕ
(

θ−µgj

σgj

)
Φ

(
fj∗
s −µfj

−
σfj
σgj

τ(θ−µgj )√
σ2
fj

(1−τ)2

)
dθ

σgjΦ

(
fj∗
s −µfj

σfj

)

Let us define the normalized variable Γfj∗
s

as Γfj∗
s
∼ yj−µgj

γgj
|fj ≤ f j∗

s . After differ-

entiating with respect to u, we can express the probability density function for Γfj∗
s

as:

P (u) =
ϕ(u)

Φ(γ
(fj)
s )

Φ(
γ
(fj)
s − τu√
1− τ 2

)

which is the density of an ESG with mean and variance defined as follows:

µΓ
f
j∗
s

= τ
ϕ(γ

(fj)
s )

Φ(γ
(fj)
s )

, σΓ
f
j∗
s

= 1− τ 2
ϕ(γ

(fj)
s )

Φ(γ
(fj)
s )

[
γ(fj)
s +

ϕ(γ
(fj)
s )

Φ(γ
(fj)
s )

]
(8.10)

Therefore, we can express the entropy of the ESG as shown below:

H(Γfj∗
s
) = −

∫
P (u) ln(P (u))du (8.11)

We also derive a more simplified expression of the iMOCA-E acquisition function
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based on ESG. For a fixed sample fs
j∗, H(Γfj∗

s
) can be decomposed as follows:

H(Γfj∗
s
) = Eu∼Γ

f
j∗
s

[
− ln(ϕ(u)) + ln(Φ(γ(fj)

s ))− ln(Φ(
γ
(fj)
s − τu√
1− τ 2

))

]
(8.12)

We expand the first term as shown below:

Eu∼Γ
f
j∗
s

[− ln(ϕ(u))] =
1

2
ln(2π) +

1

2
Eu∼Γ

f
j∗
s

[
u2
]

(8.13)

From the mean and variance of Γfj∗
s

in equation (8.10), we get:

Eu∼Γ
f
j∗
s

[
u2
]
= µ2

Γ
f
j∗
s

+ σΓ
f
j∗
s

= 1− τ 2
ϕ(γ

(fj)
s )γ

(fj)
s

Φ(γ
(fj)
s )

(8.14)

We note that the final entropy can be computed using the following expression.

H(yj|D,x, zj, yj ≤ f j∗
s ) = H(Γfj∗

s
) + ln(σgj) (8.15)

By combining equations (8.12) and (8.15), we get:

H(yj|D,x, zj, fj ≤ f j∗
s ) ≃ ln(

√
2πe σgj) + ln(Φ(γ(fj)

s ))− τ 2
ϕ(γ

(fj)
s )γ

(fj)
s

2Φ(γ
(fj)
s )

− Eu∼Γ
f
j∗
s

[
ln(Φ(

γ
(fj)
s − τu√
1− τ 2

))

]
(8.16)

From equations (8.5), (8.4) and (8.16), the final expression of iMOCA-E can be
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expressed as follow:

αt(x, z,Y∗) ≃ 1

C(x, z)S
K∑

j=1

S∑

s=1

τ 2
γ
(fj)
s ϕ(γ

(fj)
s )

2Φ(γ
(fj)
s )

− ln(Φ(γ(fj)
s ))

+ Eu∼Γ
f
j∗
s

[
ln(Φ(

γ
(fj)
s − τu√
1− τ 2

))

]
(8.17)

The expression given by equation (8.17) is mostly analytical except for the last

term. We perform numerical integration via Simpson’s rule using µΓ
f
j∗
s

∓ γ
√
σ(Γfj∗

s
)

as the integral limits. Since this integral is over one-dimension variable, numerical in-

tegration can result in a tight approximation with low computational cost. Complete

pseudo-code of iMOCA is shown in Algorithm 10.

Generality of the two approximations: We observe that for any fixed value

of x, when we choose the highest-fidelity for each function z=z∗, a) For iMOCA-T,

we will have gi = fj; and b) For iMOCA-E, we will have τ = 1. Consequently,

both equation (8.9) and equation (8.17) will degenerate to the acquisition function of

MESMO optimizing only highest-fidelity functions given in equation (3.13) in section

3.3.

The main advantages of our proposed acquisition function are: cost-efficiency,

computational efficiency, and robustness to the number of Monte-Carlo samples.

Indeed, our experiments demonstrate these advantages over state-of-the-art single-

fidelity MO algorithms.
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Algorithm 9 Naive-CFMO Algorithm
Input: input space X ; K blackbox functions fj and their continuous approximations gj ; total
budget Ctotal
1: Initialize continuous fidelity Gaussian process GP1, · · · ,GPK by evaluating at initial points D
2: While Ct ≤ Ctotal do
3: for each sample s ∈ 1, · · · , S:
4: Sample highest-fidelity functions f̃j ∼ GPj(., z

∗
j )

5: Y∗
s ← Solve cheap MOO over (f̃1, · · · , f̃K)

6: Find the query based on Y∗ = {Y∗
s , s ∈ {1 . . . S}}:

7: // Use eq (3.13) for αt (MESMO)
8: select xt ← argmaxx∈X αt(x,Y∗)
9: for j ∈ 1 · · ·K do
10: select zj ← argmin

zj∈Z(j)
t (xt)∪{z∗

j }
Ci(xt, zj)

11: Fidelity vector zt ← [z1 . . . zK ]
12: Update the total cost: Ct ← Ct + C(xt, zt)
13: Aggregate data: D ← D ∪ {(xt,yt, zt)}
14: Update models GP1, · · · ,GPK

15: t← t+ 1
16: end while
17: return Pareto front and Pareto set of black-box functions f1(x), · · · , fK(x)

Algorithm 10 iMOCA Algorithm
Input: input space X ; K blackbox functions fj and their continuous approximations gj ; total
budget Ctotal
1: Initialize continuous fidelity Gaussian process GP1, · · · ,GPK by initial points D
2: While Ct ≤ Ctotal do
3: for each sample s ∈ 1, · · · , S:
4: Sample highest-fidelity functions f̃j ∼ GPj(., z

∗
j )

5: Y∗
s ← Solve cheap MOO over (f̃1, · · · , f̃K)

6: Find the query based on Y∗ = {Y∗
s , s ∈ {1 . . . S}}

7: // Choose one of the two approximations
8: If approx = T // Use eq (8.9) for αt (iMOCA-T)
9: select (xt, zt)← argmaxx∈X ,z∈Zr

αt(x, z,Y∗)
10: If approx = E // Use eq (8.17) for αt (iMOCA-E)
11: select (xt, zt)← argmaxx∈X ,z∈Zr

αt(x, z,Y∗)
12: Update the total cost: Ct ← Ct + C(xt, zt)
13: Aggregate data: D ← D ∪ {(xt,yt, zt)}
14: Update models GP1, · · · ,GPK

15: t← t+ 1
16: end while
17: return Pareto front and Pareto set of black-box functions f1(x), · · · , fK(x)
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Figure 8.1: Overview of the iMOCA algorithm for two objective functions (K=2).
We build Continuous fidelity statistical models CFGP1, CFGP2 for the
two objective functions f1(x) and f2(x) with z1 and z2 fildelities respec-
tively. First, we sample highest fidelity functions from the statistical
models. We compute sample pareto fronts by solving a cheap MO prob-
lem over the sampled functions. Second, we select the best candidate
input xt and fidelity vector zt = (z1, z2) that maximizes the information
gain per unit cost . Finally, we evaluate the functions for xt at fidelities
zt to get (y1, y2) and update the statistical models using the new train-
ing example.

8.3 Experiments and Results

We present the results for iMOCA with MESMO and MF-OSEMO as baselines

since iMOCA is the generalization of both MESMO and MF-OSEMO to the most

general setting (continuous-fidelity).

Experimental Setup. In our experiments, we employed CF-GP models as de-

scribed in section 8.1 with squared exponential kernels. We initialize the surrogate
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models of all functions with the same number of points selected randomly from both

lower and higher fidelities. We compare iMOCA with several baselines: six state-of-

the-art single-fidelity MO algorithms (ParEGO, SMSego, EHI, SUR, PESMO, and

MESMO) and one naive continuous-fidelity baseline that we proposed in Section

8.2.2. We employ the code for ParEGO, PESMO, SMSego, EHI, and SUR from

the BO library Spearmint1. The code for all four of our algorithms are available in

public Github repositories. We provide more details about the algorithms parame-

ters, libraries, and computational resources in the Appendix C.2.2. For experiments

in discrete fidelity setting, the number of fidelities is very limited. Thus, the fidelity

space reduction method deem meaningless in this case. Therefore, we employ iMOCA

without fidelity space reduction for those scenarios. Additionally, we compare to the

state-of-the-art discrete fidelity method MF-OSEMO. MF-OSEMO has two variants:

MF-OSEMO-TG and MF-OSEMO-NI. Since MF-OSEMO-TG has the same formu-

lation as iMOCA-T and provide similar results, we compare only to MF-OSEMO-NI.

8.3.1 Synthetic Benchmarks

We evaluate our most general algorithm iMOCA and baselines on four different

synthetic benchmarks. We construct two problems using a combination of benchmark

functions for continuous-fidelity and single-objective optimization [175]: Branin,Currin

(withK=2, d=2) and Ackley, Rosen, Sphere (withK=3, d=5). To show the effective-

1github.com/HIPS/Spearmint/tree/PESM
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ness of iMOCA on settings with discrete fidelities, we employ two of the known general

MO benchmarks: QV (with K=2, d=8) and DTLZ1 (with K=6, d=5) [79, 169]. We

provide their complete details in Appendix C.2.1. The titles of plots in Fig. 8.2, Fig.

8.4, and Fig. 8.3 denote the corresponding experiments.

8.3.2 Real-world Engineering Design Optimization Problems

We evaluate iMOCA and baselines on four real-world design optimization prob-

lems from diverse engineering domains. We provide the details of these problems

below.

1) Analog Circuit Design Optimization. Design of a voltage regulator via Ca-

dence circuit simulator that imitate the real hardware [25, 88]. The simulation time

can be adjusted to vary the simulation from fast and inaccurate to long and accu-

rate. Each candidate circuit design is defined by 33 input variables (d=33). We

optimize nine objectives: efficiency, four output voltages, and four output ripples.

This problem has a continuous-fidelity space with cost varying from 10 mins to 120

mins.

2) Panel Structure Design for Large Vessels. The deck structure in large vessels

commonly require the design of panels resisting uni-axial compression in the direction

of the stiffeners [201]. We consider optimizing the trade-off between two objective

functions: weight and strength of the panel. These functions depend on six input

variables (d=6): one of them is the number of stiffeners used and five others relating
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to the plate thickness and stiffener dimensions. This problem has a discrete fidelity

setting: two fidelities with computational costs 1 min and 21 mins respectively.

3) Rocket Launching Simulation. Rocket launching studies [81] require several

long and computationally-expensive simulations to reach an optimal design. In this

problem, we have three input variables (d = 3): mass of fuel, launch height, and

launch angle. The three objective functions are return time, angular distance, and

difference between the launch angle and the radius at the point of launch. The simu-

lator has a parameter that can be adjusted to perform continuous fidelity simulations.

We employ the parameter range to vary the cost from 0.05 to 30 mins.

4) Network-On-Chip Design. Communication infrastructure is critical for efficient

data movement in hardware chips [104, 63, 37, 42] and they are designed using cycle-

accurate simulators. We consider a dataset of 1024 configurations of a network-

on-chip with ten input variables (d=10) [35]. We optimize two objectives: latency

and energy. This problem has two discrete fidelities with costs 3 mins and 45 mins

respectively.

8.3.3 Results and Discussion

We compare iMOCA with both approximations (iMOCA-T and iMOCA-E) to all

baselines. We employ two known metrics for evaluating the quality of a given Pareto

front: Pareto hypervolume (PHV ) metric and R2 indicator. We provide a detailed

definition of the metrics in section 2.3. We report both the difference in the hyper-
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volume, and the average distance between an optimal Pareto front (F∗) and the best

recovered Pareto front estimated by optimizing the posterior mean of the models at

the highest fidelities [83]. The mean and variance of PHV and R2 metrics across 10

different runs are reported as a function of the total cost.

Fig. 8.2 shows the PHV results of all the baselines and iMOCA for synthetic and

real-world experiments (Fig. 8.3 shows the corresponding R2 results). We observe

that iMOCA consistently outperforms all baselines. Both iMOCA-T and iMOCA-E

have lower converge cost. Additionally, iMOCA-E shows a better convergence rate

than iMOCA-T. This result can be explained by its tighter approximation. Never-

theless, iMOCA-T displays very close or sometimes better results than iMOCA-E.

This demonstrates that even with loose approximation, using the iMOCA-T approxi-

mation can provide consistently competitive results using less computation time. For

experiments with the discrete fidelity setting, iMOCA most of the times outperformed

MF-OSEMO or produced very close results. It is important to note that MF-OSEMO

is an algorithm designed specifically for the discrete-fidelity setting. Therefore, the

competitive performance of iMOCA shows its effectiveness and generalisability.

