CS 203: Optimizing the Performance of a Pipelined Processor

1 Introduction

In this project, you will learn about the design and impletagan of a pipelined Y86 processor, optimizing
its performance on a benchmark program. You are allowed tceraay semantics preserving transfor-
mations to the benchmark program, or to make enhancemetitg fgipelined processor, or both. When
you have completed the project, you will have a keen appienidor the interactions between code and
hardware that affect the performance of your programs.

The project is organized into three parts, each with its oamdim. In Part A you will write some simple
Y86 programs and become familiar with the Y86 tools. In Pary@i will extend the SEQ simulator with
two new instructions. These two parts will prepare you foit Bathe heart of the project, where you will
optimize the Y86 benchmark program and the processor design

2 Logistics

You may work in groups for this project.
Any clarifications and revisions to the assignment will betpd on the course Web page.

3 Handout Instructions

1. Start by copying the file tar file (on webpage) to a directaryhich you plan to do your work.

2. Then give the commanthlr xvf archlab-handout.tar . This will cause the following files
to be unpacked into the directofREADMBMakefile ,sim.tar ,archlab.ps ,archlab.pdf
andsimguide.pdf

3. Next, give the commantr xvf sim.tar . This will create the directorgim , which contains
your personal copy of the Y86 tools. You will be doing all ofuyavork inside this directory.

4. Finally, change to theim directory and build the Y86 tools:

unix> cd sim
unix> make cl ean; nmake



4 Schedule

Lab 7:sum.ys from part A should be submitted via Moodle by 11:55pm on MgnNavember 26th.

Lab 8: iaddl should be submitted (which is iseqg-full.hcl ) via Moodle by 11:55pm on Friday
November 30th.

Project 2: The remainder of the project, along vatim.ys andseq-full.hcl , is due by 11:55pm on
Friday Decemeber 7th.

5 PartA

You will be working in directorysim/misc  in this part.

Your task is to write and simulate the following three Y86 gmams. The required behavior of these pro-
grams is defined by the example C functionseikamples.c . Be sure to put your name and ID in a
comment at the beginning of each program.

sum ys: Iteratively sum linked list elements

Write a Y86 programgum.ys ) that iteratively sums the elements of a linked list. Yourgram should
consist of a main routine that invokes a Y86 functisartLlist ) that is functionally equivalent to the C
sum.list  function in Figure 1. Test your program using the followihgee-element list:

# Sample linked list

.align 4
elel:
.long 0x00a
long ele2
ele2:
long 0x0bO0
long ele3
ele3:
.long 0xc00
dong O

You can compile by doing someting likggs sum.ys and then simulating with something likéseg/ssim
-g sum.ys , where the (optional) flag g says to use the gui. To get staytmdwill probably want to look
at other .ys files, by doingfind . | grep ys to find all the .ys files that you just untar'ed.

rsum ys: Recursively sum linked list elements

Write a recursive version glum.ys (rsum.ys ) that recursively sums the elements of a linked list.



© 00 N O O b~ WDN PR

A D W W WWWWWWWWNDNDNDNDNNNDMNNNMNNRPRPRRPRERRERRPRERPREPR
P O © 00 ~NO O b~ WNPEPOOOWNOO OO WNEOOOWWNOOOGMWDNPEO

[ * linked list element */
typedef struct ELE {
int val;
struct ELE * next;
} =*list_ptr;
[ * sum_list - Sum the elements of a linked list */
int sum_list(list_ptr 1s)
{
int val = 0;
while (Is) {
val += Is->val;
Is = Is->next;
}
return val,
}
[ * rsum_list - Recursive version of sum_list */
int rsum_list(list_ptr Is)
{
if (!s)
return O;
else {
int val = Is->val;
int rest = rsum_list(Is->next);
return val + rest;
}
}
/ = copy_block - Copy src to dest and return xor checksum of src
int copy_block(int *Src, int *dest, int len)
{
int result = O;
while (len > 0) {
int val = * SIC++;
*dest++ = val;
result "= val;
len--;
}
return result;
}

Figure 1:C versions of the Y86 solution functions. See sim/misc/examples.c

*/



Your program should consist of a main routine that invokescairsive Y86 functionréum _list ) that is
functionally equivalent to thesum list  function in Figure 1. Test your program using the same three-
element list you used for testidigt.ys

copy. ys: Copy a source block to a destination block

Write a program ¢opy.ys ) that copies a block of words from one part of memory to anothen-
overlapping area) area of memory, computing the checksuom) @f all the words copied.

