CS:APP Guide to Y86 Processor Simulators

Randal E. Bryant
David R. O’Hallaron

November 4, 2004

*Copyright(© 2002, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1

This document describes the processor simulators thatrgeanoy the presentation of the Y86 processor
architectures in Chapter 4 @omputer Systems: A Programmer’s PerspectiV@ese simulators model
three different processor designs: SEQ, SEQ+, and PIPE.

1 Installing

The code for the simulator is distributed as a Tar format felmadsi m t ar . You can get a copy of this
file from the CS:APP Web site6app. cs. cmu. edu).

With the tar file in the directory you want to install the cogteu should be able to do the following:

uni x> tar xf simtar
uni x> cd sim

uni x> nake cl ean

uni x> nake

By default, this generates GUI (graphic user interfaceyioas of the simulators, which require that you
have Tcl/Tk installed on your system. If not, then you havedption to install TTY-only versions that emit
their output as ASCII text on stdout. See fREADME for a description of how to generate the GUI and
TTY versions.

The directorysi mcontains the following subdirectories:

nm sc Source code files for utilities such @&ss (the Y86 assembler);is (the Y86 instruction set simula-
tor), andHcL2c (HCL to C translator). It also contains thea. ¢ source file that is used by all of
the processor simulators.

seq Source code for the SEQ and SEQ+ simulators. Contains thefH&lor homework problems 4.34
and 4.35. See filREADVE for instructions on compiling the different versions of #imulator.

pi pe Source code for the PIPE simulator. Contains the HCL filetfonework problems 4.37-4.42. See
file README for instructions on compiling the different versions of gimulator.

y86- code Y86 assembly code for many of the example programs showmiohthpter. You can automat-
ically test your modified simulators on these benchmark anog. See fil&READVE for instructions
on how to run these tests. As a running example, we will usprtbgramasum ys in this subdirec-
tory. This program is shown as CS:APP Figure 4.6. The comipégsion of the program is shown in
Figure 1.

pt est Scripts that generate systematic regression tests of ffegedit instructions, the different jump
possibilities, and different hazard possibilities. Thesgpts are very good at finding bugs in your
homework solutions. See fiREADVE for instructions on how to run these tests.

0x000:
0x000:
0x006:
0x00c:

308400010000
308500010000
7024000000

0x014:
0x014:
0x018:
0Ox01c:
0x020:

© 0 N O O B~ WN P

0d000000
c0000000
000b0000
00a00000

e
W N RO

0x024:
0Ox02a:
0x02c:
0x032:
0x034:
0x039:

308004000000
a008
308214000000
a028
803a000000
10

N R R R e
o ©mw~N O UM

0x03a:
0x03c:
0x03e:
0x044:
Ox04a:
0x050:
0x052:
0x057:
0x05d:
0x05f :
0x065:
0x067:
0x06d:
0x06f :
0x074:
0x074:
0x076:
0x100:
0x100:

a058

2045
501508000000
50250c000000
308000000000
6222
7374000000
506100000000
6060
308304000000
6031
3083ffffffff
6032
7457000000

W W W W wWwwwNDNDNDNDNDNDNDNDNDDNDDN
O OO~ WONPFP O OO0 ~NO OO b~wDN

b058
90

W w w
© 0

)
[

I
o

Figure 1:Sample object code file.

Execution begins at address 0
.pos O

i rmovl St ack,
i rmovl St ack,
jmp Main

init: %esp

%ebp

of 4 elements
.align 4

.1 ong Oxd

.1 ong 0xcO

.1 ong 0xb0O
.1 ong 0xa000

Array

array:

$4, Yeax
Yeax
array, %edx
%edx
Sum

i rmovl
pushl
i rmovl
pushl
cal l
hal t

int Sum(int *Start,
pushl %bp

rrnovl %esp, Y%ebp

nr novl 8(%bp), ¥ecx
nrnovl 12(%ebp), Y%edx
irmovl $0, %ax

andl %edx, Yedx

je End

nrnovl (%ecx), %es
addl %esi, Y%eax

i rmovl $4, %ebx

addl %ebx, %ecx

i rmovl $-1, %ebx

addl %ebx, %edx

j ne Loop

Sum

Loop:

End:

popl %ebp
ret
. pos 0x100

Stack: # The stack goes here

Push 4

Set up Stack pointer
Set up base pointer
Execute nmin program

Push array
Sum(array,

4)

i nt Count)

Start
Count

ecx
edx
sum

* o H

get *Start
add to sum

Start ++

Count - -
Stop when O

HoHHHHHH

This code is in the file asum yo in the y86- code subdirectory.