Figure 8.4 shows the results of evaluating iMOCA and PESMO with varying num-

ber of Monte-Carlo samples S ∈ {1, 10, 100}. For ease of comparison and readability,

we present these results in two different figures side by side. We observe that the con-

vergence rate of PESMO is dramatically affected by the number of MC samples S.
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However, iMOCA-T and iMOCA-E maintain a better performance consistently even

with a single sample. These results strongly demonstrate that our method iMOCA

is much more robust to the number of Monte-Carlo samples.

Table 8.2: Best convergence cost from all baselines CB, Worst convergence cost for
iMOCA C, and cost reduction factor G.

Name BC ARS Circuit Rocket

CB 200 300 115000 9500

C 30 100 55000 2000

G 85% 66.6% 52.1% 78.9%

Cost Reduction Factor. We also provide the cost reduction factor for experiments

with continuous fidelities, which is the percentage of gain in the convergence cost

when compared to the best performing baseline (the earliest cost for which any of the

single-fidelity baselines converge). Although this metric gives advantage to baselines,

the results in Table 8.2 show a consistently high gain ranging from 52.1% to 85%.

8.4 Summary

We introduced a novel approach referred to as iMOCA to solve multi-objective

BO problems with continuous function approximations. The key idea is to select

inputs and function approximations for evaluation which maximizes the information

gained per unit resource cost about the optimal Pareto front. Experimental results

on diverse benchmarks showed that iMOCA consistently outperforms state-of-the-art

single-fidelity methods and a naive continuous-fidelity MOO algorithm.
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Figure 8.2: Results of iMOCA and the baselines algorithms on synthetic bench-
marks and real-world problems. The PHV metric is presented against
the total resource cost of function evaluations.
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Figure 8.3: Results of iMOCA and the baselines algorithms on synthetic bench-
marks and real-world problems. The R2 metric is presented against the
total resource cost of function evaluations.
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Figure 8.4: Results of synthetic benchmarks showing the effect of varying the num-
ber of Monte-Carlo samples for iMOCA, MESMO, and PESMO. The
hypervolume difference is shown against the total resource cost of func-
tion evaluations.
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CHAPTER NINE

BUDGET-AWARE MULTI-OBJECTIVE BO

In this Chapter, we address the problem of non-myopic multi-objective Bayesian

optimization. Non-myopic algorithms are particularly well-suited for small resource

budgets as they take a planning perspective and reason about different experimental

plans in a look-ahead manner. We start by proposing a solution to the budgeted non-

myopic Bayesian optimization. Next, we show how to incorporate side information

from the hyper-parameter optimization (HPO) problem to build a planning approach

for iterative machine learning models.

We propose a novel approach referred to as Budget-Aware Planning for Iterative

Learners (BAPI) to solve HPO problems under a constrained cost budget. BAPI is

an efficient non-myopic Bayesian optimization solution that accounts for the budget

and leverages the prior knowledge about the objective function and cost function to

select better configurations and to take more informed decisions during the evaluation

(training). Subsequently, we propose an extension of this solution for the generic non-

myopic multi-objective optimization problem. We evaluate our algorithm on diverse

HPO benchmarks for iterative learners.
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9.1 Budgeted Non-Myopic Bayesian optimization

Sequential experimental design with a finite number of function evaluations (finite-

horizon) or a finite budget, where an agent adaptively designs a pre-specified number

of experiments has been addressed in several ways. The optimal policy for this prob-

lem can be formulated as a dynamic program, which balances the inherent trade-off

between exploitation and exploration. However, this optimal policy has been shown

to be intractable even for simple problems with a single. Common approximations

for the single objective problem include rollout and Monte-Carlo tree search. Forcibly

limiting the horizon to one is also known as myopic Bayesian optimization, where the

algorithm selects an input that maximizes some utility function at only the next iter-

ation. All the methods discussed prior to this chapter are considered myopic Bayesian

optimization. In this section, we discuss a non-myopic BO approximation to solve

this problem.

9.1.1 Problem Setup

Consider the problem of sequentially optimizing a blackbox objective function f

over the input space X where the evaluation of each candidate input x ∈ X is expensive

and where the cost c of each input is unknown before the evaluation. In the context

of HPO for iterative machine learning models, each input candidate z := [x, t], where

x represents model/pipeline hyperparameters and t ∈ T =[1 . . . tmax] is the number
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of training epochs. We let the objective function f(x, t) be defined as the accuracy

1 and the unknown cost c(x, t) be defined as the training time. The objective is to

identify the maximum of f in a number of queries whose cumulative cost is bounded

by a total budget BT . Let Z := X × T , our problem can be stated as

max
Z∈P (Z)

max
z∈Z

f(z), s.t.
∑

z∈Z

c(z) ≤ BT (9.1)

where P (Z) denotes the power set of Z and Z = {z1 . . . zh} is the sequence of

inputs evaluated until the budget BT is exhausted. In other words, the optimal

design z∗ is defined as z∗ ← argmaxZ f(z) with z∗ ∈ Z and
∑

z∈Z c(z) ≤ BT . The

problem in Equation (9.1) is solved using a non-myopic policy, where at each iteration,

the algorithm accounts for the sequence of inputs that can be evaluated within the

remaining budget, i.e., the horizon h is adaptive. We define the non-myopic setting

later in this section, which is similar to the setting considered in Lee et al. [131] and

Astudillo et al. [13].

We focus on problem settings where the objective function is monotonic in the

number of epochs t. Specifically, for a fixed hyperparameter x, f(x, t) ≤ f(x, t′) when t ≤

t′. This is a reasonable assumption for iterative learners. Even if monotonicity does

not hold over all training epochs, keeping track of the best model over training epochs

is a standard practice [39].

1Any bounded metric can be used (e.g, loss, some cases of reward for RL models etc.)
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Gaussian Processes GPs are characterized by a mean functionm and a covariance

or kernel function κ. If a function f is sampled from GP(m, κ), then f(x, t) is

distributed normally N (m(x, t), κ([x, t], [x, t])) for a finite set of inputs from [x, t] ∈

X × T . The predictive mean and uncertainty for a GP for a new input z∗ ∈ Z is

defined as:

µ(z∗) = κz∗,Z [κZ,Z + σ2I]−1(Y −m(Z)) +m(z∗)

σ2(z∗) = κz∗,z∗ − κz∗,Z [κZ,Z + σ2I]−1κZ,z∗

where κz∗,z∗ = κ(z∗, z∗), κZ,Z = κ(Z,Z), κz∗,Z = [κ(z∗, zi)]∀i, Z is the set of eval-

uated inputs and Y is their corresponding function values. A typical choice to

model blackbox functions with a temporal component is using a product kernel

κ([x, t], [x′, t′]) = κx(x,x
′) × κt(t, t

′). κx, defined over the input space x ∈ X , is

often selected to be an RBF or a Matern kernel. For the temporal component κt, pre-

vious work for GPs over iterative learners [178] proposed an exponential decay (ED)

kernel, defined as κt(t, t
′) = βα/(t + t′ + β)α, to model decreasing covariance with

increasing time. However, this kernel does not guarantee that the predictive mean of

GP or sampled functions would necessarily follow a desired monotonic shape. Nguyen

et al. [146] argued that the use of ED is not appropriate for reinforcement learning

models where the reward might follow a logistic shape and proposed the use of an

RBF kernel for κt.
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Bayesian Optimization And Non-Myopic Query Policies BO often selects

the next input to evaluate that maximizes the acquisition function. Two examples

of acquisition functions are expected improvement (EI) and upper confidence bound

(UCB) and both are considered myopic since they only aim to maximize the function

for the next query without accounting for the future queries.

We review some standard facts for optimal sequential decision-making [153, 99].

Consider having collected a set of i responses Di and let u denote the utility of Di

for maximizing f(z) = y, i.e., u(Di) = max(z,y)∈Di
y. The marginal gain in utility of

the query z w.r.t. Di is expressed as:

u(y|z, Di) = u(Di ∪ (z, y))− u(Di) (9.2)

The one-step expected marginal gain is equivalent to the expected improvement (EI)

strategy [139]:

U1(z|Di) = Ey[u(Di ∪ (z, y))− u(Di)|z, Di] (9.3)

Now, consider the case where r steps are remaining. The r-steps expected marginal

gain can be expressed through the Bellman recursion as [99]:

Ur(z|Di) = Ey[u(y|z, Di)] + Ey[max
z′
Ur−1(z

′|Di ∪ (z, y))] (9.4)

Maximizing (9.4) w.r.t. z results in the optimal r-steps “lookahead” . Being a se-
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quence of r nested integrals of maximizations, optimizing (9.4) is intractable for even

small r.

Lower Bound To Optimal Policy The previous discussion focused on the op-

timality of selecting single queries. We review recent work by [99] which makes a

connection between single selection and batch selection of size r, Z = {z1 . . . zr}.

Assuming parallel evaluation, the optimal set of selected points Z∗ maximizes the

expected marginal utility of the new associated evaluations Y = {y1 . . . yr}:

Z∗ = argmax
Z∈Z

U(Z|Di) with U(Z|Di) = EY [u(Y |Z,Di)] (9.5)

Jiang et al. [99] showed that choosing a query z∗ ∈ Z∗ is equivalent to solving

argmaxz V (z|D) where

V (z|Di) = Ey[u(y|z, Di)] + max
Z′:|Z′|=r−1

Ey[U(Z ′|Di ∪ (z, y))] (9.6)

and that the second term of (9.6) is a lower bound to the second term in (9.4):

max
Z′:|Z′|=r−1

Ey[U(Z ′|Di ∪ (z, y))] ≤ Ey[max
z′
Ur−1(z

′|Di ∪ (z, y))] (9.7)

Given this observation, Jiang et al. [99] proposed approximating the optimal policy

(9.4) by optimizing its lower bound (9.6) which is equivalent to optimizing the batch
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EI known as q-EI. Jiang et al. [99] proposed using joint q-EI which is budget-unaware

and scales poorly with increased dimensions [190].

9.1.2 Related Work

Non-Myopic Policies While there were early attempts at non-myopic selection for

length-two horizons [e.g., 153], most work on proposing practical methods for longer

horizons is very recent. Wu and Frazier [191] developed gradient estimates for two-

step EI admitting gradient-based search for the optimal two-step selection. Lam

et al. [126] utilized a Markov decision process (MDP) formalism and performed roll-

outs with a predefined base policy to estimate the value function. GLASSES [77]

approximates the solution for the optimal non-myopic selection by a combination of

approximate integration given future selections and approximating the future selec-

tions by a diversity-promoting batch selection procedure from González et al. [76]).

Closely related to our work is BINOCULARS Jiang et al. [99] which was discussed

in Section 9.1.1. The major differences to our proposed BAPI approach are that (a)

BINOCULARS uses joint batch expected improvement q-EI Wang et al. [184] while

we use the sequential greedy selection Wilson et al. [190], (b) BINOCULARS uses

a fixed horizon that is budget agnostic while we use a budget-adaptive horizon, and

(c) BINOCULARS does not take cost into account when returning its non-myopic

selected query while our method does factor cost in. Lee et al. [131] consider the gen-

eral cost-aware setting and frame the problem as a constrained MDP. Their method
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approximately solves the intractable problem by performing rollouts of a base policy

that does not adapt the horizon to the budget. Moreover, its base policy is normal-

ized by cost leading to a bias towards low-cost queries. Building upon the efficient

one-shot multi-step tree approach of Jiang et al. [100], Astudillo et al. [13] introduces

cost-modeling and develops a budget-aware method. However, this method’s adapta-

tion to the horizon is post-hoc in the sense that the horizon has to be fixed in advance

and cannot be adaptive to the remaining budget due to utility function formulation

and optimization. This leads to an unnecessary higher dimensional optimization and

a manual zero-padding technique to handle cases where the selected horizon violates

the remaining budget. Our proposed solution BAPI executes a non-myopic query

selection policy by wrapping standard BO in a layer of budget-aware planning and

proposing a principled approach for adapting the horizon to the amount of remain-

ing budget. The multi-objective setting have not been previously addressed in the

context of non-myopic Bayesian optimization.

HPO/BO For Iterative Learning [64] proposed learning curve prediction in

order to allow early termination of non-promising candidates. This approach utilizes

approximate Bayesian inference w.r.t. a pre-defined finite set of learning curve models

to perform extrapolation to a fixed horizon. [115] built on this method by showing

Bayesian neural networks could be used for learning curve prediction. [178] proposed

a hierarchical GP model for HP tuning that includes learning curve prediction upon
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which decisions for exploration (freeze current and test new candidate) and exploita-

tion (thaw current and continue learning) are based. More recently, [39] proposed an

optimal stopping procedure for increasing the sample efficiency of BO and showed

competitive performance with [64] for iterative learners. While this procedure ob-

tains theoretical guarantees, it must generate a sample of large size from the GP in

order to make a reliable decision. Moreover, solving for the stopping rule requires an

approximate backward induction technique after each epoch. Our proposal for early

termination is conceptually simpler and far less computationally demanding.