Your program should consist of a main routine that calls a {t@@tion copy _block ) that is functionally
equivalent to theopy _block function in Figure 1. Test your program using the followihgee-element
source and destination blocks:

.align 4
# Source block
Src:
.long 0x00a
long 0x0bO0
.long 0xc00
# Destination block
dest:
Jong 0x111
long 0x222
.long 0x333
6 PartB

You will be working in directorysim/seq in this part.

Your task in Part B is to extend the SEQ processor to suppartngw instructions:iaddl (described

in homework problems 4.47 and 4.49) dedve (described in homework problems 4.48 and 4.50). To
add these instructions, you will modify the figeqg-full.hcl , which implements the version of SEQ
described in the CS:APP textbook. In addition, it contaieslarations of some constants that you will need
for your solution.

Your HCL file must begin with a header comment containing tilefing information:
e Your name

e A description of the computations required for tlzeldl instruction. Use the descriptions of
irmovl andOPI in Figure 4.18 in the CS:APP text as a guide.

e A description of the computations required for tkave instruction. Use the description pbpl
in Figure 4.20 in the CS:APP text as a guide.



Building and Testing Your Solution

Once you have finished modifying tiseqg-full.hcl file, then you will need to build a new instance of
the SEQ simulatorgsim ) based on this HCL file, and then test it:

¢ Building a new simulatoryou can usanake to build a new SEQ simulator:
unix> make VERSI| ON=f ul |

This builds a version ofsim that uses the control login you specifiedsieq-full.hcl . To save
typing, you can assigiERSION=full in the Makefile.

e Testing your solution on a simple Y86 prografor your initial testing, we recommend running a
simple program such asum.yo in TTY mode, comparing the results against the ISA simutatio

unix> ./ssim-t asumyo

If the ISA test fails, then you should debug your implemeéataby single stepping the simulator in
GUI mode:

unix> ./ssim-g asumyo

e Testing your solution using the benchmark program@nce your simulator is able to correctly
execute small programs, then you can automatically teshithe Y86 benchmark programs in
..ly86-code

unix> (cd ../y86-code; nmake testssim

This will run ssim on the benchmark programs and check for correctness by comghe resulting
processor state with the state from a high-level ISA sinmatSee file../y86-code/README
file for more details.

e Performing regression testsOnce you can execute the benchmark programs correctly, ythen
should run the extensive set of regression tests/[test . To test everything excepaddl
andleave :

unix> (cd ../ptest; make SI M= ./seqg/ssim

To test your implementation a@addl

unix> (cd ../ptest; nake SI M= ./seq/ssimTFLAGS=-i)
To test your implementation ¢éave :

unix> (cd ../ptest; nake SI M= ./seq/ssimTFLAGS=-1)
To test bothaddl andleave :

unix> (cd ../ptest; nmake Sl M= ./seq/ssimTFLAGS=-il)

For more information on the SEQ simulator refer to the habh@&i1APP Guide to Y86 Processor Simulators
(simguide.pdf ).



1/

2 * ncopy - copy src to dst, returning number of positive ints

3 * contained in src array.

4 =/

5 int ncopy(int *Src, int +dst, int len)

6 {

7 int count = O;

8 int val;

9

10 while (len > 0) {

11 val = *xsrc++;

12 *dst++ = val;

13 if (val > 0)

14 count++;

15 len--;

16 }

17 return count;

18 }

Figure 2:C version of the ncopy function. See sim/pipe/ncopy.c.

7 PartC

You will be working in directorysim/pipe in this part.

Thencopy function in Figure 2 copieslan -element integer arrasrc to a non-overlappinglst , return-
ing a count of the number of positive integers containedrin. Figure 3 shows the baseline Y86 version
of ncopy . The filepipe-full.hcl contains a copy of the HCL code for PIPE, along with a dedlamat
of the constant value IIADDL.

Your task in Part C is to modifpcopy.ys andpipe-full.hcl with the goal of makingicopy.ys
run as fast as possible.

You will be handing in two filespipe-full.hcl andncopy.ys . Each file should begin with a header
comment with the following information:

e Your name

¢ A high-level description of your code. In each case, desdnitav and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the feiloy constraints:

e Your ncopy.ys function must work for arbitrary array sizes. You might benfged to hardwire
your solution for 64-element arrays by simply coding 64 costructions, but this would be a bad
idea because we will be grading your solution based on ifepeance on arbitrary arrays.



