
CS:APP Guide to Y86 Processor Simulators∗

Randal E. Bryant
David R. O’Hallaron

November 4, 2004

∗Copyright c© 2002, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1

This document describes the processor simulators that accompany the presentation of the Y86 processor
architectures in Chapter 4 ofComputer Systems: A Programmer’s Perspective. These simulators model
three different processor designs: SEQ, SEQ+, and PIPE.

1 Installing

The code for the simulator is distributed as a Tar format file namedsim.tar. You can get a copy of this
file from the CS:APP Web site (csapp.cs.cmu.edu).

With the tar file in the directory you want to install the code,you should be able to do the following:

unix> tar xf sim.tar
unix> cd sim
unix> make clean
unix> make

By default, this generates GUI (graphic user interface) versions of the simulators, which require that you
have Tcl/Tk installed on your system. If not, then you have the option to install TTY-only versions that emit
their output as ASCII text on stdout. See fileREADME for a description of how to generate the GUI and
TTY versions.

The directorysim contains the following subdirectories:

misc Source code files for utilities such asYAS (the Y86 assembler),YIS (the Y86 instruction set simula-
tor), andHCL2C (HCL to C translator). It also contains theisa.c source file that is used by all of
the processor simulators.

seq Source code for the SEQ and SEQ+ simulators. Contains the HCLfile for homework problems 4.34
and 4.35. See fileREADME for instructions on compiling the different versions of thesimulator.

pipe Source code for the PIPE simulator. Contains the HCL files forhomework problems 4.37–4.42. See
file README for instructions on compiling the different versions of thesimulator.

y86-code Y86 assembly code for many of the example programs shown in the chapter. You can automat-
ically test your modified simulators on these benchmark programs. See fileREADME for instructions
on how to run these tests. As a running example, we will use theprogramasum.ys in this subdirec-
tory. This program is shown as CS:APP Figure 4.6. The compiled version of the program is shown in
Figure 1.

ptest Scripts that generate systematic regression tests of the different instructions, the different jump
possibilities, and different hazard possibilities. Thesescripts are very good at finding bugs in your
homework solutions. See fileREADME for instructions on how to run these tests.

2

1 | # Execution begins at address 0
2 0x000: | .pos 0
3 0x000: 308400010000 | init: irmovl Stack, %esp # Set up Stack pointer
4 0x006: 308500010000 | irmovl Stack, %ebp # Set up base pointer
5 0x00c: 7024000000 | jmp Main # Execute main program
6 |
7 | # Array of 4 elements
8 0x014: | .align 4
9 0x014: 0d000000 | array: .long 0xd

10 0x018: c0000000 | .long 0xc0
11 0x01c: 000b0000 | .long 0xb00
12 0x020: 00a00000 | .long 0xa000
13 |
14 0x024: 308004000000 | Main: irmovl $4,%eax
15 0x02a: a008 | pushl %eax # Push 4
16 0x02c: 308214000000 | irmovl array,%edx
17 0x032: a028 | pushl %edx # Push array
18 0x034: 803a000000 | call Sum # Sum(array, 4)
19 0x039: 10 | halt
20 |
21 | # int Sum(int *Start, int Count)
22 0x03a: a058 | Sum: pushl %ebp
23 0x03c: 2045 | rrmovl %esp,%ebp
24 0x03e: 501508000000 | mrmovl 8(%ebp),%ecx # ecx = Start
25 0x044: 50250c000000 | mrmovl 12(%ebp),%edx # edx = Count
26 0x04a: 308000000000 | irmovl $0, %eax # sum = 0
27 0x050: 6222 | andl %edx,%edx
28 0x052: 7374000000 | je End
29 0x057: 506100000000 | Loop: mrmovl (%ecx),%esi # get *Start
30 0x05d: 6060 | addl %esi,%eax # add to sum
31 0x05f: 308304000000 | irmovl $4,%ebx #
32 0x065: 6031 | addl %ebx,%ecx # Start++
33 0x067: 3083ffffffff | irmovl $-1,%ebx #
34 0x06d: 6032 | addl %ebx,%edx # Count--
35 0x06f: 7457000000 | jne Loop # Stop when 0
36 0x074: | End:
37 0x074: b058 | popl %ebp
38 0x076: 90 | ret
39 0x100: | .pos 0x100
40 0x100: | Stack: # The stack goes here

Figure 1:Sample object code file. This code is in the file asum.yo in the y86-code subdirectory.