The method of [135] considers a finite set of learners modeled with freeze/thaw

[178] selecting between exploration and exploitation with a heuristic ϵ-greedy rule.

[193] extend the knowledge gradient acquisition function [72] to trace-valued obser-

vations that occur in multi-fidelity applications. BOIL [146] also considers trace-

valued observations but compresses the trace via learned weighted sum as well as

adding carefully-chosen intermediate trace values as observations. The setting for

BOIL includes reinforcement learning problems with reward functions taking non-

exponentially decaying shapes. Our BAPI approach uses a product kernel to jointly

model correlations between HPs and epochs within the iterative training procedure.

Kandasamy et al. [109] developed BOCA, an extension of UCB to the general multi-

fidelity BO setting.

We note that there exist orthogonal approaches that focus on the ability to ex-
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trapolate responses based on smaller datasets where the cost is varied based on the

size or fraction of the dataset used for training. These methods propose algorithms

based on multi-task BO [177, 116] and importance sampling [7].

Bandit Algorithms for HPO Given that the objective in (9.1) is equivalent to

optimizing for simple regret, there is a large amount of relevant work within the

multi-armed bandits literature. Audibert et al. [14] developed the upper confidence

bound exploration (UCB-E) policy, for the best arm identification (BAI) in the bud-

geted setting by providing conditions under which simple regret decays exponentially

with increasing budget. Hoffman et al. [86] considered linear bandits and proposed

the BayesGap algorithm which is an exploration policy within budget constraints.

Later, Jamieson and Talwalkar [92] analyzed successive halving as an instance of

non-stochastic multi-armed bandits in the setting where the budget is greater than

the number of learners. HyperBand [133] is an implementation of successive halving

running this algorithm in multiple successive rounds and is a very general algorithm

for HPO including non-iterative learners. Most recently, BOHB [69] modified Hy-

perBand by utilizing BO within the successive halving procedure which guides the

selection process for the learners that will be trained for longer budgets.

All the above-discussed approaches were proposed in the context of optimizing

a problem with a single objective function, the accuracy of hyper-parameter config-

uration. Recently [163] proposed an extension of Hyperband to the multi-objective
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setting. Our proposed approach leverages side information both for the accuracy and

cost functions and can be incorporated with any multi-objective algorithm including

MESMO and USeMO.

9.1.3 Proposed Approach
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Figure 9.1: Overview of BAPI algorithm illustrating its three key components ex-
plained in section 9.1.3

In this section, we start by providing a high-level overview of the proposed BAPI

algorithm and briefly explain its key components. Next, we provide complete details

of each component. First, we describe how to perform an efficient budget-aware non-

myopic search. Second, we explain our approach to model structured response for

iterative learning which can be used to estimate conservative stopping for increased

resource efficiency. Finally, after describing an alternative kernel for the cost model,

we provide the full BAPI approach with all its components coherently put together.
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Overview Of BAPI Algorithm

Let GPf and GPc be the surrogate probabilistic models learned given a set of

observed data points Di of the objective function f and the cost function c respec-

tively. Let µc and σ2
c be the predictive mean and variance of GPc and µ and σ2 be

the predictive mean and variance of GPf .

As shown in Figure 9.1, BAPI is a sequential algorithm with three key components

listed below:

1. Learning Surrogate Models We build two surrogate models GPf for the

objective function and GPc for the cost function by fitting independent GPs using

queries evaluated in the past. We enforce shape constraint on the posterior of GPf

with respect to t (epoch number) to incorporate prior knowledge about the mono-

tonicity of the function. We use a special kernel for GPc to leverage our knowledge

about the variability of the cost across different HPs and its linearity with respect to

t.

2. Budget Aware Non-Myopic Optimization With Adaptive Horizon We

perform non-myopic optimization to approximate the optimal lookahead horizon Z∗

defined as the potential sequence of inputs that can be evaluated until their conserva-

tive stopping toptx without violating the remaining budgetBr: Z
∗ = {(x1, t

opt
x1
) . . . (xr, t

opt
xr
)}

such that
∑

z∈Z∗ c(z) ≈
∑r

i=1 µc(xi, t
opt
xi
) ≤ Br. While constructing the horizon Z∗,

each input xi is selected based on its expected improvement. The associated conser-
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vative stopping toptxi
and cost µc(xi, t

opt
xi
), are estimated upon the input selection.

3. Evaluation With Early Termination From Z∗ obtained from the second

step, we select the input with highest expected improvement per unit cost at its

estimated conservative stopping for evaluation. After training the model for a fraction

of the maximum number of epochs, we re-estimate the performance of the input at

its conservative stopping epoch. We early terminate the training if the expected

performance is poor with high certainty.

Budget-Aware BO with Adaptive Horizon

Approximating the non-myopic optimization with the batch expected improve-

ment q-EI, where the batch size q is equal to the horizon of the lookahead optimiza-

tion r, is an efficient approach [99]. However, the joint q-EI via reparametrization

trick and Monte Carlo sampling proposed in Wang et al. [184] and used in Jiang et al.

[99] requires the size of the batch to be fixed and solves a joint one-shot optimization

problem of (d× q) dimensions.

Challenges 1) In the context of budgeted non-myopic optimization, the horizon

of remaining queries r is unknown: it depends on remaining budget Br and expected

costs of horizon queries zi, i ∈ {1 . . . r}. An efficient method should allow the horizon

to be adaptive to the budget. Therefore, the joint q-EI is not a suitable solution.

2) Given an optimization problem with a reasonable medium-size dimension and a

medium-length horizon, the dimensionality of the joint optimization problem can
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significantly increase. Wilson et al. [190] showed that the performance of the joint

q-EI deteriorates for large optimization dimension.

Proposed Alternative To overcome the above two challenges, we propose to em-

ploy the sequential greedy q-EI via reparametrization trick and Monte Carlo sampling

proposed in Wilson et al. [190]. Wilson et al. [190] showed that q-EI is a submodular

acquisition function, which guarantees a near-optimal maximization via a sequential

greedy approach. This incremental version of the acquisition function has several dis-

tinct advantages over the joint one: 1) It is amenable to an adaptive horizon, where

we can stop adding points to the batch based on the remaining budget. 2) It is more

efficient and produces better performance when the value of d× q is high [190]. After

the batch approximation returns a sequence (horizon) of inputs, we select one input

to query its expensive function evaluation. We discuss an input selection strategy,

that is relevant to iterative machine learning models optimization, in section 9.1.3.

Note that our approximation can clearly extend to the use of any other batch acquisi-

tion function that satisfies the submodularity condition and have a sequential greedy

approach, namely the q-UCB and q-PI [190].

It is important to highlight that in practice, our approach can naturally extend to

parallel BO evaluation (batch setting). The user can choose more than one point from

the approximated horizon and evaluate them in parallel as long as the horizon length

is fairly larger than the number of selected points for evaluation. Even though in this
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work we focus on the sequential setting, we enable this option in our implementation.

We provide a summary of the budget-aware BO approach in Algorithm 11.

Algorithm 11 Budget Aware Non-myopic BO

Input: Z, f(z), c(z), models GPf , GPc, utility function u(y|z, D), a total budget BT

Output: D, z∗, f(z∗)

1: Initialize the remaining budget Br ← BT

2: while Br ≥ 0: do
3: Approximate the optimal horizon via adaptive optimal batch computation Z∗ of size r such

that
∑r

i=0 µc(zi) ≤ Br

4: Select a candidate input z∗ ∈ Z∗ and observe its evaluation f(z∗) = y∗ and cost c(z∗) = y∗c
5: Update the remaining budget Br ← Br − c(z∗)
6: Update data D = D ∪ {(x∗, y∗, y∗c )}
7: end while

Bayesian Optimization Over Iterative Learners with Structured Response

In this section, we describe our proposed approaches to leverage prior knowledge

about the structure of the responses, namely, the monotonicity and shape of the

function f and the linearity of the cost c.

We propose to use a GP with monotonicity constraint over the t variable to model

the function f . Recent work [2] proposed an efficient approach to introduce linear

operator inequality constraints to GPs. Let f be the function modeled by a GP and

L be a linear operator. The proposed approach enables the posterior prediction to

account for inequality constraints defined as a(z) ≤ Lf(z) ≤ b(z). The derivative

operator is a linear operator. Hence, to apply monotonicity, this condition can be

seen as the partial derivative of the model of f with respect to t is positive. For this

condition to hold, Agrell [2] proposed to define a set of virtual observation locations
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Zv = {z1v, . . . , zsv} where the condition is guaranteed to be satisfied.

The posterior predictive distribution of the monotonic GP is f∗|Y,C, which is

the distribution of f∗ = f(z∗) for some new inputs z∗ = [x∗, t∗], conditioned on the

observed data Y and the constraint C defined as a(Zv) ≤ Lf(Zv) ≤ b(Zv). The final

derivation of the predictive distribution, provided by Agrell [2], is defined as follows:

f∗|Y,C ∼ N (µ∗ + A(C− Lµv) +B(Y − µ),Σ)

C = C̃|Y,C ∼ T N (Lµv + A1(Y − µ), B1, a(Z
v), b(Zv))

where T N (·, ·, a, b) is the truncated GaussianN (·, ·) conditioned on the hyper-rectangle

[a1, b1]× · · · × [ak, bk], µ
v = m(Zv), µ∗ = m(z∗), µ = m(Z). The definition of the ma-

trices A,B,A1, B1 and Σ can be found in Appendix D.1. The computation of the

posterior of the monotonic GP requires the definition of derivatives of the kernel

function. In this work we consider monotonicity with respect to one dimension t.

Therefore, we need the first order derivatives.

In cases where the function is known to be exponentially decaying (e.g., neural

network training), the kernel over dimension t should be defined as an ED kernel.

However, in cases where the shape of learning curve is monotonic but not necessarily

exponentially decaying (e.g., cumulative and average reward for RL models), an RBF

kernel with monotonicity over dimension t should be used. Leveraging monotonicity

in the modeling allows flexibility and the generalization of our approach for several
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types of ILs.

The specification of the location of virtual observations Zv can have an

important effect on the efficiency and scalability of the monotonic Gaussian process.

Agrell [2] proposed to have a suboptimization problem to find the optimal location.

The idea is to iteratively place virtual observation locations where the probability that

the constraint holds is low. However, this optimization becomes suboptimal when the

dimension of the problem grows. Given that our function is monotonic with respect

to only one dimension, we chose to define linearly spaced locations with respect to

dimension t. The number of points is defined based on the kernel:

• ED kernel: The virtual observations locations will mainly enforce the direction

of the monotonicity, therefore adding only two locations is sufficient.

• RBF Kernel: The number and location of virtual observations depends on the

smoothness (lengthscale) of the kernel. The distance between every two virtual

observations should be smaller than the lengthscale in order to maintain the

monotonicity and avoid any fluctuations.

We provide the derivatives for both kernels in Appendix D.1. We additionally

provide insights about the efficient posterior computation of the monotonic GP. For

more details, we refer the reader to Agrell [2].

Conservative Stopping Estimation Previously proposed BO approaches for HPO

consider a maximum number of epoch tmax at which the objective function will reach
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its best value. However, in practice, different HPs do not need to necessarily run

to the maximum number of epochs to reach their optimal value as the objective

stops improving (reaches a plateau) Kaplan et al. [110]. Therefore, running them

for longer epochs can be a waste of limited resource budget with diminishing returns.

Existing work proposed early stopping of HPs based on their performance compared to

previously evaluated data points [133, 39, 178] or based on the expected improvement

per unit cost [146] which leads to the selection of very low number of epoch due to

the high cost of tmax. We propose to define a conservative stopping toptx for each HP

x as the smallest number of epoch needed to reach the best function value at x. Our

approach enables the estimation of when a learner becomes ϵ-close to its asymptotic

value. To the best of our knowledge, no previous work used the estimation of the

function values at another location to reason about the HP selection and optimal

early termination before reaching that epoch. The problem of estimating toptx for a

HP x based on the GP posterior is defined as below and efficiently solved using binary

search.

toptx ← argmint∈[tmin,tmax] t (9.8)

s.t µ(x, tmax)− µ(x, t) ≤ ϵ

Cost Modeling The cost prediction is an important component in our algorithm.

Therefore, it is important to have an accurate and informative model for the cost. We
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propose to model the cost by an independent Gaussian process GPc that captures two

important characteristics: 1) The cost of the training of different HPs for the same

number of iterations t can vary significantly. 2) The cost of training of a fixed HP x

increases linearly with the number epochs t. We propose to use the product kernel

κc([x, t], [x
′, t′]) = κcx(x,x

′)× κct(t, t
′) , where κcx is an RBF kernel over x and κct is

a linear kernel over t. Note that previous work assumes the cost is same for different

HP x and linear with respect to t. This might lead to an inaccurate estimation of the

cost especially if some of the dimensions of x represent architectural variables (e.g

number of layers, number of hidden nodes etc.)