© 00 N O O B~ WDN P

A D DA D DD WWWWWWWWWWNDNNDNDNDNDNMNNNMNNERRRRRPRPRPRLPR
O b WNEFP OO WOWNOO UM~ WNEREPOOOWNOOOOGRAWNREO OOWNOOOOGD™MWNEREO

T T T B T B T T R R B
ncopy.ys - Copy a src block of len ints to dst.
Return the number of positive ints (>0) contained in src.

HoHHHHHH

BB AR R AR R AR R R R

Include your name and ID here.

BRI R R

Describe how and why you modified the baseline code.

B

# Function prologue. Do not modify.

ncopy: pushl %ebp

rrmovl %esp,%ebp
pushl %esi

pushl %ebx

mrmovl 8(%ebp),%ebx
mrmovl 12(%ebp),%ecx

mrmovl 16(%ebp),%edx

# Loop header

xorl %esi,%esi

andl %edx,%edx
jle Done

# Loop body.
mrmovl (%ebx), %eax
rmmovl %eax, (%ecx)
andl %eax, %eax
jle Npos

irmovl $1, %edi
addl %edi, %esi
irmovl $1, %edi

subl %edi, %edx
irmovl $4, %edi
addl %edi, %ebx
addl %edi, %ecx
andl %edx,%edx

jg Loop

Loop:

Npos:

# Save old frame pointer
# Set up new frame pointer
# Save callee-save regs

# src
# dst
# len

# count = O;
# len <= 07?
# if so, goto Done:

# read val from src...
# ..and store it to dst
# val <= 0?

# if so, goto Npos:

# count++
# len--
# src++
# dst++

# len > 0?
# if so, goto Loop:

# Function epilogue. Do not modify.

rrmovl %esi, %eax
popl %ebx

popl %esi

rrmovl %ebp, %esp
popl %ebp

ret

Done:

Figure 3:Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.



e Your ncopy.ys function must run correctly witris. By correctly, we mean that it must correctly
copy thesrc block andreturn (in%eax) the correct number of positive integers.

e Your pipe-full.hcl implementation must pass the regression test#i@6-code and../ptest
(without the-il ~ flags that testaddl andleave ).

Other than that, you are free to implementita@dl instruction if you think that will help. You are free to
alter the branch prediction behavior or to implement teghes such as load bypassing. You may make any
semantics preserving transformations toreepy.ys function, such as swapping instructions, replacing
groups of instructions with single instructions, deletsmme instructions, and adding other instructions.

Building and Running Your Solution

In order to test your solution, you will need to build a driygpogram that calls youncopy function. We
have provided you with thgen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> make drivers
will construct the following two useful driver programs:

e sdriver.yo : A small driver progranthat tests ancopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt wighvalue of 3 in registeboeax after copying
thesrc array.

e |driver.yo . A large driver programthat tests amcopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program willthgith a value of 62 Qx3e ) in register
%eax after copying thesrc array.

Each time you modify youncopy.ys program, you can rebuild the driver programs by typing
unix> make drivers

Each time your modify youpipe-full.hcl file, you can rebuild the simulator by typing
unix>  make psim

If you want to rebuild the simulator and the driver progratgpge

unix> make

To test your solution in GUI mode on a small 4-element arget

unix> ./psim-g sdriver.yo



To test your solution on a larger 63-element array, type
unix> ./psim-g ldriver.yo

Once your simulator correctly runs your versionngopy.ys on these two block lengths, you will want
to perform the following additional tests:

e Testing your driver files on the ISA simulatdake sure that youncopy.ys function works prop-
erly with vis:

unix>  cd sim pi pe
unix>  nmake
unix> ..Imsc/yis sdriver.yo

e Testing your code on a range of block lengths with the ISAlaimiu The Perl scriptorrectness.pl
generates driver files with block lengths from 1 up to somatl{ehefault 64), simulates them with
YIS, and checks the results. It generates a report showingahesgbr each block length:

unix> ./ correctness. pl

If you get incorrect results for some lengfi, you can generate a driver file for that length that
includes checking code:

unix> ./gen-driver.pl -n K -c > driver.ys
unix> make driver.yo
unix> ..Imsclyis driver.yo

The program will end with registé¥oeax having valueOxaaaa if the correctness check passes,
Oxeeee if the count is wrong, an@xffff if the count is correct, but the words are not all copied

correctly.

e Testing your simulator on the benchmark progran@nce your simulator is able to correctly exe-
cutesdriver.ys andldriver.ys , you should test it against the Y86 benchmark programs in
..ly86-code

unix> (cd ../y86-code; make testpsim

This will run psim on the benchmark programs and compare results wih

e Testing your simulator with extensive regression tgdtse you can execute the benchmark programs
correctly, then you should check it with the regressionsté@st./ptest . For example, if your
solution implements thiaddl instruction, then

unix> (cd ../ptest; make SI M. ./ pipe/psimTFLAGS=-i)