2 Utility Programs
Once installation is complete, tm sc directory contains two useful programs:

YAS The Y86 assembler. This takes a Y86 assembly code file widneidn. ys and generates a file with
extension yo. The generated file contains an ASCII version of the objegégceuch as that shown in
Figure 1 (the same program as shown in CS:APP Figure 4.7)ed$iest way to invoke the assembler
is to use or create assembly code files iny8&- code subdirectory. For example, to assemble the
program in fileasum ys in this directory, we use the command:

uni x> make asum yo

YIS The Y86 instruction simulator. This program executes ttstrirctions in a Y86 machine-level pro-
gram according to the instruction set definition. For examplippose you want to run the program
asum yo from within the subdirectory86- code. Simply run:

uni x> ../ msc/yis asumyo

YIs simulates the execution of the program and then prints asatwmany registers or memory loca-
tions on the terminal, as described in CS:APP Section 4.1.

3 Processor Simulators

For each of the three processors, SEQ, SEQ+, and PIPE, wephavided simulatorssim, ssiv+, and
PSIM respectively. Each simulator can be run in TTY or GUI mode:

TTY mode Uses a minimalist, terminal-oriented interface. Printergthing on the terminal output. Not
very convenient for debugging but can be installed on alrangtsystem and can be used for auto-
mated testing. The default mode for all simulators.

GUI mode Has a graphic user interface, to be described shortly. Velgfiil for visualizing the processor
activity and for debugging modified versions of the desigowiver, requires installation of Tcl/Tk
on your system. Invoked with theg command line option.

3.1 Command Line Options
You can request a number of options from the command line:

- h Prints a summary of all of the command line options.

- g Run the simulator in GUI mode (default TTY mode).

-t Runs both the processor and the ISA simulators, comparagesulting values of the memory, register
file, and condition codes. If no discrepancies are foundjiitgthe message “ISA Check Succeeds.”
Otherwise, it prints information about the words of the ségji file or memory that differ. This feature
is very useful for testing the processor designs.

-1 m Sets the instruction limit, executing at mostinstructions before halting (default 10000 instruc-
tions).

-v n Sets the verbosity level 1o <= n <= 2 (defaultn = 2).

Simulators running in GUI mode must be invoked with the narfn@noobject file on the command line. In
TTY mode, the object file name is optional, coming from stdjrdiefault.

Here are some typical invocations of the simulators (froeyt®6- code subdirectory):

uni x> ../seqg/ssim-h
uni x> ../seg/ssim-t < asumyo
uni x> ../ pipe/psim-t -g asumyo

The first case prints a summary of the command line options$om. The second case runs the SEQ

simulator in TTY mode, reading object filssum yo from stdin. The third case runs the PIPE simulator in

GUI mode, executing the instructions object leum yo. In both the second and third cases, the results
are compared with the results from the higher-level ISA i,

3.2 SEQ and SEQ+ Simulators

The GUI version of the SEQ processor simulator is invokedh &it object code filename on the command
line:

uni x> ../seqg/ssim-g asumyo &

where the & at the end of the command line allows the simulator to run ackground mode. The
simulation program starts up and creates three window#ipasated in Figure 2—4.

The first window (Figure 2) is the main control panel. If the Hflle was compiled byHcL2c with the
- n narme option, then the title of the main control window will appear“Y86 Processor: nane”
Otherwise it will appear as simply¥86 Pr ocessor .”