3

2 Utility Programs

Once installation is complete, themisc directory contains two useful programs:

YAS The Y86 assembler. This takes a Y86 assembly code file with extension.ys and generates a file with
extension.yo. The generated file contains an ASCII version of the object code, such as that shown in
Figure 1 (the same program as shown in CS:APP Figure 4.7). Theeasiest way to invoke the assembler
is to use or create assembly code files in they86-code subdirectory. For example, to assemble the
program in fileasum.ys in this directory, we use the command:

unix> make asum.yo

YIS The Y86 instruction simulator. This program executes the instructions in a Y86 machine-level pro-
gram according to the instruction set definition. For example, suppose you want to run the program
asum.yo from within the subdirectoryy86-code. Simply run:

unix> ../misc/yis asum.yo

Y IS simulates the execution of the program and then prints changes to any registers or memory loca-
tions on the terminal, as described in CS:APP Section 4.1.

3 Processor Simulators

For each of the three processors, SEQ, SEQ+, and PIPE, we haveprovided simulatorsSSIM, SSIM+, and
PSIM respectively. Each simulator can be run in TTY or GUI mode:

TTY mode Uses a minimalist, terminal-oriented interface. Prints everything on the terminal output. Not
very convenient for debugging but can be installed on almostany system and can be used for auto-
mated testing. The default mode for all simulators.

GUI mode Has a graphic user interface, to be described shortly. Very helpful for visualizing the processor
activity and for debugging modified versions of the design. However, requires installation of Tcl/Tk
on your system. Invoked with the-g command line option.

3.1 Command Line Options

You can request a number of options from the command line:

-h Prints a summary of all of the command line options.

-g Run the simulator in GUI mode (default TTY mode).

4

-t Runs both the processor and the ISA simulators, comparing the resulting values of the memory, register
file, and condition codes. If no discrepancies are found, it prints the message “ISA Check Succeeds.”
Otherwise, it prints information about the words of the register file or memory that differ. This feature
is very useful for testing the processor designs.

-l m Sets the instruction limit, executing at mostm instructions before halting (default 10000 instruc-
tions).

-v n Sets the verbosity level to0 <= n <= 2 (defaultn = 2).

Simulators running in GUI mode must be invoked with the name of an object file on the command line. In
TTY mode, the object file name is optional, coming from stdin by default.

Here are some typical invocations of the simulators (from they86-code subdirectory):

unix> ../seq/ssim -h
unix> ../seq/ssim -t < asum.yo
unix> ../pipe/psim -t -g asum.yo

The first case prints a summary of the command line options forSSIM. The second case runs the SEQ
simulator in TTY mode, reading object fileasum.yo from stdin. The third case runs the PIPE simulator in
GUI mode, executing the instructions object fileasum.yo. In both the second and third cases, the results
are compared with the results from the higher-level ISA simulator.

3.2 SEQ and SEQ+ Simulators

The GUI version of the SEQ processor simulator is invoked with an object code filename on the command
line:

unix> ../seq/ssim -g asum.yo &

where the “&” at the end of the command line allows the simulator to run in background mode. The
simulation program starts up and creates three windows, as illustrated in Figure 2–4.

The first window (Figure 2) is the main control panel. If the HCL file was compiled byHCL2C with the
-n name option, then the title of the main control window will appearas “Y86 Processor: name”
Otherwise it will appear as simply “Y86 Processor.”

The main control window contains buttons to control the simulator as well as status information about the
state of the processor. The different parts of the window arelabeled in the figure:

Control: The buttons along the top control the simulator. Clicking the Quit button causes the simulator to
exit. Clicking theGo button causes the simulator to start running. Clicking theStop button causes the
simulator to stop temporarily. Clicking theStep button causes the simulator to execute one instruction
and then stop. Clicking theReset button causes the simulator to return to its initial state, with the
program counter at address 0, the registers set to 0s, the memory erased except for the program, and
the condition codes set withZF = 1, CF = 0, andOF = 0.

5

Controls

Stage

signals

Register

file

Condition

codes

Exception status

Figure 2: Main control panel for SEQ simulator

6

Control

Object code

Assembly

Code

Currently executing instruction

Figure 3: Code display window for SEQ simulator

0x00f0 0x00f4 0x00f8 0x00fc

Figure 4: Memory display window for SEQ simulator

7

The slider below the buttons control the speed of the simulator when it is running. Moving it to the
right makes the simulator run faster.

Stage signals:This part of the display shows the values of the different processor signals during the current
instruction evaluation. These signals are almost identical to those shown in CS:APP Figure 4.21. The
main difference is that the simulator displays the name of the instruction in a field labeledInstr, rather
than the numeric values oficode andifun. Similarly, all registers are shown using their names, with
“----” indicating that no register access is required.

Register file: This section displays the values of the eight program registers. The register that has been
updated most recently is shown highlighted in light blue. Register contents are not displayed until
after the first time they are set to nonzero values.