8 Evaluation

Lab 7

This lab is worth10 points Each solution program will be evaluated for correctnessluding proper
handling of the%ebp stack frame register and functional equivalence with tha&mgle C functions in
examples.c

sum.ys will be considered correct gum_list  returns the sur@xcba in registerdoeax.
Lab 8

This lab is worth20 points 10 points will be based on your description of the compatetirequired for
theiaddl instruction. 10 points will be based on passing the regregsists inaddl and the benchmark
regression tests ip86-code |, to verify that your simulator still correctly executes thenchmark suite.

Project

The project will be wortt80 points

Part A

Part A is worth 10 points, 5 points for each Y86 solution pewgr Each solution program will be evaluated
for correctness, including proper handling of #ebpstack frame register and functional equivalence with
the example C functions iexamples.c

rsum.ys will be considered correct isum _list  returns the sur@xcba in registerdeax.

The prograntopy.ys will be considered correct if itsopy _block function returns the surxcba in
register%eax, and copies the three wor@x00a , 0x0b , andOxc to the 12 contiguous memory locations
beginning at addres$est .

Part B

This part of the project is worth 20 points:

e 10 points for your description of the computations requiidheleave instruction.

e 10 points for passing the benchmark regression test86rcode |, to verify that your simulator still
correctly executes the benchmark suite, and for passingegression tests iptest  for leave .

Part C

This part of the project is worth 50 points:

10



e 5 points each for your descriptions in the headensaafpy.ys andpipe-full.hcl

¢ 40 points for performance. To receive credit here, yourtamiumust be correct, as defined earlier.
That is,ncopy runs correctly withvis, andpipe-full.hcl passes all tests p86-code and
ptest

We will express the performance of your function in unitxpéles per elemeqdCPE). That is, if the
simulated code requirgS cycles to copy a block oN elements, then the CPE {$/N. The PIPE
simulator display the total number of cycles required to ptate the program. The baseline version
of thencopy function running on the standard PIPE simulator with a |&8&lement array requires
1037 cycles to copy 63 elements, for a CPE@37/63 = 16.46.

Since some cycles are used to set up the caticlmpy and to set up the loop withincopy , you
will find that you will get different values of the CPE for diffent block lengths (generally the CPE
will drop asN increases). We will therefore evaluate the performanceof function by computing
the average of the CPEs for blocks ranging from 1 to 64 elesnelfbu can use the Perl script
benchmark.pl inthepipe directory to run simulations of yourcopy.ys code over a range of
block lengths and compute the average CPE. Simply run thenzord

unix> ./ benchmar k. pl

to see what happens. For example, the baseline versionétpy function has CPE values ranging
betweerd5.0 and 16.45, with an average of8.15. Note that this Perl script does not check for the
correctness of the answer. Use the sariptrectness.pl for this.

You should be able to achieve an average CPE of lessithanOur best version averag@st3.

By default,benchmark.pl  andcorrectness.pl compile and teshcopy.ys . Use the-f
argument to specify a different file name. THe flag gives a complete list of the command line
arguments.

The two best average CPEs in the class will receive two angboimesextra credit, respectively, on
the final.

9 Handin Instructions

¢ You will be handing in the following files:

— Part A:sum.ys ,rsum.ys , andcopy.ys
— Part B:seqg-full.hcl
— Part C:ncopy.ys andpipe-full.hcl

e Make sure you have included your name in a comment at the tepaif of your handin files.

o Please submit files via moodle when finished.

11



10 Hints

e By design, bottsdriver.yo andldriver.yo are small enough to debug with in GUI mode. We
find it easiest to debug in GUI mode, and suggest that you use it

e If you running in GUI mode on a Unix box, make sure that you havgalized the DISPLAY envi-
ronment variable:

unix>  setenv DI SPLAY nyhost. edu: 0

e With some X servers, the “Program Code” window begins lif@asosed icon when you ruyssim
orssim in GUI mode. Simply click on the icon to expand the window.

o With some Microsoft Windows-based X servers, the “Memornteats” window will not automati-
cally resize itself. You'll need to resize the window by hand

e Thepsim andssim simulators terminate with a segmentation fault if you aglho execute a file
that is not a valid Y86 object file.

e When running in GUI mode, thasim andssim simulators will single-step pastalt instruction.

12