Budget-Aware Planning For Iterative Learners (BAPI)

In this section, we describe the overall budget-aware non-myopic BO algorithm

for HPO of iterative learners. The main idea is to use the reparametrized iterative

greedy q-EI proposed in Wilson et al. [190] to approximate the optimal sequence of

selections with respect to the available budget. q-EI will have an adaptive batch

size with budget exhaustion as a stopping criteria. We propose to adaptively add

inputs to the horizon based on their expected improvement at their conservative

stopping iteration without normalizing the utility function by the cost during the

optimization. The details of execution can be found in the Non-Myopic Optimization

(NMO) function described in Algorithm 14. This function returns a set of inputs

representing the optimal horizon Z∗.
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Input Selection From Horizon Given the set of inputs Z∗, how to select the

next input to evaluate? We propose to select the input with the highest immediate

expected reward per unit cost at its conservative stopping iteration. We note here

that this is different from optimizing the utility function per unit cost and the issue

of selecting low non-informative number of iterations would not arise. In this case,

the number of iterations is already fixed to an optimal high value for each input x∗.

Early Termination After selecting the next candidate HP to evaluate, the function

evaluation will return a yt value after each epoch. Based on the function values of the

initial p epochs, we can re-estimate the final performance of x and its new conservative

stopping toptnx . The algorithm makes a decision to continue model training with the

current HP or early-stop it. If both 1. µ(x, toptnx ) ≤ ybest, and 2. σ(x, toptnx ) ≤ τσ(x, t),

then model training will be early stopped in epoch t, otherwise, the conditions will be

verified again after running another set of p epochs or when it reaches the estimated

toptnx , whichever happens earlier. The first condition will recommend stopping the

training if the predicted function value at toptnx will not be higher than the current best

value achieved across all evaluated HP. The second condition recommends the early

stopping only if the uncertainty of the model about the predicted function value at the

estimated conservative stopping is no more than a factor τ ≥ 1 of the uncertainty of

the model about the last evaluated epoch. In another word, condition 2 will prevent

the early stopping if the model is not certain enough about its prediction of the
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function value at toptnx . Algorithm 15 summarizes evaluation with early termination.

Algorithm 12 BAPI

Input: X ; f(x, t);c(x, t); tmax; BT

Output:x∗, toptx∗ , f(x∗, toptx∗ )

1: Initialize with N0 initial points
2: Fit the models: GPf , GPc

3: Br ← BT −
∑N0

i=0 c(xi, txi
)

4: while Br > 0 do
5: # Find the budget constrained horizon and their corresponding conservative stopping

Z∗ :{(x1, t
opt
x1

) · · · (xr, t
opt
xr

)} ← NMO(GPf , GPc, Br)
6: # Select one point for evaluation

x, toptx ← argmaxZ∗
EI(xi,t

opt
xi

)

µc(xi,t
opt
xi

)

7: y,yc ← Evaluate(f(x, toptx ))
8: Aggregate data: D ← D ∪ {(x,y,yc)}
9: Update Models: GPf , GPc

10: Br ← Br − c(x, tx)
11: end while

Algorithm 13 Conservative Stopping Estimation

ConservativeStopping(GPf ,x)

1: toptx ← argmint∈[tmin,tmax] t
2: s.t µ(x, tmax)− µ(x, t) < ϵ
3: Return toptx

Algorithm 14 Adaptive Horizon q-EI AFO

NMO(GPf , GPc, Br)

1: Z∗ = {}
2: while Br > 0 do
3: # Add x based on the highest number of epochs

x← argmaxx∈X q-EI(x, tmax)
4: # Estimate the conservative stopping for x

toptx ← ConservativeStopping(GPf ,x)
5: Deduct estimate cost at toptx from budget

Br ← Br − µc(x, t
opt
x )

6: Z∗ = Z∗ ∪ {(x, toptx }
7: end while
8: Return Z∗

Data Points Selection From Learning Curve Iterative machine learning mod-

els evaluated with an input configuration x∗ and a number of epochs t∗ return a
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Algorithm 15 Evaluate Function

Evaluate(f(x, toptx ))

1: t← p
2: while t ≤ tmax and Continue do
3: y = f(x, t) ; yc = c(x, t)
4: toptnx = ConservativeStopping(GPf ,x)
5: if µ(x, toptnx ) ≤ ybest and σ(x, toptnx ) ≤ τσ(x, t):

Continue← False
6: else:

Continue← True
t← min(toptnx , t+ p)

7: end while
8: Return y,yc

vector of t∗ function values and a vector of t∗ cost values associated with each iter-

ation t ≤ t∗. Most of existing work, do not utilize these data points and use only

the function value at the last epoch. However, leveraging part of this data can help

the learning of the monotonic shape of the objective function and result in a more

accurate extrapolation. We select, from each curve, the points with the highest model

uncertainty(variance) following the approach proposed in Nguyen et al. [146].

Practical Considerations Considering a perfect model of the function, querying a

complete lookahead horizon in each iteration would be optimal. However, as pointed

out by previous work on non-myopic BO [99, 131, 130, 197], the model is usually

uncertain about long-term predictions. Consequently querying a long horizon can hurt

the optimization by evaluating misleading points and causing a higher computational

cost. Therefore, we follow previous work [13] and set a maximum horizon length as

an additional stopping condition to the size of the horizon. Given this mitigation,

we expect that the horizon adaptation to the budget to occur depending on the
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remaining budget. Additionally, selected points would always be within the limits of

the remaining budget.

Cost of a Restarted Hyperparameter In iterative learning, the optimization al-

gorithm might select a configuration that was previously evaluated for a lower number

of epochs. However, the cost will always be estimated with respect to the evaluation

iteration. For accurate optimization, our algorithm handles this special case by as-

signing a cost that only reflects the additional epochs to be run. This is accounted

for in the non-myopic optimization function, input selection, and budget deduction

after function evaluation.

9.1.4 Experiments and Results

In this section, we first provide details about our experimental setup. Next, we

evaluate the performance of BAPI approach and compare it to several state-of-the-art

baselines.

Baselines. We evaluate state-of-the-art baselines, described in the related work:

from cost-aware non-myopic BO literature BMS-EI2 [13], from non-myopic BO BINOC-

ULARS (BINOC) [99]3 and MS-EI [100]3, from general BO literature EI [106], from

HPO for iterative learners literature BOHB [69]4 and HyperBand (HB) [133]4, from

multi-fidelity BO for HPO literature BOIL [146]5. Each baseline implementation uses

2github.com/RaulAstudillo06/BudgetedBO
3github.com/shalijiang/bo/tree/main/enbo
4github.com/automl/HpBandSter
5github.com/ntienvu/BOIL
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settings recommended by the original authors and publicly available code. We also

evaluated GLASSES3 [77] and random search. However, both of them performed

always poorly when compared to all other baselines. Therefore, for clarity of the

figures, we do no report them. We note that previous work on non-myopic BO do

not include HB and BOHB as baselines but given their competitive performance in

iterative learning settings, we recommend they become standard in future work in

this problem setting.

Experimental Setup All experiments were averaged over 10 runs with different

random seeds. The code of our BAPI implementation is publicly available6. We con-

sidered several state-of-the-art HPO benchmarks: 1) Logistic regression with MNIST

dataset; 2) Multi-layer perceptron with Olivetti dataset; 3) Multi-layer perceptron

with Covtype dataset ; 4) Fully connected network with MNIST dataset with two

different tmax setups 5) CNN on image dataset CIFAR10 with two different tmax

setups; 6) CNN on SVHN dataset with two different tmax setups; 7) Resnet on CI-

FAR100 dataset; 8) A Dueling DQN (DDQN) agent in the CartPole-v0 environment;

9) An Advantage Actor Critic (A2C) agent in the Reacher-v2 environment; and 10)

An Advantage Actor-Critic (A2C) agent in the InvertedPendulum-v2 environment.

We report the validation error as the evaluation metric for consistency across datasets.

We evaluate two different variants of our algorithm: BAPI-4 and BAPI-8, where the

maximum horizon is set to 4 and 8 respectively. BAPI-8 was evaluated on two bench-

6github.com/belakaria/BAPI
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marks (LR with MNIST and MLP with Olivetti) to demonstrate the effect of varying

the maximum horizon on the performance. The uncertainty threshold τ is set to 2 for

all experiments. The parameter p is set to 20% of the maximum number of epochs

for all experiments except for CNN-SVHN, where it is set to 10% due to the high cost

of each epoch. We select at most three data points from each learning curve.

Setting ϵ For experiments 1 to 7, ϵ is set to 0.01 (interpreted as at most 1% degra-

dation in accuracy) except for CNN-SVHN, where it is set to 0.005 due the small

variation in the validation error. In the case of a loss/reward function where ϵ cannot

be easily set (e.g experiments 8 to 10), it is automatically set as the smallest degra-

dation in the function value at tmax in the evaluated data: ϵ = min{f(x, tmax) −

f(x, t) ∀(x, t) ∈ D}. In general, ϵ is not required to be fixed. A strategy for updat-

ing it, that balances exploration and exploitation (e.g., a wider value and therefore

earlier stopping in the beginning), can be set by the practitioner and interfaced with

our code easily.

Logistic Regression with MNIST: We train the logistic regression classifier on

the MNIST image dataset LeCun et al. [127]. The dataset consists of 70,000 images

categorized into 10 classes. We use 80% for training and 10% for validation. We

optimize the model over three hyperparameter: the learning rate ∈ [10−6, 1], the L2

regularization ∈ [0, 1] and the batch size ∈ [20, 2000]. We apply a log transformation

to the learning rate and batch size. We set the maximum number of epochs to 100.
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MLP with Olivetti and Covtype: We train a multi-layer perceptron with

two fully connected layers on the Olivetti dataset Samaria and Harter [162] and

Covtype dataset. We use 10% of the data for the validation set. We optimize four

hyperparameters learning rate ∈ [10−6, 1], batch size ∈ [8, 128] for Olivetti and ∈

[32, 1024] for Covtype , the L2 regularization ∈ [10−7, 10−3] and the momentum ∈

[0.1, 0.9]. We apply a log transformation to the learning rate, the batch size and the

L2 regularization. We set the maximum number of epochs to 100. The experiment

with Covtype dataset was run on Tesla V100 GPU machine and the experiment on

Olivetti was run on a CPU machine with Intel(R) Core(TM) i9-7960X CPU 2.80GHz.

FCNET MNIST: We train a fully connected network with on the MNIST

dataset. We use 50,000 images for the training set and 10,000 images for the val-

idation set. We optimize six hyperparameters learning rate ∈ [10−6, 0.1], batch size

∈ [32, 1024], , the L2 regularization ∈ [10−7, 10−3], the momentum ∈ [0.1, 0.9], the

number of hidden layers ∈ [1, 4] and the size of hidden layers ∈ [100, 1000] We apply

a log transformation to the learning rate and the batch size. We set evaluate all

algorithms on two different setups where in figure 9.3 we report the results with the

maximum number of epochs set to tmax = 25 and in figure 9.4 we report the results

with the maximum number of epochs set to tmax = 50. The total wallclock time

budget is extended accordingly. These experiments were run on Tesla V100 GPU

machine.
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CNN with CIFAR10 and SVHN: We train a CNN model on two image

datasets CIFAR10 [122] and the Street View House Numbers (SVHN) [145]. For

CIFAR10 we use 40,000 image for the training set and 10,000 for the validations set.

For SVHN 63,257 image for the training set and 10,000 for the validations set. We op-

timize six hyperparameters: the batch size∈ [32, 1024], the learning rate∈ [10−6, 0.1],

the momentum∈ [0.1, 0.9], the L2 regularization∈ [10−7, 10−3], the number of convo-

lutional filters∈ [32, 256], and the number of dense units ∈ [64, 512]. We apply a log

transformation to the learning rate, the batch size. We set evaluate all algorithms

on two different setups where in figure 9.2 we report the results with the maximum

number of epochs set to tmax = 25 and in figure 9.4 we report the results with the

maximum number of epochs set to tmax = 50. The total wallclock time budget is

extended accordingly. These experiments were run on Tesla P100 GPU machine.

Resnet with CIFAR100: We train a ResNet model on a the image dataset

CIFAR100 [122]. We employ 40,000 images for the training set and 10,000 for the

validations set. We optimize six hyperparameters: the batch size ∈ [32, 512], the

learning rate ∈ [1e − 6, 1e − 1], the momentum ∈ [0.1, 0.9], the L2 regularization∈

[1e − 7, 1e − 3], the number of convolutional filters∈ [32, 256], and the number of

layers ∈ [10, 18]. We report the results with the maximum number of epochs set to

tmax = 100 in Figure 9.3. The total wall-clock time budget is extended accordingly.