Remember that when an instruction writes to a program register, the register file is not updated until
the beginning of the next clock cycle. This means that you must step the simulator one more time to
see the update take place.

Status: This shows the status of the current instruction being executed. The possible values are:

AOK: No problem encountered.

ADR: An addressing error has occurred either trying to read an instruction or trying to read or write
data. Addresses cannot exceed0x0FFF.

INS: An illegal instruction was encountered.

HLT: A halt instruction was encountered.

Condition codes: These show the values of the three condition codes:ZF, SF, andOF.

Remember that when an instruction changes the condition codes, the condition code register is not
updated until the beginning of the next clock cycle. This means that you must step the simulator one
more time to see the update take place.

The processor state illustrated in Figure 2 is for the secondexecution of line 32 of theasum.yo program
shown in Figure 1. We can see that the program counter is at0x065, that it has processed the instruction
addl %ebx %ecx, that register%eax holds0xcd, the sum of the first two array elements, and%edx
holds 3, the count that is about to be decremented. Register%ecx still holds 0x18, the address of the
second array element, but there is a pending write of0x01C to this register (sincedstE is set to%ecx and
valE is set to0x01C). This write will take place at the start of the next clock cycle.

The window depicted in Figure 3 shows the object code file thatis being executed by the simulator.1 The
edit box identifies the file name of the program being executed. You can edit the file name in this window
and click theLoad button to load a new program. The left hand side of the displayshows the object code
being executed, while the right hand side shows the text fromthe assembly code file. The center has an
asterisk (*) to indicate which instruction is currently being simulated. This corresponds to line 32 of the
asum.yo program shown in Figure 1.

1On some windowing systems, this window begins life as a closed icon if the object file is large. If this happens, simply click
on the icon to expand the window.

8

The window shown in Figure 4 shows the contents of the memory.It shows only those locations between the
minimum and maximum addresses that have changed since the program began executing. Each row shows
the contents of four memory words. Thus, each row shows 16 bytes of the memory, where the addresses
of the bytes differ in only their least significant hexadecimal digits. To the left of the memory values is the
“root” address, where the least significant digit is shown as“-”. Each column then corresponds to words
with least significant address digits0x0, 0x4, 0x8, and0xc. The example shown in Figure 4 shows
memory locations0x00f0, 0x00f4, 0x00f8, and0x00fc.

The memory contents illustrated in the figure show the stack contents of theasum.yo program shown in
Figure 1 during the execution of theSum procedure. Looking at the stack operations that have taken place
so far, we see that%esp was first initialized to0x100 (line 3), and then we pushed the values 4 (line 15)
and0x014, the address ofarray (line 17) before making the call toSum (line 18). This call pushed the
return address0x039 onto the stack. The first instruction ofSum pushes%ebp onto the stack (line 22),
having value0x100. That accounts for all of the words shown in this memory display.

Figure 5 shows the control panel window for the SEQ+ simulator, when executing the same object code
file and when at the same point in this program. We can see that the only difference is in the ordering of
the stages and the different signals listed. These signals correspond to those in CS:APP Figure 4.31. The
SEQ+ simulator also generates code and memory windows. These have identical format to those for the
SEQ simulator.

3.3 PIPE Simulator

The PIPE simulator also generates three windows. Figure 6 shows the control panel. It has the same set of
controls, and the same display of the register file and condition codes. The middle section shows the state of
the pipeline registers. The different fields correspond to those in CS:APP Figure 4.53. At the bottom of this
panel is a display showing the number of cycles that have beensimulated (not including the initial cycles
required to get the pipeline flowing), the number of instructions that have completed, and the resulting CPI.

As illustrated in the close-up view of Figure 7, each pipeline register is displayed with two parts. The
upper values in white boxes show the current values in the pipeline register. The lower values with a gray
background show the inputs to pipeline register. These willbe loaded into the register on the next clock
cycle, unless the register bubbles or stalls.

The flow of values through the PIPE simulator is quite different from that for the SEQ or SEQ+ simulator.
With SEQ and SEQ+, the control panel shows the values resulting from executing a single instruction. Each
step of the simulator performs one complete instruction execution. With PIPE, the control panel shows the
values for the multiple instructions flowing through the pipeline. Each step of the simulator performs just
one stage’s worth of computation for each instruction.

Figure 8 shows the code display for the PIPE simulator. The format is similar to that for SEQ and SEQ+,
except that rather than a single marker indicating which instruction is being executed, the display indicates
which instructions are in each state of the pipeline, using charactersF, D, E, M, andW, for the fetch, decode,
execute, memory, and write-back stages.

The PIPE simulator also generates a window to display the memory contents. This has an identical format
to the one shown for SEQ (Figure 4).