The main control window contains buttons to control the datar as well as status information about the
state of the processor. The different parts of the windowadreled in the figure:

Control: The buttons along the top control the simulator. Clicking @uit button causes the simulator to
exit. Clicking theGo button causes the simulator to start running. ClickingStap button causes the
simulator to stop temporarily. Clicking tf&tep button causes the simulator to execute one instruction
and then stop. Clicking thReset button causes the simulator to return to its initial stateh whe
program counter at address 0, the registers set to 0s, themenased except for the program, and
the condition codes set withF = 1, CF = 0, andCF = 0.

Quit Go Stop Step Reset Controls

Simulator Speed (10%log Hz)
H]

Processor State
Stage
fiew P C signals

00000067
PC Update Stage

valkd
oooooooo

Memory Stage
Beh sl E
W 00000016

Execute Stage
wald, valB dstE dstM srcd srcB
00000004 00000018 ®=ecx ---- |%ebx| Zecx

Decode Stage
Instr ré, rE walC valP
addl #eh %ecx 00000000 00000067

Fetch Stage

PC
0oooo0es

Register File
9 Register

Zeax Tecx Zedx zehx Zesi Zedi Zesp ebp file

cd 18 3 4 0 f0 f0

Condition
codes

Status amk Condition Codes 205000

Exception status

Figure 2: Main control panel for SEQ simulator

l File

F0Ee00010000
208700010000
F0E4000000
odooooon
clooooon
O00b0o00n

00 a00000
S08004 000000
alg

F08214 000000
alza
022000000
i0

al7a

2067
Coi7oa000000
EOZ70e000000
S0e000000000
E222
7374000000
04100000000
E040

F08304 000000
E031
SOBILLEEE£EE
ED32
457000000

Object code

. AyEE-code fasum. yo

init:

Lol

immowl Stack, %esp
immowl Stack, %ebp
jmp HMain

clomg Oxd
clomyg Oxel

. lomg Oxb0o0
clomyg Oxald0oo
iomowl 4, %e Ao
pushl %eax
iomowl arcap, %edx
pushl %edx

call sum

halt

pushl %ebp
comowl %esp, Bebp

mimowl 8 {%ebpd , %ecx
mimowl 12 {%ebp), %edx

iomowl 50, %eax
andl ez, e dx
je End
momowl {Secx), Sesi
addl %esi, %e i
irmowl 54, %eba
addl %ebor, %ecx
immowl 5-1, %ebhx
addl %ebor, %edx
jue Loap

popl %ebp

| .

Set up Stack pointer
Set up base pointer

Execubte main program

Push 4

Push arrap

Sumfarcay, 4

oM
edx

=um

get Fstart
add to sum
#

Sumt+

#

couwnt--

Stop when 0

Currently executing instruction

Figure 3: Code display window for SEQ simulator

0x00f0 O0x00f4 0x00£f8 0x00fc

Figure 4: Memory display window for SEQ simulator

Control

Assembly
Code

The slider below the buttons control the speed of the simublhen it is running. Moving it to the
right makes the simulator run faster.

Stage signals: This part of the display shows the values of the differentpssor signals during the current
instruction evaluation. These signals are almost ideticdnose shown in CS:APP Figure 4.21. The
main difference is that the simulator displays the nameefribtruction in a field labelebhstr, rather
than the numeric values afode andifun. Similarly, all registers are shown using their names, with
“- - - -"indicating that no register access is required.

Register file: This section displays the values of the eight program registThe register that has been
updated most recently is shown highlighted in light blue.giBer contents are not displayed until
after the first time they are set to nonzero values.

Remember that when an instruction writes to a program egiste register file is not updated until
the beginning of the next clock cycle. This means that youtrstep the simulator one more time to
see the update take place.

Status: This shows the status of the current instruction being eeelcurhe possible values are:

ACK: No problem encountered.

ADR: An addressing error has occurred either trying to read druictfon or trying to read or write
data. Addresses cannot excéed FFF.

I NS: Anillegal instruction was encountered.
HLT: A hal t instruction was encountered.

Condition codes: These show the values of the three condition cod&s:SF, andOF.

Remember that when an instruction changes the conditioasgdbe condition code register is not
updated until the beginning of the next clock cycle. This nssthat you must step the simulator one
more time to see the update take place.