These experiments were run on a Tesla V100 GPU machine.
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DQN CartPole: We train a Dueling DQN (DDQN) [188] agent in the CartPole-

v0 environment. We employ the same setting proposed by Nguyen et al. [146]. We

optimize two hyperparameters: the discount factor ∈ [0.8, 1] and the learning rate for

the model ∈ [1e− 6, 0.01]. We vary the number of episodes from 200 to 500. We map

the episodes into epochs with each three episodes equivalent to one epoch, resulting

in a maximum number of epochs tmax = 100. We report the results in Figure 9.4.

The total wall-clock time budget is extended accordingly. These experiments were

run on a 1 core of a Xeon CPU machine.

A2C Reacher: We train a Advantage Actor Critic (A2C) [138] agent in the

Reacher-v2 environment. We employ the same setting proposed by Nguyen et al.

[146]. We optimize three hyperparameters: the discount factor ∈ [0.8, 1], the learning

rate for the actor ∈ [1e− 6, 0.01], and the learning rate for the critic ∈ [1e− 6, 0.01].

We vary the number of episodes from 200 to 500. We map the episodes into epochs

with each three episodes equivalent to one epoch, resulting in a maximum number of

epochs tmax = 100. We report the results in Figure 9.4. The total wall-clock time

budget is extended accordingly. These experiments were run on a 1 core of a Xeon

CPU machine.

A2C Inverted Pendulum: We train a Advantage Actor Critic (A2C) [138] agent

in the InvertedPendulum-v2 environment. We employ the same setting proposed by

Nguyen et al. [146]. We optimize three hyperparameters: the discount factor ∈ [0.8, 1],
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the learning rate for the actor ∈ [1e − 6, 0.01], and the learning rate for the critic

∈ [1e − 6, 0.01]. We vary the number of episodes from 700 to 1500. We map the

episodes into epochs with each eight episodes equivalent to one epoch, resulting in a

maximum number of epochs tmax = 100. We report the results in Figure 9.4. The

total wall-clock time budget is extended accordingly. These experiments were run on

a 1 core of a Xeon CPU machine.

Results and Discussion Figure 9.2 shows the results (best validation error as

a function of wall-clock time) of all methods on four HPO tasks. We make the

following observations. 1) BAPI identifies better candidates with less total cost than

the baselines due to its ability to plan selections while accounting for budget and early

terminating non-promising candidates. 2) A longer horizon for BAPI was tested on

the relatively cheaper experiments LR MNIST and MLP Olivetti datasets and shows

some performance degradation (LR MNIST) and some improvement (MLP Olivetti)

suggesting that optimal horizon length is problem-dependent but clearly helpful in

some cases. 3) BMS-EI had an unstable performance and was not able to uncover

good candidate in several experiments. We speculate that it is due to the approach

being conservative about which points would satisfy the remaining horizon constraint.

4) HB and BOHB can identify good candidates faster than most algorithms in the

beginning, mainly because their strategy forces initial evaluations to be low-epoch

trained runs. In the mid-range, their performance slows down, perhaps a consequence
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of their exploitation behavior and reliability on successive halving which might limit

their extrapolation ability and stop promising candidates very early. Similar analysis

has been reported in previous work [39]. With longer search times, BOHB can catch

up. However, both BOHB and HB performance degrades significantly in RL settings

since successive halving cannot extrapolate accurately when the function might take a

sigmoid or logit shape. 5) BINOCULARS and MS-EI, are slower to uncover promising

candidates due to spending more budget in evaluating all selected candidates to the

maximum number of epochs. However, they both arrive at a competitive performance

towards the end that can be attributed to their planning capabilities. 6) BOIL is

worse than most baselines across all benchmarks. BOIL selects the next candidates

by weighting EI by the cost and might suffer from the cost miscalibration pathology.

Similar observations were made in Astudillo et al. [13].

We compared our approach to a wide range of baselines on 13 different experi-

ments. All the baselines had inconsistent performance across the different experiments

while our algorithm performed fairly well across all of them. The gain was signifi-

cant in the case of limited budget, which is the desired behavior since a planning

approach is more needed when the budget is limited. The gain was less significant in

experiments with higher budgets but our approach was still competitive. Therefore,

in Table 9.1, we provide the average ranking of each algorithm over all experiments

based on their final performance.
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We report additional results of our BAPI approach and existing baselines. We

report an additional variant of our algorithm that we name BAPI-4-L. We test the

case where we do not add additional points from each curve but rather use only

the last epoch. We notice that this variant performs competitively and sometimes

better than adding additional points to the curve. This opens a discussion about

the utility of leveraging additional data points from each curve especially while using

the monotonic GP. It is important to note that previous methods built for HPO

frequently suggest using additional points. This includes approaches proposed in the

papers by Nguyen et al. [146], Dai et al. [39], and Wu et al. [193]. We plan to work

on investigating this problem further to develop a sound theoretical understanding of

this phenomenon.

In Figure 9.4, we test all algorithms on settings with an extended budget and a

higher number of maximum epochs tmax = 50. We observe that given a sufficiently

large budget, most of the baselines converge to statistically comparable results. We

notice that HB, in most of the experiments, is able to reduce the validation error

in the beginning but does not always converge to good results. However, BOHB

performance was remarkably stronger with a higher number of maximum epochs.

Increasing the maximum number of epoch enables BOHB to evaluate a larger number

of configurations at a low budget and therefore we can see a significant drop in the

validation error earlier than all baselines. The results in Figure 9.3 and Figure 9.4
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show that BAPI-4 becomes less competitive when the total budget is significantly

increased and the maximum number of epochs is higher, but also provides results

suggesting that performance loss can be brought back by adjusting pruning behavior

in BAPI-4-L.

We report additional results for reinforcement learning experiments optimized

with RBF kernel over the number of epochs. Figure 9.4 shows the increasing dis-

counted cumulative reward with discount factor 0.9 as suggested by [39]. The results

show that BAPI-4 performs better or similar to the baselines. We observe that HB

and BOHB performance degrades significantly with RL experiments most likely be-

cause they do not account for the possibility that the learning curve can be flat in the

middle. We additionally notice that BAPI-4-L performance is competitive but worse

than BAPI-4. One candidate reason for this behavior is due to the use of the RBF

kernel, where adding intermediate points from the curve can be more crucial to avoid

fluctuations.

Algorithm BAPI HB BOHB EI MS-EI BINOC BOIL BMS-EI

Average ranking 2.9 ±0.51 6.1±0.51 3.6±0.67 4.9±0.53 3.4±0.50 4.3±0.38 6.3±0.63 4.2±0.73

Table 9.1: Average ranking of BAPI and baseline methods across all experiments.

Ablation: GP without enforced monotonicity We provide an ablation study

where we run our algorithm using a GP without enforced monotonicity to show the

benefit of using a monotonic GP. The first figure illustrates differences in learning
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Figure 9.2: Results of validation error ± standard error for different baselines and
our proposed approach on multiple iterative learners against training
budget.

Figure 9.3: Results of validation error ± standard error for different baselines and
our proposed approach on ResNet with tmax = 100, FCNET with tmax =
25 and MLP-Covtype with tmax = 100

Figure 9.4: Results of validation error ± standard error for different baselines and
our proposed approach on FCNET-MNIST, CNN-CIFAR10 and CNN-
SVHN with tmax = 50

curve extrapolation between aGP with enforced monotonicity and vanilla RBF

GP. The RBF GP fluctuates further from evaluated points rendering extrapolation
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Figure 9.5: Results of Cumulative discounted reward ± standard error for different
baselines and our proposed approach on A2C Reacher, DQN Cartpole,
and A2C Inverted Pendulum

highly uncertain (as well as inaccurate). Basing an estimation of optimal stopping

time on this vanilla model directly affects budgeted HP optimization performance

as shown in the ablation study displayed in the second and third figures. These

show the performance of BAPI with a Non-Monotonic GP (BAPI-4-NM) is inferior

to BAPI with monotonic GP. However, BAPI-4-NM shows competitive performance

that might be associated with its budget-aware planning strategy.

Figure 9.6: Ablation Study
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9.2 Non-Myopic Multi-Objective Bayesian optimization

In this section, we provide an approach for non-myopic multi-objective Bayesian

Optimization named BINOM: Batch-Informed NOnmyopic Multi-objective optimiza-

tion. Similar to single-objective sequential decision-making problems, the multi-

objective problem can be formulated as a multi-objective Markov Decision Process

(MDP). The only solution that has been provided for this problem in the context

of Bayesian optimization, is the reduction of the horizon to a length of one, where

the problem is solved by evaluating the input that maximizes the utility function at

the next iteration only. To the best of our knowledge, there is no previous work on

non-myopic Bayesian optimization in the multi-objective setting.

Challenges: The key challenges to solve budget-aware MOO problem are:

• Defining a principled criteria for the look-ahead search in the presence of mul-

tiple conflicting objective functions.

• Recent solutions for the single-objective optimization problem rely on the Bell-

man equations. However, these equations do not hold when the output has

several conflicting objective functions.

9.2.1 Problem Setup

Cost/Budget-agnostic Non-Myopic MOO problem: Consider the problem of

sequentially optimizing several black-box objective functions f1 · · · fK over the input
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space X where the evaluation of each candidate input x ∈ X is expensive and the goal

is to identify the optimal trade-off between the objective functions within a maximum

number of evaluation queries Tmax. Our problem can be formulated as

max
X∈P (X )

max
x∈X

f1(x) · · · fK(x) with |X| = Tmax (9.9)

where P (X ) denotes the power set of X and X = {x1 · · ·xTmax} is the number of

input evaluations when Tmax is exhausted. The problem in Equation (9.9) is solved

using a non-myopic policy, where at each iteration, the algorithm accounts for the

sequence of inputs that can be evaluated within the total number of evaluations Tmax,

i.e., the horizon is fixed as h=Tmax.

Cost/Budget-aware Non-Myopic MOO problem: Consider the problem where

each input evaluation incurs a different cost c that is unknown before the evaluation.

The objective is to identify the optimal trade-offs between the objective functions in

a number of queries whose cumulative cost is bounded by a total budget BT . Our

problem can be formulated as

max
X∈P (X )

max
x∈Z

f1(x) · · · fK(x), s.t.
∑

x∈X

c(x) ≤ BT (9.10)

where P (X ) denotes the power set of X and X = {x1 . . .xh} is the sequence of inputs

evaluated until the budget BT is exhausted.
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The problem in Equation (9.10) is solved using a non-myopic policy, where at each

iteration, the algorithm accounts for the sequence of inputs that can be evaluated

within the remaining budget, i.e., the horizon h is adaptive.

9.2.2 BINOM: Batch-Informed Non-Myopic Multi-Objective Optimization

Intuition. Intuitively, there exists a link between the multi-step lookahead problem

and batch Bayesian optimization [99, 77]. Batches of inputs are selected in each

iteration of the algorithm and evaluated in parallel. When inputs are selected and

evaluated sequentially (batch size is one), the selection is more informative because,

at each iteration, the algorithm has full information about the selected data points

since they are already evaluated. However, in the batch setting, the points within the

same batch are selected without any knowledge about their evaluations. Ideally, a

good batch selection algorithm relies on the ability of the batch criterion of predicting

future steps of the algorithm and would select a batch of points that are similar to

what would have been selected sequentially.

In a nutshell, batch BO methods aim to find a set of points in X where the

functions should be evaluated in parallel rather than sequentially. So, intuitively,

constructing a good batch is the same as computing a good approximation of the

lookahead horizon X. Additionally, in the single-objective setting, the optimal batch

expected utility is a lower bound of the optimal sequential expected utility as shown

in Section 9.1.1 [99].
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Using this intuition and by exploiting the analogy to single objective non-myopic

approximation, we propose the use of a batch Bayesian optimization approach to

approximate the horizon for non-myopic multi-objective Bayesian optimization. We

propose a new approach named BINOM: Batch-Informed NOnmyopic Multi-objective

optimization.

Cost-agnostic BINOM. To approximate the lookahead horizon, we optimize the

batch expected hypervolume acquisition function, also known as qEHV I, via joint

optimization with the reparameterization trick and Monte Carlo approximation [43].

We set the batch size q to the horizon length Tmax. In order to select the next input

for evaluation, we need to pick an input from the suggested horizon. We considered

several options inspired by the solution suggested by Jiang et al. [99] in the single-

objective setting:

• Selecting the input with highest expected immediate hypervolume improvement.

• Randomly selecting an input proportional to its expected immediate reward.

Cost/Budget-aware BINOM. To approximate the lookahead horizon, we optimize

the batch expected hypervolume improvement acquisition function. In the context

of budgeted non-myopic optimization, the horizon of remaining queries r is unknown

and would depend on the remaining budget Br and expected costs of horizon queries

zi, i ∈ {1 . . . r}. An efficient method should allow the horizon to be adaptive to the

budget. Therefore, the joint qEHV I is not a suitable solution. qEHV I [43]have
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been shown to be a submodular acquisition function that guarantees a near-optimal

optimization via a sequential greedy approach. This version of the acquisition function

is amenable to a budget-adaptive horizon, where we can stop adding inputs to the

batch based on the remaining budget. In order to select the next input for evaluation,

we need to pick an input from the suggested horizon. We considered several options

inspired by the solution suggested by Belakaria et al. [30] in the single-objective

setting:

• Selecting the input with the highest expected immediate hypervolume improve-

ment per unit resource cost

• Randomly selecting an input proportional to its expected immediate reward per

unit resource cost.

