Curricula for Learning Agents

Matthew E. Taylor
http://eecs.wsu.edu/~taylorm
This Session’s Focus

• Idea-focused
• Participation Encouraged

2004: Real Life Reinforcement Learning
Where’s My Adaptive & Learning Agent?

Our goal (for the sake of discussion)
We want to have a deployed, consumer learning agent in the next 5 years.

• Assume
 – If an embodied agent, assume someone else is building the (right) hardware
 – An MBA can make it profitable

• What task(s) should it achieve?
• What are we missing to make this technically feasible?
• I’m ignoring it (spam filter, amazon): cloud/server side
• Siri
• Preference, recommender
• Don’t trust agents: sensible exploration
• Serve my interests
• NEST
• Multi-agent?
• Trading agents: bidding for adwords, etc.
• HCI
• Trust in “physical type things”
Learning

Real life agent learning
 – Reliability
 – Speed

How do agents get a better prior?
 – Better learning algorithms
 – Leverage past experience
 – Human knowledge
Leveraging Past Experience

• Lifelong Learning
 – Sebastian Thrun
 – Mark Ring
 – Sutton+: Critterbot, Horde Architecture

• Multi-task Learning
 – Fernandez, Lazaric

• Transfer Learning
 – Re-use past knowledge
 – Use to set bias
 – Automatically learn how tasks are similar
Leveraging Past Experience

• Determining how tasks are related
• How past info is used
 – Q-values
 – Policy
 – Model
 – Options
 – Reward functions
 – High-level rules/advice
 – Features
Sequential learning can outperform direct learning: can take $\frac{1}{2}$ the time!
Programmer Knowledge

• Algorithm, parameters, function approximator, etc.

• Smart feature selection

• Clever actions
 – Macro actions, options, etc.

• Reward shaping
 – Andrew Ng
 – Sam Devlin+
Goals for Human Interaction?

• How to get knowledge from human
 – Limited effort
 – Non-optimal
 – Non-technical

• HCI/HRI
Human Interaction

• Learning from Demonstration
 – Brenna Argall+: Survey

• Imitation learning
 – Price & Boutilier: Implicit Imitation

• Learning from Feedback
 – Brad Knox: TAMER

• Giving NLP Advice
 – Rich Maclin: RATLE
• Demonstration is critical: grandma!
• Good for Human to Robot
 – Robot having model of people? Quirky way people will respond
• GIANT problem
 – Psych / Econ: agent shrinks
 – Why doing what they’re doing?
 – Don’t need to look at your perspective: sit in robot’s shoes
• BUT human shouldn’t have more involvement than wanted
Curriculum Learning

• Multiple possible goals
 – General knowledge
 – Specific final task
Curriculum Learning

- ML, HCI/HRI, education?
 - Thomaz & Breazeal: Teachable Robots: Understanding Human Teaching Behavior to Build More Effective Robot Learners
 - Roberts & Littman+: Human Experiments
 - Knox+: Understanding Human Teaching Modalities in Reinforcement Learning Environments: A Preliminary Report
Curriculum Learning

• Isbell & Thomaz+ (2010)
 – Training regimens

• Bengio+ (2009)
 – Supervised Learning

• Stanley+
 – Nero Video Game

• Consumer level?
 – How do humans want to pick tasks?
 – Can normal people do this well?
Instructional Scaffolding (1950s)

• Soft scaffolding
 – circulating around room and answering questions / providing feedback

• Hard scaffolding:
 – identify hints/cues before assigning problem
Picking Tasks

Zone of Proximal Development

• Expert state: What learner can do on own
• Pedagogical State: Can be achieved with the support of a instructor
Automatic Curriculum Design?

- Meta-planning problem for agent learning

- Post-hoc analysis: determine “optimal curriculum”?

- Model the student essential?
Other Ideas

• Task relatedness measures
 – Bou Ammar+: MDP similarity for TL usefulness

• Intentionality of task sequence:
 – Roberts, Littman+: Dog learning
Helpful?

- Learn the right state features
- How should the state be represented (function approximation)
- Learn a prior over reward functions, policies, etc.
- Build up a library of policies
- Bias action selection
- Set a decent learning rate / tune learning params
- ...

Summary

• Leveraging past knowledge sets biases
• Easy way for humans to help agents learn
• Automate curricula creation

• Non-RL applicability?
• Other challenges?
• Where to start?
• Weaknesses in ideas/approach?
• MDP: needs bias. But MDP is a limitation? How do we go beyond by rethinking s/a/timing
• Some easy cases fail: negative transfer
 – What are the steps to go from trivial to complex
 – How can we make this more reliable?
• Disagree that learning is the problem
 – Not good at mobile/manipulate
 – Blame Willow Garage
• Hard to get enough data though from humans....
• Giving a good context for learning (even hard for humans to learn with proper context)
• Training happening in home or in factory/lab?
 – Home: Might require human involvement human isn’t prepared
 – Factory: Could be OK if better performance than engineering....
Agents Teaching Agents

• Nick Carboni
 – A few minutes from now

• Lisa Torrey
 – Thursday, F4 – Learning 1
 – Teaching on a Budget: Agents Advising Agents in Reinforcement Learning