The processor state illustrated in Figure 2 is for the se@xedution of line 32 of theasum yo program
shown in Figure 1. We can see that the program counter(g @65, that it has processed the instruction
addl %ebx %ecx, that registe@eax holdsOxcd, the sum of the first two array elements, a¥@dx
holds 3, the count that is about to be decremented. Redigtex still holds 0x18, the address of the
second array element, but there is a pending writ@xdi1 Cto this register (sincdstE is set to¥ecx and
valE is set toOx01C). This write will take place at the start of the next clock leyc

The window depicted in Figure 3 shows the object code file ihheing executed by the simulafoiThe
edit box identifies the file name of the program being execu¥ed can edit the file name in this window
and click theLoad button to load a new program. The left hand side of the disphayws the object code
being executed, while the right hand side shows the text flmenassembly code file. The center has an
asterisk) to indicate which instruction is currently being simulhteThis corresponds to line 32 of the
asum yo program shown in Figure 1.

*On some windowing systems, this window begins life as a ddsen if the object file is large. If this happens, simply klic
on the icon to expand the window.

The window shown in Figure 4 shows the contents of the meniiosiiows only those locations between the
minimum and maximum addresses that have changed sincedfi@apr began executing. Each row shows
the contents of four memory words. Thus, each row shows 1éshyft the memory, where the addresses
of the bytes differ in only their least significant hexadeaimigits. To the left of the memory values is the

“root” address, where the least significant digit is showri-ds Each column then corresponds to words

with least significant address digiéx0, 0x4, 0x8, and0xc. The example shown in Figure 4 shows

memory location®x00f 0, 0x00f 4, 0x00f 8, and0Ox00f c.

The memory contents illustrated in the figure show the stackents of theasum yo program shown in
Figure 1 during the execution of tfBumprocedure. Looking at the stack operations that have takea® p
so far, we see th&tesp was first initialized to0x100 (line 3), and then we pushed the values 4 (line 15)
and0x014, the address ddr r ay (line 17) before making the call 8Sum(line 18). This call pushed the
return addres®x039 onto the stack. The first instruction 8umpushes¥ebp onto the stack (line 22),
having valueDx100. That accounts for all of the words shown in this memory @igpl

Figure 5 shows the control panel window for the SEQ+ simujaitnen executing the same object code
file and when at the same point in this program. We can seettbatrily difference is in the ordering of
the stages and the different signals listed. These sigoatsspond to those in CS:APP Figure 4.31. The
SEQ+ simulator also generates code and memory windows.eThes identical format to those for the
SEQ simulator.

3.3 PIPE Simulator

The PIPE simulator also generates three windows. Figure®sthe control panel. It has the same set of
controls, and the same display of the register file and cimmditodes. The middle section shows the state of
the pipeline registers. The different fields correspondhtsé in CS:APP Figure 4.53. At the bottom of this
panel is a display showing the number of cycles that have bmeulated (not including the initial cycles
required to get the pipeline flowing), the number of instiarts that have completed, and the resulting CPI.

As illustrated in the close-up view of Figure 7, each pipeliegister is displayed with two parts. The
upper values in white boxes show the current values in thelipg register. The lower values with a gray
background show the inputs to pipeline register. Thesehilloaded into the register on the next clock
cycle, unless the register bubbles or stalls.

The flow of values through the PIPE simulator is quite différieom that for the SEQ or SEQ+ simulator.

With SEQ and SEQ+, the control panel shows the values ragudtibm executing a single instruction. Each
step of the simulator performs one complete instructiorcetten. With PIPE, the control panel shows the
values for the multiple instructions flowing through thegdipe. Each step of the simulator performs just
one stage’s worth of computation for each instruction.

Figure 8 shows the code display for the PIPE simulator. Thedbis similar to that for SEQ and SEQ+,
except that rather than a single marker indicating whictruiegion is being executed, the display indicates
which instructions are in each state of the pipeline, ushayacters-, D, E, M andW for the fetch, decode,
execute, memory, and write-back stages.

The PIPE simulator also generates a window to display theangoontents. This has an identical format
to the one shown for SEQ (Figure 4).