9

Controls

Stage

signals

Register

file

Condition

codes

Exception status

Figure 5: Main control panel for SEQ+ simulator

10

Controls

Pipeline

Register

file

Condition

codes

Performance

monitor

Figure 6: Main control panel for PIPE simulator

Current state

Register inputs

Figure 7: View of single pipe register in control panel for PIPE simulator

11

Control

Object code

Assembly

code

Currently executing instructions

Figure 8: Code display window for PIPE simulator

12

The example shown in Figures 6 and 8 show the status of the pipeline when executing the loop in lines
29–35 of Figure 1. We can see that the simulator has begun the second iteration of the loop. The status of
the stages is as follows:

Write back: The loop-closingjne instruction (line 35) is finishing.

Memory: Themrmovl instruction (line 29) has just read0x0C0 from address0x018. We can see the
address invalE of pipeline register M, and the value read from memory at the input ofvalM to pipeline
register W.

Execute: This stage contains a bubble. The bubble was inserted due to the load-use dependency between
themrmovl instruction (line 29) and theaddl instruction (line 30). It can be seen that this bubble
acts like anop instruction. This explains why there is no instruction in Figure 8 labeled with “E.”

Decode: Theaddl instruction (line 30) has just read0x00D from register%eax. It also read0x00D from
register%esi, but we can see that the forwarding logic has instead used thevalue0x0C0 that has
just been read from memory (seen as the input tovalM in pipeline register W) as the new value of
valA (seen as the input tovalA in pipeline register E).

Fetch: Theirmovl instruction (line 31) has just been fetched from address0x05f. The new value of the
PC is predicted to be0x065.

Associated with each stage is anexception statusfield Exc. This field shows the status of the instruction
in that stage of the pipeline. Status “AOK” means that no exception has been encountered. Status “BUB”
indicates that a bubble is in this stage, rather than a normalinstruction. Other possible status values are
“ADR” when an invalid memory location is referenced, “INS” when an illegal instruction code is encoun-
tered, “PIP” when a problem arose in the pipeline (this occurs when both the stall and the bubble signals for
some pipeline register are set to 1), and “HLT” when a halt instruction is encountered. The simulator will
stop when any of these last four cases reaches the write-backstage.

Carrying the exception status for an individual instruction through the pipeline along with the rest of the in-
formation about that instruction enables precise handlingof the different exception conditions, as described
in CS:APP Section 4.5.11.

4 Some Advice

The following are some miscellaneous tips, learned from experience we have gained in using these simula-
tors.

• Get familiar with the simulator operation.Try running some of the example programs in they86-code
directory. Make sure you understand how each instruction gets processed for some small examples.
Watch for interesting cases such as mispredicted branches,load interlocks, and procedure returns.

• You need to hunt around for information.Seeing the effect of data forwarding is especially tricky.
There are seven possible sources for signalvalA in pipeline register E, and six possible sources for

13

signalvalB. To see which one was selected, you need to compare the input to these pipeline register
fields to the values of the possible sources. The possible sources are:

R[d srcA] The source register is identified by the input tosrcA in pipeline register E. The register
contents are shown at the bottom.

R[d srcB] The source register is identified by the input tosrcB in pipeline register E. The register
contents are shown at the bottom.

D valP This value is part of the state of pipeline register D.

e valE This value is at the input to fieldvalE in pipeline register M.

M valE This value is part of the state of pipeline register M.

m valM This value is at the input to fieldvalM in pipeline register W.

W valE This value is part of the state of pipeline register W.

W valM This value is part of the state of pipeline register M.

• Do not overwrite your code.Since the data and code share the same address space, it is easy to
have a program overwrite some of the code, causing complete chaos when it attempts to execute the
overwritten instructions. It is important to set up the stack to be far enough away from the code to
avoid this.

• Avoid large address values.The simulators do not allow any addresses greater than0x0FFF. In
addition, the memory display becomes unwieldy if you modifymemory locations spanning a wide
range of addresses.

• Be aware of some “features” of the GUI-mode simulators (PSIM and SSIM).

– If you are running in GUI mode on a Unix box, remember to initialize the DISPLAY environ-
ment variable:

unix> setenv DISPLAY myhost.edu:0

– With some Unix X Window managers, the “Program Code” window begins life as a closed
icon. If you don’t see this window when the simulator starts,you’ll need to expand the expand
manually by clicking on it.

– With some Microsoft Windows X servers, the “Memory Contents” window does not automat-
ically resize itself when the memory contents change. In these cases, you’ll need to resize the
window manually to see the memory contents.

– The simulators will terminate with a segmentation fault if you ask them to execute a file that is
not a valid Y86 object file.

– When running in GUI mode, the simulators will single-step past ahalt instruction.

14