Note: Any batch MOO approach can be applied to approximate the horizon. We

consider qEHV I due to its submodularity property that is useful in building an

adaptive horizon for the budgeted/cost-aware setting [29, 118].

9.2.3 Experiments and Results

In this section, we first provide details about our experimental setup. Next, we

evaluate the performance of BINOM approach in the cost-agnostic setting and com-

pare it to state-of-the-art baselines.

Baselines. We compare BINOM with EHVI, ParEGO, and random selection base-
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lines. We evaluate both types of input selection strategies proposed for cost-agnostic

BINOM. BINOM-B refers to the selection of the input with the best immediate

hypervolume improvement and BINOM-S refers to randomly selecting an input pro-

portional to its expected immediate reward.

Experimental Setup. We evaluated all algorithms on two benchmarks. ZDT1

[204] is a synthetic problem with 5 dimensions and 2 objective functions. Vehicle

crashworthiness design [180] is a real-world problem with 5 dimensions and 3 objective

functions. All experiments are averaged over 25 runs with different random seeds.

For practical consideration, as explained in section 9.1.3, we limit the horizon length

to 4.

Results and Discussion. The results of our preliminary experiments on these two

benchmark problems (Figure 9.7) showed that BINOM can be a competitive algo-

rithm. BINOM-S outperformed all baselines and BINOM-B on the vehicle safety

problem. On the ZDT1 problem, BINOM-S and BINOM-B had comparable perfor-

mance and converged to the same results as EHVI. Based on our experimental results,

the non-myopic optimization can provide a significant performance gain in the best-

case scenario and does not deteriorate the performance in the worst-case scenario. In

the future, we will conduct additional experiments to assess the effectiveness of the

proposed algorithms.
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Figure 9.7: Results of BINOM and different baselines on synthetic and real-world
problems. The PHV metric is shown as a function of the number of
function evaluations.

9.3 Summary

This chapter considered the problem of non-myopic MOO where the optimization

is constrained by a predefined budget/number of experiments. We addressed the

budgeted non-myopic problem in the single objective setting and applied it to hyper-

parameter optimization (HPO) for iterative learners. The proposed BAPI approach

addressed gaps in prior work including modeling of structured responses (learning

curves) and miscalibration between response and cost models leading to biased search.

More importantly, our planning-based BAPI approach allows for non-myopic candi-

date selection over horizons adaptive to the budget. Combined with subset selection

and early termination procedures, our experimental evaluation on a variety of HPO

benchmarks demonstrated BAPI’s efficacy over previous methods in finding high-

performing candidates with less cost budget. We additionally proposed an extension

of the non-myopic approach to the cost-agnostic and cost-aware multi-objective set-

214



tings with promising preliminary experimental results.
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CHAPTER TEN

CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, motivated by science and engineering applications, we ad-

dressed several challenging adaptive experimental design problems to solve a large

class of multi-objective optimization (MOO) problem settings, where it is expensive

to evaluate objective functions. We significantly pushed the frontiers of Bayesian

optimization in terms of modeling and reasoning algorithms along with theory.

First, we developed a general MOO framework based on the principle of output

space entropy search. The key idea is to select the sequence of experiments that max-

imize the information gained per unit resource cost about the optimal Pareto front.

We appropriately instantiated this principle to solve a variety of MOO problems from

the most basic single-fidelity setting and its constrained version to the multi-fidelity

and continuous-fidelity settings. Second, we studied an uncertainty-aware search

framework to address the basic MOO problem, handle different types of constraints,

and select a batch of experiments for parallel evaluation. This reduction framework

allows us to leverage prior work on acquisition functions for single-objective BO to

solve MOO problems. It selects an acquisition function from a given library in each

iteration using a multi-arm bandit strategy and solves a cheap MOO problem defined

in terms of the acquisition functions (one for each unknown objective) to identify a set

of promising candidates. Next, it selects a batch of diverse candidates for evaluation
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from this set using Determinantal Point Processes. Finally, we addressed the MOO

problem under budget constraints where a planning approach is necessary without

violating the resource budget. We proposed a budgeted non-myopic approach for

hyper-parameter optimization of iterative machine learning models and a generaliza-

tion for MOO problems.

Our comprehensive experimental evaluation on synthetic benchmarks and chal-

lenging real-world engineering design problems showed that our MOO algorithms

significantly improve resource efficiency over prior methods to uncover high-quality

Pareto solutions.

10.1 Lessons Learned

In this section, we describe the most important lessons we learned from this work.

1. The output space entropy search framework is more accurate, scalable, and

robust when compared to prior MOO methods including those based on input

space entropy search. It is scalable because the number of output objectives is

significantly smaller when compared to the number of input design variables.

The Monte Carlo estimation of the entropy is robust with respect to the number

of samples: works well even with a single sample!.

2. There is no single acquisition function that is universally better and consis-

tently outperforms all others. Therefore, the choice of acquisition function to
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select experiments in each iteration should depend on the problem at hand.

By defining an appropriate multi-objective reward, we can employ multi-arm

bandit strategy to dynamically select acquisition functions for multi-objective

optimization problems.

3. Variable cost experimentation scenarios including multi-fidelity setting and hyper-

parameter optimization of iterative machine learning models require special

strategies to handle the cost vs. accuracy trade-off. Normalization of the acqui-

sition function by the cost can lead to poor performance. Therefore, building

specific methods to guide the search to select informative inputs is crucial.

4. Non-myopic Bayesian optimization strategies are effective and useful when the

available resource budget is small. For large budgets, myopic BO can be effec-

tive and there is little to no gain from using expensive non-myopic reasoning

procedures.

5. Leveraging side information from experiments in the modeling and reasoning

process improves the resourc-efficiency of BO algorithms. This is especially

important when there are limited resources.

10.2 Summary of Contributions

The main contribution of this work is the development and evaluation of a suite of

novel reasoning algorithms for adaptive experimental design to solve a large class of
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MOO problems (single-fidelity, constrained, multi-fidelity, and budget-aware). Our

algorithms are based on the principles of information gain per unit resource cost

and uncertainty reduction. We appropriately instantiate these principles to derive

efficient algorithms for several MOO problem settings (many of them studied for the

first time) as summarized below:

• We developed a multi-objective optimization approach based on the principle

of output space entropy search named MESMO: Max-value Entropy Search for

Multi-Objective Bayesian Optimization [17].

• We developed a multi-objective optimization approach based on the principle

of uncertainty reduction named USEMO: Uncertainty-Aware Search framework

for Multi-Objective Bayesian Optimization [22].

• We derived the first theoretical analysis to prove a sub-linear regret bound for

multi-objective BO setting for both USeMO and MESMO algorithms [17, 22].

• We developed an approach (generalization of USEMO) to solve MOO problems

by selecting a batch of diverse experiments for parallel evaluations to improve

the resource efficiency to uncover Parto solutions with high quality and Pareto-

front diversity [29].

• We developed a multi-arm bandit approach and proposed a suitable multi-

objective reward function to adaptively select the suitable acquisition function
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in each BO iteration to solve MOO problems and demonstrate its efficacy over

using a static acquisition function. [29].

• We developed two approaches (extensions of MESMO and USEMO algorithms)

to handle MOO problems with black-box constraints, which cannot be evaluated

without performing experiments.

– MESMOC: Max-value Entropy Search for Multi-Objective BO with Con-

straints [26, 20]

– USEMOC: Uncertainty-Aware Search framework for Multi-Objective BO

with Constraints [18]

• We developed the first multi-fidelity optimization approaches to solve MOO

problems by appropriately leveraging the available side information.

– MF-OSEMO algorithm to solve MOO problems in the discrete multi-

fidelity setting, where experiments can vary in the amount of resources

consumed and their evaluation accuracy [21].

– iMOCA algorithm to solve MOO problems in the continuous-fidelity set-

ting, where continuous function approximations result in a huge space of

experiments with varying cost. We provide two qualitatively different ap-

proximations for iMOCA. [19, 26].
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• We developed non-myopic optimization algorithms when the available resource

budget is limited by viewing the problem from a planning perspective.

– A budget-aware approach to solve hyper-parameter optimization problems

for iterative machine learning algorithms with structured responses in the

form of learning curves (cost and accuracy vs. number of epochs). We

leverage the side-information in the form of the structure of objective func-

tions through appropriate modeling and reasoning tools.

– A non-myopic optimization approach to solve general MOO problems when

the resource budget is limited.

• We applied the developed algorithms to diverse real-world problems in engi-

neering and industrial domains in close collaboration with domain experts.

10.3 Future Work

In this section, we list some important future research directions within the scope

of this dissertation.

• We need to apply and investigate our proposed algorithms for important scien-

tific applications including biological sequence design [194] and molecule design

[60] by handling the surrogate modeling challenges of combinatorial spaces, e.g.,

sets, sequences, tress, and graphs [65, 53, 150, 57, 59]
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• An important challenge for adaptive experimental design algorithms is to handle

high-dimensional input search spaces. There is very little work [45] on studying

high-dimensional BO algorithms for solving MOO problems.

• Another interesting and fertile research direction is to explore the synergies be-

tween causal modeling and adaptive experimental design: 1) leverage available

causal knowledge from the domain in both modeling and reasoning processes

to further improve the resource-efficiency of uncovering high-quality Pareto so-

lutions; and 2) apply the principles behind adaptive experimental design algo-

rithms to learn causal models in a resource-efficient manner.
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Bayesian optimization over iterative learners with structured responses: A

budget-aware planning approach. CoRR, abs/2206.12708, 2022. doi: 10.48550/

arXiv.2206.12708. URL https://doi.org/10.48550/arXiv.2206.12708.

227

https://doi.org/10.48550/arXiv.2206.12708


[29] Syrine Belakaria*, Alaleh Ahmadian*, and Janardhan Rao Doppa. Pareto front-

diverse batch multi-objective bayesian optimization. In Under review ( denotes

equal contributions), 2023.

[30] Syrine Belakaria, Janardhan Rao Doppa, Nicolo Fusi, and Rishit Sheth.

Bayesian optimization over iterative learners with structured responses: A

budget-aware planning approach. In International Conference on Artificial In-

telligence and Statistics, pages 9076–9093. PMLR, 2023.

[31] Alexei Borodin. Determinantal point processes. arXiv preprint

arXiv:0911.1153, 2009.

[32] Alexei Borodin and Grigori Olshanski. Harmonic analysis on the infinite-

dimensional unitary group and determinantal point processes. Annals of math-

ematics, pages 1319–1422, 2005.

[33] Zdravko I Botev. The normal law under linear restrictions: simulation and

estimation via minimax tilting. Journal of the Royal Statistical Society, 79(1):

125–148, 2017.

[34] Luis Ceze, Mark D. Hill, and Thomas F. Wenisch. Arch2030: A vision of

computer architecture research over the next 15 years. CoRR, abs/1612.03182,

2016. URL http://arxiv.org/abs/1612.03182.

228

http://arxiv.org/abs/1612.03182


[35] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

Sang-Ha Lee, and et al. Rodinia: A benchmark suite for heterogeneous com-

puting. In 2009 IEEE international symposium on workload characterization

(IISWC), 2009.

[36] Wonje Choi, Karthi Duraisamy, Ryan Gary Kim, Janardhan Rao Doppa,

Partha Pratim Pande, Diana Marculescu, and Radu Marculescu. On-chip com-

munication network for efficient training of deep convolutional networks on

heterogeneous manycore systems. IEEE Transactions on Computers (TC), 67

(5):672–686, 2018.

[37] Choi et al. On-chip communication network for efficient training of deep convo-

lutional networks on heterogeneous manycore systems. IEEE Transactions on

Computers (TC), 67(5):672–686, 2018.

[38] Thomas M Cover and Joy A Thomas. Elements of information theory. John

Wiley and Sons, 2012.

[39] Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, and Patrick Jaillet.

Bayesian optimization meets Bayesian optimal stopping. In ICML. PMLR,

2019.

[40] Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and Krishnendu

229



Chakrabarty. Monolithic 3d-enabled high performance and energy efficient

network-on-chip. In ICCD, pages 233–240, 2017.

[41] Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and Krishnendu

Chakrabarty. Design-space exploration and optimization of an energy-efficient

and reliable 3D small-world network-on-chip. IEEE TCAD, 36(5), 2017.

[42] Das et al. Design-space exploration and optimization of an energy-efficient and

reliable 3D small-world network-on-chip. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD), 36(5):719–732, 2017.

[43] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable ex-

pected hypervolume improvement for parallel multi-objective bayesian opti-

mization. NeurIPS, 33:9851–9864, 2020.