Controls

Go Stop
Simulator Speed (10%log Hz)
5
Processor State
Stage
valM signals
00000000
Memory Stage
Bch walE
W 0000001cC
Execute Stage
wald, valB dstE stk srcA srcB
0ooooo0o4 00000018 |zecs ---- Zehx| Zecx
Decode Stage
Instr Iy rB vall valP
addl %ehx %ecx 00000000 00000067
Fetch Stage
FE:
00000065
PC Stage
pBch plnstr phalC pfal bl piialP
N irmovl 00000004 00000000/00000065
Register File
Zedx Zehx Zesl Zedl Zesp Register
18 3 4 el £0 file
Status a0E Condition Codes 205000 Condition
codes

Exception status

Figure 5: Main control panel for SEQ+ simulator

10

Quit Go Stop Step Reset Controls
Simulator Speed (10*log Hz) :
5

E’ipeline ﬁegisters

Exe Instr valE val dstE dsth P H
14— Pipeline
W State AOE| jrne 00000000 00000000 -------- P
Input ADK mrmowl 00000018 000000CO ---- %es1

Memory Stage

Instr Bch walE vald, dstE dstM
AOE jmrmowl | W 00000018|00000000 ---- %esi
BEUE nop W 00000000 20000000 —--- -——-

Execute Stage

Instr walC wald valB dstE dsth srcA srcB
E State BEUE | nop | 00000000 00000000 00000000 —--= === === ===
Input &0K =addl 00000000 000000CO 00000000 %eas ---- %esl keax

Decode Stage

Instr T rB valC valP
o State AOE | addl Zesi | %essc 00000000|0000005F
Input ADK irmovl ---- #%ebx 00000004 00000065

Fetch Stage

Exz predPC
F State a0k 000000SF
Input &DE 00000065

Register File — Register
. _ file
Eeax Eecy Zedx Eeh Zesl Eedi Eesp ehp

d 18 -_3 R d £o £0 o
Condition

I Condition Codes z0s000 I<_— codes
Performance

Performance cyces 25 Instructions | 22 CPR1 1,14 ‘——_ monitor

Figure 6: Main control panel for PIPE simulator

Exc Instr valE valM dstE dsthd Current state

State A0E | jne 00000000 00000000 ---- -—--

[input_A0K_memovl 00000018 00000000 ———— zess J4— Re€gister inputs

Figure 7: View of single pipe register in control panel foPElsimulator

W

11

File

F0Ee00010000
208700010000
F0E4000000
odooooon
clooooon
O00b0o00n

00 a00000
S08004 000000
alg

F08214 000000
alza
022000000
i0

al7?e

2067
Eoi70a000000
E0E70c000000
a0E0o0000000
g222
7374000000
04100000000
E040
a0E304000000
E031
S0BIELLEEEES
032
7457000000

Object code

. AyEE-code fasum. yo

Load
init: immowl Stack, %esp
immowl Stack, %ebp
jmp HMain

clomg Oxd
clomyg Oxel

. lomg Oxb0o0
clomyg Oxald0oo
iomowl 4, %e Ao
pushl %eax
iomowl arcap, %edx
pushl %edx

call sum

halt

pushl %ebp
comowl %esp, Bebp

iomowl 50, %eax
andl Sz, e di
je End

momowl {Secx), Sesi
addl %esi, %e i

irmowl 54, %eba
addl %ebor, %ecx
immowl 5-1, %ebhx
addl %ebor, %edx
jue Loap
popl %ebp

mimowl 8 {%ebpd , %ecx
mimowl 12 {%ebp), %edx

Control

| .

Set up Stack pointer
Set up base pointer

Execubte main program

Push 4

Push arrap

Sumfarcay, 4

ecx
edx Assembly
zum code

get Fstart
add to sum
#

Sumt+

#

count--

Stop when 0

Currently executing instructions

Figure 8: Code display window for PIPE simulator

12

The example shown in Figures 6 and 8 show the status of thdim@p&hen executing the loop in lines
29-35 of Figure 1. We can see that the simulator has beguretiomd iteration of the loop. The status of
the stages is as follows:

Write back: The loop-closing ne instruction (line 35) is finishing.