[44] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel bayesian

optimization of multiple noisy objectives with expected hypervolume improve-

ment. Advances in Neural Information Processing Systems, 34, 2021.

[45] Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy.

Multi-objective bayesian optimization over high-dimensional search spaces. In

The 38th Conference on Uncertainty in Artificial Intelligence, 2022. URL

https://openreview.net/forum?id=r5IEvvIs9xq.

230

https://openreview.net/forum?id=r5IEvvIs9xq


[46] Kalyanmoy Deb and Aravind Srinivasan. Innovization: Innovating design prin-

ciples through optimization. In Proceedings of the 8th annual conference on

Genetic and evolutionary computation, pages 1629–1636, 2006.

[47] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T Meyarivan, and A Fast.

Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[48] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A

fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on

evolutionary computation, 6(2):182–197, 2002.

[49] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable

test problems for evolutionary multiobjective optimization. In Evolutionary

multiobjective optimization, pages 105–145. Springer, 2005.

[50] Aryan Deshwal and Janardhan Rao Doppa. Combining latent space and

structured kernels for bayesian optimization over combinatorial spaces. In

Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and

Jennifer Wortman Vaughan, editors, Advances in Neural Information Process-

ing Systems 34: Annual Conference on Neural Information Processing Systems

2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 8185–8200, 2021.

[51] Aryan Deshwal, Nitthilan Kannappan Jayakodi, Biresh Kumar Joardar, Ja-

nardhan Rao Doppa, and Partha Pratim Pande. MOOS: A multi-objective

231



design space exploration and optimization framework for NoC enabled many-

core systems. ACM TECS, 2019.

[52] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. Scalable com-

binatorial Bayesian optimization with tractable statistical models. CoRR,

abs/2008.08177, 2020. URL https://arxiv.org/abs/2008.08177.

[53] Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Alan Fern. Op-

timizing discrete spaces via expensive evaluations: A learning to search frame-

work. In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI),

pages 3773–3780. AAAI Press, 2020.

[54] Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Alan Fern. Op-

timizing discrete spaces via expensive evaluations: A learning to search frame-

work. In AAAI Conference on Artificial Intelligence (AAAI), 2020.

[55] Aryan Deshwal, Syrine Belakaria, Ganapati Bhat, Janardhan Rao Doppa, and

Partha Pratim Pande. Learning pareto-frontier resource management policies

for heterogeneous socs: An information-theoretic approach. In (DAC), 2021.

[56] Aryan Deshwal, Syrine Belakaria, Ganapati Bhat, Janardhan Rao Doppa,

and Partha Pratim Pande. Learning pareto-frontier resource management

policies for heterogeneous socs: An information-theoretic approach. In 2021

232

https://arxiv.org/abs/2008.08177


58th ACM/IEEE Design Automation Conference (DAC), pages 607–612. IEEE,

2021.

[57] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. Mercer features

for efficient combinatorial bayesian optimization. In Thirty-Fifth AAAI Con-

ference on Artificial Intelligence (AAAI), pages 7210–7218. AAAI Press, 2021.

[58] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. Bayesian opti-

mization over hybrid spaces. In ICML, 2021.

[59] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. Bayesian opti-

mization over hybrid spaces. In Proceedings of the 38th International Conference

on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning

Research, pages 2632–2643. PMLR, 2021.

[60] Aryan Deshwal, Cory Simon, and Janardhan Rao Doppa. Bayesian optimization

of nanoporous materials. ChemRxiv, 2021.

[61] Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Dae Hyun Kim.

Bayesian optimization over permutation spaces. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 36, 2022.

[62] Aryan Deshwal, Sebastian Ament, Maximilian Balandat, Eytan Bakshy, Ja-

nardhan Rao Doppa, and David Eriksson. Bayesian optimization over high-

dimensional combinatorial spaces via dictionary-based embeddings. CoRR,

233



abs/2303.01774, 2023. doi: 10.48550/arXiv.2303.01774. URL https://doi.

org/10.48550/arXiv.2303.01774.

[63] Deshwal et al. MOOS: A multi-objective design space exploration and opti-

mization framework for NoC enabled manycore systems. ACM Transactions on

Embedded Computing Systems (TECS), 18(5s):77:1–77:23, 2019.

[64] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up au-

tomatic hyperparameter optimization of deep neural networks by extrapolation

of learning curves. In IJCAI, 2015.

[65] Janardhan Rao Doppa. Adaptive experimental design for optimizing combina-

torial structures. In Proceedings of the Thirtieth International Joint Conference

on Artificial Intelligence (IJCAI), pages 4940–4945, 2021.

[66] Janardhan Rao Doppa, Justinian Rosca, and Paul Bogdan. Autonomous design

space exploration of computing systems for sustainability: Opportunities and

challenges. IEEE Design and Test, 36(5):35–43, 2019.

[67] Michael Emmerich and Jan-willem Klinkenberg. The computation of the ex-

pected improvement in dominated hypervolume of pareto front approximations.

Technical Report, Leiden University, 34, 2008.

[68] M.T.M. Emmerich, K.C. Giannakoglou, and B. Naujoks. Single- and multiob-

jective evolutionary optimization assisted by gaussian random field metamod-

234

https://doi.org/10.48550/arXiv.2303.01774
https://doi.org/10.48550/arXiv.2303.01774


els. IEEE Transactions on Evolutionary Computation, 10(4):421–439, 2006.

doi: 10.1109/TEVC.2005.859463.

[69] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient

hyperparameter optimization at scale. In ICML, 2018.

[70] Paul Feliot, Julien Bect, and Emmanuel Vazquez. A Bayesian approach to

constrained single-and multi-objective optimization. Journal of Global Opti-

mization, 67(1-2):97–133, 2017.

[71] Daniel Fernández-Sánchez, Eduardo C Garrido-Merchán, and Daniel

Hernández-Lobato. Max-value entropy search for multi-objective bayesian op-

timization with constraints. arXiv preprint arXiv:2011.01150v1, 2020.

[72] Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient

policy for sequential information collection. SIAM Journal on Control and

Optimization, 47(5):2410–2439, 2008.

[73] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of computer and system

sciences, 55(1):119–139, 1997.

[74] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger,

and John P Cunningham. Bayesian optimization with inequality constraints.

In ICML, volume 2014, pages 937–945, 2014.

235



[75] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. Predictive entropy

search for multi-objective Bayesian optimization with constraints. Neurocom-

puting, 361:50–68, 2019.
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APPENDIX A

THEORETICAL ANALYSIS FOR MESMO

In this appendix, we provide a proof for Theorem 1 described in Section 3.4.

Lemma 1 (Lemma C.1 in MES [185]). Pick δ ∈ (0, 1) and set ζt =
(
2 log

(
πt

2δ

))1/2
,

where
∑T

t=1(πt)
−1 ≤ 1, πt > 0. Then, it holds that for each function fj, Pr[µj,t−1(xt)−

fj(xt) ≤ ζtσj,t−1(x),∀t ∈ [1, T ]] ≥ 1 − δ. Here µj,t−1 and σj,t−1(x) refers to the

predictive mean and variance of jth GP at iteration number t.

Lemma 2 (Lemma C.2 in MES [185]) If µj,t−1(xt) − fj(xt) ≤ ζtσj,t−1(x), for each

j ∈ [1, · · · , K], the quantity rjt = fj(x
∗) − fj(xt) ≤

(
vjt + ζt

)
σj,t−1(xt), where vjt

.
=

minx∈X
y∗j−µj,t−1(x)

σj,t−1(x)
and y∗j ≥ fj(x

∗)∀t ∈ [1, T ].

Let f ⋆
j be the true maximum of jth function i.e. maxx fj(x) = f ⋆

j .

Since x∗ is in the Pareto set and each point in the pareto set has value less than or

equal to the function maximum, it implies that fj(x
∗) ≤ f ∗

j . Therefore,

rjt = fj(x
∗)− fj(xt) ≤ f ⋆

j − fj(xt)
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Now, following from EST Lemma 3.3 1:

max
x

fj(x)− f(xt) = f ⋆
j − fj(xt)

≤ y∗j − fj(xt)

≤ y∗j − µj,t−1(xt) + ζtσj,t−1(xt)

=
(
vjt + ζt

)
σj,t−1(xt)

In MES Lemma C.2, this is true whenever m̂t ≥ maxx f(x). Similarly, in MESMO

this is true whenever y∗j ≥ f ⋆
j ≥ fj(x

∗) .

Theorem 1. Let P be a distribution over vector [y∗1, · · · , y∗K ] where each y∗j is

the maximum value for function fj among the vectors in the Pareto front obtained by

solving the cheap multi-objective optimization problem over sampled functions from

the K Gaussian process models. Let the observation noise for function evaluations is

i.i.d N (0, σ) and w = Pr[(y∗1 > f1(x
∗)) , · · · , (y∗K > fK(x

∗))]. If xt is the candidate

input selected by MESMO at the tth iteration according to 3.13 and [y∗1, · · · , y∗K ] is

drawn from P , then with probability at least 1 − δ, in T ′ =
∑T

i=1 logw
δ

2πi
number of

iterations

R(x∗) =

√√√√
K∑

j=1

(
(
vjt∗ + ζT

)2
(

2Tγj
T

log(1 + σ−2)

))
(A.1)

1https://lis.csail.mit.edu/pubs/wang-aistats16.pdf
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where ζT = (2 log(πT/δ))
1/2, πi > 0, and

∑T
i=1

1
πi
≤ 1, vjt∗ = maxt v

j
t with vjt =

minx∈X
y∗j−µj,t−1(x)

σj,t−1(x)
, and γj

T is the maximum information gain about function fj after

T function evaluations.

Proof: To use Lemma 2. and following the same reasoning as MES, the goal here

is to find out when is the condition y∗j ≥ f ⋆
j satisfied for each function i.e. we need

to find the probability Pr[(y∗1 > f ⋆
1 ) , · · · , (y∗K > f ⋆

K)]. However, since f
⋆
j ≥ fj(x

∗) for

each function fj, we use the quantity w = Pr[(y∗1 > f1(x
∗)) , · · · , (y∗K > fK(x

∗))] in

the proof below:

The result for each Rj can be derived from the fact that the corresponding expres-

sion for a single sample in Equation 3.13
(

γj
s(x)ϕ(γ

j
s(x))

2Φ(γj
s(x))

− lnΦ(γj
s(x))

)
is equivalent to

EST (optimization as estimation strategy) [186]. This fact is proven as Lemma 3.1

in MES (Max-value entropy search) [185]. Therefore, theoretical results from MES

can be leveraged for each Rj provided y∗j > fj(x
∗) for all j ∈ {1, · · · , K}.

Since [y∗1, · · · , y∗K ] is drawn from P , the probability that there exists atleast one

vector [y∗1, · · · , y∗K ] in ki iterations that satisfies [(y
∗
1 > f1(x

∗)) , · · · , (y∗K > fK(x
∗))] is
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given by:

⇒ w + (1− w)w + (1− w)2w · · ·+ (1− w)ki−1w (A.2)

= w ·
(
1− (1− w)ki

1− (1− w)

)
(A.3)

= 1− (1− w)ki (A.4)

≥ (1− (1− w))ki since w ∈ (0, 1) (A.5)

≥ wki (A.6)

Suppose T ′ =
∑T

i=1 ki be the total number of iterations (function evaluations).

Following Theorem 3.2 from MES [185], splitting the total number of iterations into T

parts, where each part has ki iterations, there exists at least one iteration ti in each of

the T parts with probability 1−∑T
i=1 w

ki such that [(y∗1 > f1(x
∗)) , · · · , (y∗K > fK(x

∗))].

Let
∑T

i=1w
ki = δ

2
and setting ki = logw

δ
2πi

for any
∑T

i=1
1
πi

= 1. A standard

choice for πi is πi = π2i2/6. Using this transformation of variables, the probability

that there exists sampled functions such that [(y∗1 > f1(x
∗)) , · · · , (y∗K > fK(x

∗))] is

atleast 1− δ/2,∀i ∈ [1, T ].

By lemma 1 and 2,

rjti =
(
vjti + ζti

)
σj,ti−1(xti) (A.7)
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From Lemma C.3 in MES[185],
∑T

i=1 σ
2
j,ti−1(xti) ≤ 2

log(1+σ−2)
γj
T , where γ

j
T is the max-

imum information gain about function fj and is an important theoretical quantity

related to regret bounds in bayesian optimization literature[174]. By Cauchy-Schwarz

inequality,
∑T

i=1 σj,ti−1(xti) ≤
√
T
∑T

i=1 σ
2
j,ti−1(xti) ≤

√
2Tγj

T/ log(1 + σ−2). There-

fore, with probability 1− δ,

Rj(x∗) =
T∑

i=1

rjti ≤
(
vjt∗ + ζT

)
√

2Tγj
T

log(1 + σ−2)
(A.8)

Consequently,

R(x∗) =

√√√√
K∑

j=1

(
(
vjt∗ + ζT

)2
(

2Tγj
T

log(1 + σ−2)

))
(A.9)
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APPENDIX B

THEORETICAL ANALYSIS FOR USEMO

B.1 Theoretical Analysis

This section provides the proof of Theorem 1 which depends on Lemma 1. For

completeness, the GP-LCB acquisition function uses the following definition of LCBi,t(x)

for function Fi at any iteration t.

LCBi,t(x) = µi,t−1(x)− β
1/2
t σi,t−1(x) (B.1)

Lemma 1 Given δ ∈ (0, 1) and βt = 2 log(|X |π2t2/6δ), the following holds with

probability 1− δ:

|Fi(x)− µi,t−1(x)| ≤ β
1/2
t σi,t−1(x) (B.2)

for all 1 ≤ i ≤ k, x ∈ X , for all t ≥ 1 (B.3)

Proof. Since Fi is modeled by a GP, Fi(x) ∼ N (µi,t−1(x), σi,t−1(x)). According to

Lemma 5.1 from [174], the below inequality holds:

Pr{|Fi(x)− µi,t−1(x)| > β
1/2
t σi,t−1(x)} ≤ e−β/2 (B.4)
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Applying the union bound,

|Fi(x)− µi,t−1(x)| ≤ β
1/2
t σi,t−1(x) (B.5)

holds with probability 1 − δ. The lemma holds by choosing e−β/2|X | = 6 δ/π2t2 as

suggested in [174].

Theorem 1 If Xt be the Pareto-set generated by the cheap multi-objective optimiza-

tion at t-th iteration, then the following holds with probability 1− δ,

R(x∗) ≤

√√√√
k∑

i=1

CTmaxβTmaxγ
i
Tmax

(B.6)

where C is a constant and γi
Tmax

is the maximum information gain about Fi after

Tmax iterations.

Proof. For the sake of completeness, the cheap multi-objective optimization problem

for GP-LCB becomes

min
x∈X

(LCB1,t(x), LCB2,t(x), · · · , LCBk,t(x)) (B.7)
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Assuming optimality of Xt, either there exists a xt ∈ Xt such that

LCBi,t(xt) ≤ LCBi,t(x
∗),∀i ∈ {1, · · · , k} (B.8)

or x∗ is in the optimal Pareto set Xt generated by cheap MO solver (i.e., xt = x∗).

Now, using Lemma 1 for any function Fj,

LCBj,t(xt) ≤ LCBj,t(x
∗) ≤ Fj(x

∗) (B.9)

Therefore,

Rj(x
∗) = Fj(xt)− Fj(x

∗) ≤ Fj(xt)− LCBj,t(xt) (B.10)

Rj(x
∗) ≤ Fj(xt)− µi,t−1(xt) + β1/2σi,t−1(xt) (B.11)

Rj(x
∗) ≤ 2β1/2σi,t−1(xt) (B.12)

Inequality (B.12) is similar to the result of Lemma 5.2 from [174] in the single-

objective BO case. Since j is arbitrary, this is true for each function Fj, for all

j ∈ {1, 2, · · · , k}.

266



Further, using Lemma 5.4 from [174],

Rj(x
∗) ≤

√
CTmaxβTmaxγ

j
Tmax

with probability ≥ 1− δ (B.13)

Consequently, the bounds for R(x∗) becomes

R(x∗) ≤

√√√√
k∑

i=1

CTmaxβTmaxγ
i
Tmax

(B.14)

The quantity γi
Tmax

is employed in many theoretical studies of GP-based optimization

including the well-known work of Srinivasan et al., [174].
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APPENDIX C

APPENDIX FOR IMOCA

C.1 Full derivation of iMOCA’s acquisition function

Our goal is to derive a full approximation for iMOCA algorithm. In this ap-

pendix, we provide the technical details of the extended-skew Gaussian approximation

(iMOCA-E) for the computation of the information gain per unit cost.

C.2 Additional Experiments and Results

C.2.1 Description of Synthetic Benchmarks

In what follows, we provide complete details of the synthetic benchmarks employed

in this paper. Since our algorithm is designed for maximization settings, we provide

the benchmarks in their maximization form.

1) Branin, Currin experiment

In this experiment, we construct a multi-objective problem using a combination

of existing single-objective optimization benchmarks [109]. It has two functions with

two dimensions (K=2 and d=2).

Branin function: We use the following function where C(z) = 0.05 + z6.5

g(x, z) = −
(
a(x2 − b(z)x2

1 + c(z)x1 − r)2 + s(1− t(z))cos(x1) + s
)

268



where a = 1, b(z) = 5.1/(4π2)−0.01(1− z), c(z) = 5/π−0.1(1− z), r = 6, s = 10

and t(z) = 1/(8π) + 0.05(1− z).

Currin exponential function: We use C(z) = 0.1 + z2

g(x, z) = −
(
1− 0.1(1− z) exp

(−1
2x2

))(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
.

2) Ackley, Rosen, Sphere experiment

In this experiment, we construct a multi-objective problem using a combination of

existing single-objective optimization benchmarks [192]. It has three functions with

five dimensions (K=3 and d=5). For all functions, we employed C(z) = 0.05 + z6.5

Ackley function

g(x, z) = −


−20 exp


−0.2

√√√√1

d

d∑

i=1

x2
i


− exp

[
1

d

d∑

i=1

cos(2πxi)

]
+ e+ 20


−0.01(1−z)

Rosenbrock function:

g(x, z) = −
d−1∑

i=1

[
100

(
xi+1 − x2

i + 0.01(1− z)
)2

+ (1− xi)
2
]
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Sphere function:

g(x, z) = −
d∑

i=1

x2
i − 0.01(1− z)

3) DTLZ1 experiment

In this experiment, we solve a problem from the general multi-objective optimiza-

tion benchmarks [79]. We have six functions with five dimensions (K=6 and d=5)

with a discrete fidelity setting. Each function has three fidelities in which z takes three

values from {0.2, 0.6, 1} with z∗=1. The cost of evaluating each fidelity function is

C(z)={0.01, 0.1, 1}

gj(x, z) = fj(x)− e(x, z)

f1(x) = −(1 + r)0.5Π5
i=1xi

fj(x) = −(1 + r)0.5(1− x6−j+1)Π
6−j
i=1xi with j = 2 . . . 5

f6(x) = −(1 + r)0.5(1− x1)

r = 100[d+
∑d

i=1((xi − 0.5)2)− cos(10π(xi − 0.5))]

e(x, z) =
∑d

i=1 α(z)cos(10πα(z)xi + 0.5πα(z) + π) with α(z) = 1− z
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4) QV experiment

In this experiment, we solve a problem from the general multi-objective optimiza-

tion benchmarks [169]. We have two functions with eight dimensions (K=2 and d=8)

with a discrete fidelity setting.

Function 1 has only one fidelity which is the highest fidelity

f1(x) = −(
1

d

d∑

i=1

(x2
i − 20πxi + 10))

1
4

Function 2 has two fidelities with cost {0.1, 1} respectively and the following

expressions:

High fidelity: f2(x, High) = −(1
d

∑d
i=1((xi − 1.5)2 − 20π(xi − 1.5) + 10))

1
4

Low fidelity: f2(x, Low) = −(1d((
∑d

i=1(α[i](xi − 1.5)2 − 20π(xi − 1.5) + 10))
1
4

with α=[0.9, 1.1, 0.9, 1.1, 0.9, 1.1, 0.9, 1.1]

C.2.2 Additional information about experimental setup

Experimental setup for our proposed algorithms:

• The hyper-parameters are estimated after every five function evaluations (BO

iterations) for MESMO and MESMOC. For iMOCA and MF-OSEMO, the num-

ber of evaluations would be higher due to the low cost of lower fidelities. There-

fore, the hyper-parameters are estimated every twenty iterations.
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• During the computation of Pareto front samples, we solve a cheap MO opti-

mization problem over sampled functions using NSGA-II. We use Platypus1

library for the implementation. For NSGA-II, the most important parameter is

the number of function calls. We experimented with several values. We noticed

that increasing this number does not result in any performance improvement

for our algorithms. Therefore, we fixed it to 1500 for all our experiments.

Parameters used for NSAG-II and MOEAD as constrained baselines:

• Since we allow only 200 evaluations for MESMOC and PESMOC, we also set

the number of functions evaluations for NSGA-II and MOEAD to 200. We leave

any other parameter to the default value provided by the Platypus library.

Computational resources

• We performed all experiments on a machine with the following configuration:

Intel i7-7700K CPU @ 4.20GHz with 8 cores and 32 GB memory.

1platypus.readthedocs.io/en/latest/getting-started.html#installing-platypus
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APPENDIX D

APPENDIX FOR BAPI

D.1 Details of the monotonic Gaussian process

The posterior predictive distribution of the monotonic GP is f∗|Y,C which is the

distribution of f∗ = f(z∗) for some new inputs z∗ = [x∗, t∗], conditioned on the

observed data Y and the constraint C defined as a(Zv) ≤ Lf(Zv) ≤ b(Zv). The final

derivation of the predictive distribution is defined as follow:

f∗|Y,C ∼ N (µ∗ + A(C− Lµv) +B(Y − µ),Σ) (D.1)

C = C̃|Y,C ∼ T N (Lµv + A1(Y − µ), B1, a(Z
v), b(Zv)) (D.2)

where T N (·, ·, a, b) is the truncated GaussianN (·, ·) conditioned on the hyper-rectangle

[a1, b1]×· · ·× [ak, bk], µ
v = m(Zv), µ∗ = m(z∗), µ = m(Z). The matricies A,B,A1, B1
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and Σ are defined as follow:

A1 = (LκZv ,X)(κZ,Z + σ2I)−1 (D.3)

A2 = κz∗,Z(κZ,Z + σ2I)−1 (D.4)

B1 = LκZv ,ZvLT + σ2
vI − A1κZ,ZvLT (D.5)

B2 = κz∗,z∗ − A2κZ,z∗ (D.6)

B3 = κz∗,ZvLT − A2κZ,ZvLT (D.7)

A = B3B
−1
1 (D.8)

B = A2 − AA1 (D.9)

Σ = B2 − ABT
3 (D.10)

Additionally, the probability that the unconstrained version of C falls within the

constraint region, p(C|Y ), is defined as follow:

p(C|Y ) = p (a(Zv) ≤ N (Lµv + A1(Y − µ), B1) ≤ b(Zv)) (D.11)

and the unconstrained predictive distribution is

f∗|Y ∼ N (µ∗ + A2(Y − µ), B2).

Sampling from the posterior distribution with constraints has been a challeng-
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ing task in previous work [161]. However, Agrell [2] proposed to use a new method

based on simulation via minimax tilting proposed by Botev [33]. This sampling ap-

proach was proposed for high-dimensional exact sampling and was shown to efficient

and fast compared to previous approaches like rejection sampling and Gibb sampling

[120].

For more details about the efficient posterior computation of the monotonic GP

we refer the reader to [2].

kernels derivatives

The computation of the posterior of the monotonic Gaussian process requires the

definition of derivatives of the kernel function. In this work we consider monotonicity

with respect to one dimension t. Therefore, kernel derivatives would be defined as

follow

∂

∂t
κ([x, t], [x′, t′]) = κx(x, x

′)× ∂

∂t
κt(t, t

′) (D.12)

∂

∂t∂t′
κ([x, t], [x′, t′]) = κx(x, x

′)× ∂

∂t∂t′
κt(t, t

′) (D.13)

In this work t is a single dimensional variables. However, for sake of generality , we

provide the kernel derivatives for the general case where t can be multi-dimensional.

We define dt as the t. In our experiments, we focus mainly on cases where the kernel
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over dimension t is an ED kernel. However, Our proposed method is not restrictive.

In cases where the learning curve is not exponentially decaying, an RBF kernel with

monotonicity over dimension t can be used. We provide the derivatives for both

kernels

Exponential Decay Kernel

κt(t, t
′) = w + (

t

β
+

t′

β
+ 1)−α (D.14)

∂

∂t′j
κt(t, t

′) = − α

βj

(
t

β
+

t′

β
+ 1)−α−1 (D.15)

∂

∂tj∂t′j
κt(t, t

′) =
α(α + 1)

β2
j

(
t

β
+

t′

β
+ 1)−α−2 (D.16)

∂

∂ti∂t′j
κt(t, t

′) =
α(α + 1)

βiβj

(
t

β
+

t′

β
+ 1)−α−2 (D.17)

Radial basis function Kernel

κt(t, t
′) = exp(

−1
2

dt∑

i=1

(ti − t′i)
2

li
) (D.18)

∂

∂t′j
κt(t, t

′) =
tj − t′j
l2j

κt(t, t
′) (D.19)

∂

∂tj∂t′j
κt(t, t

′) =
1

l2j
(1− tj − t′j

l2j
)κt(t, t

′) (D.20)

∂

∂ti∂t′j
κt(t, t

′) = −tj − t′j
l2j

ti − t′i
l2i

κt(t, t
′) (D.21)
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