Memory: Thenr nmovl instruction (line 29) has just redak 0CO from addres©x018. We can see the
address ivalE of pipeline register M, and the value read from memory attipef ofvalM to pipeline
register W.

Execute: This stage contains a bubble. The bubble was inserted dine todd-use dependency between
thenr novl instruction (line 29) and thaddl instruction (line 30). It can be seen that this bubble
acts like anop instruction. This explains why there is no instruction igiie 8 labeled with “E.”

Decode: Theaddl instruction (line 30) has just refik 00Dfrom registe®eax. It also readdx00Dfrom
register¥esi , but we can see that the forwarding logic has instead usedallne 0x0CO that has
just been read from memory (seen as the inputaid in pipeline register W) as the new value of
valA (seen as the input taalA in pipeline register E).

Fetch: Thei r movl instruction (line 31) has just been fetched from addfedd5f . The new value of the
PC is predicted to b6x065.

Associated with each stage is axception statufield Exc. This field shows the status of the instruction
in that stage of the pipeline. Status “AOK” means that no poa has been encountered. Status “BUB”
indicates that a bubble is in this stage, rather than a noimslction. Other possible status values are
“ADR” when an invalid memory location is referenced, “INS’hen an illegal instruction code is encoun-
tered, “PIP” when a problem arose in the pipeline (this ogeunen both the stall and the bubble signals for
some pipeline register are set to 1), and “HLT” when a halruggion is encountered. The simulator will
stop when any of these last four cases reaches the writeshagé.

Carrying the exception status for an individual instructibrough the pipeline along with the rest of the in-
formation about that instruction enables precise handlirthe different exception conditions, as described
in CS:APP Section 4.5.11.

4 Some Advice

The following are some miscellaneous tips, learned froneagpce we have gained in using these simula-
tors.

e Get familiar with the simulator operatiorl.ry running some of the example programs inyl86- code
directory. Make sure you understand how each instructias g@cessed for some small examples.
Watch for interesting cases such as mispredicted branidaebinterlocks, and procedure returns.

e You need to hunt around for informatiorseeing the effect of data forwarding is especially tricky.
There are seven possible sources for sigadh in pipeline register E, and six possible sources for

13

signalvalB. To see which one was selected, you need to compare the ofheéde pipeline register
fields to the values of the possible sources. The possibleaspare:

R[d_srcA] The source register is identified by the inpusstcA in pipeline register E. The register
contents are shown at the bottom.

R[d_srcB] The source register is identified by the inputsteB in pipeline register E. The register
contents are shown at the bottom.

D_valP This value is part of the state of pipeline register D.
e_valE This value is at the input to fielBlIE in pipeline register M.
M_valE This value is part of the state of pipeline register M.
m_valM This value is at the input to fielIM in pipeline register W.
W_valE This value is part of the state of pipeline register W.
W_valM This value is part of the state of pipeline register M.
¢ Do not overwrite your codeSince the data and code share the same address space, it i® eas
have a program overwrite some of the code, causing comptei@sovhen it attempts to execute the

overwritten instructions. It is important to set up the ktéa be far enough away from the code to
avoid this.

¢ Avoid large address valuesThe simulators do not allow any addresses greater thadFFF. In
addition, the memory display becomes unwieldy if you modifgmory locations spanning a wide
range of addresses.

e Be aware of some “features” of the GUI-mode simulatarsiy and ssim).

— If you are running in GUI mode on a Unix box, remember to itlitiathe DISPLAY environ-
ment variable:

uni x> setenv DI SPLAY nyhost. edu: 0

— With some Unix X Window managers, the “Program Code” windasgihs life as a closed
icon. If you don't see this window when the simulator stay®,’ll need to expand the expand
manually by clicking on it.

— With some Microsoft Windows X servers, the “Memory Conténtendow does not automat-
ically resize itself when the memory contents change. Isdlmases, you'll need to resize the
window manually to see the memory contents.

— The simulators will terminate with a segmentation faultatiyask them to execute a file that is
not a valid Y86 object file.

— When running in GUI mode, the simulators will single-stegtghal t instruction.

14

