
Multi criteria decision methods for boosting CBR agents
with genetic algorithms

Beatriz López, Carles Pous, Pablo Gay, Albert Pla
University of Girona, Campus montilivi, edifice P4, Girona, Spain

{beatriz.lopez, carles.pous}@udg.edu, {pgay,apla}@eia.udg.edu

ABSTRACT
In this paper we use genetic algorithms to learnt weights
in a boosting scenario where several case-based reasoning
agents cooperate. In order to deal with the genetic algorithm
results, we propose several multi-criteria decision making
methods. We experimentally test the methods proposed in
a breast cancer diagnosis domain.

Keywords
Ensemble Learning, Case-Based Reasoning, Genetic Algo-
rithms, Multicriteria Decision Making

1. INTRODUCTION
Ensemble learning has been a matter of concern in the last

recent years because of its benefits on reducing the bias-
variance of classifiers. Bagging, boosting and staging are
three very well known ways of addressing this relatively new
way of learning. Bagging assigns randomly to each learner a
set of examples, so the construction of complementary learn-
ers is left to the chance and to the unstability of the learning
methods. Boosting actively seek to generate complementary
base learners, on the basis of the methods of the previous
learners. Staking deals with the combination of models of
different algorithms [18, 13].

Ensemble learning has been recently applied to multi-
agent systems, so that several learning agents collaborate in
a distributed environment. For example, in [11] the authors
propose several ensemble schemas for cooperative case-based
learners.

The usual way in which bagging and boosting integrate
the different learners is under a weighted voting schema.
Therefore, the key issue is the weight assigned to each agent.
AdaBoost [3] is one of the best known learning algorithms for
this purpose, having today a lot of variants. More recently,
genetic algorithms (GAs) have also been applied [14], but
mainly in non-multi-agent environments. Our research is
related to extend the application of genetic algorithms, for
boosting purposes, in a multi-agent environment where each
classifier is linked to a given agent. Under this perspective,
our multi-agent system approaches to trust learning as in [5]
and [1].

Cite as: Multi criteria decision methods for boosting CBR agents with
genetic algorithms, Lopez, Pous, Gay and Pla, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In particular, in our approach each classifier follows case-
based reasoning (CBR) method, so we are dealing with CBR
agents. Moreover, since we are actively seeking for the com-
plementary of learners through a GA, we say that we are
boosting CBR agents.

According to the genetic algorithm theory, several runs
are required in order to deal with the randomness involved
in this kind of algorithms [9]. Thus, two runs with differ-
ent random-number seeds will generally produce different
detailed behaviours. But finally, a single weight should be
assigned to a boosting agent. In this paper, we present sev-
eral alternatives for obtaining this single weight from the
outcomes of the different genetic algorithm runs. Our meth-
ods have been applied in a breast cancer diagnosis domain,
and we show the different results obtained.

This paper is organised as follows. First we introduce
the boosting schema in which our CBR agents cooperate.
Next, we describe the GA we propose and the methods to
manage the outcomes of the different runs. We continue
by providing the information about the application domain
we are working on and the results obtained in it. Finally,
some related work is highlighted and some conclusion and
discussion is provided.

2. BOOSTING CBR AGENTS
Our multi-agent system (MAS) consists of n case-based

agents that cooperate for solving a problem. Each agent
provides its advise or solution about a case, and a coordina-
tor makes a final decision based on a weighted voted schema.

Each agent is trained with a set of examples; however,
each agent receives only a part of the examples (as in [10]).
That is, if a case is composed by A attributes, each agent
receives a subset of it, A1, . . . , An ⊂ A, with Ai

⋂
Aj = ∅.

This partition correspond to the different agent specializa-
tion. For example, in a medical domain, A1 attributes could
correspond to the epidemiological analysis, A2 to the radio-
logical data, and so on, representing each subset the partic-
ular unit in a hospital in which the data have been gathered.
Thus, each agent is specialised in a particular field of knowl-
edge of the domain.

Since there is a coordinator agent in charge of dealing
with cooperation issues, the system is centralised. The co-
ordinator agent keeps a weighti on each agent according to
the performance provided by the agent. This weights are
learned according to the method proposed in this paper in
section 3.

When a new case C needs a solution, the coordinator
agent broadcasts the case to the CBR agents. CBR agents

compute internally a solution for the case following a case-
based reasoning process. Next, the CBR agents reply to
the coordinator with a tuple containing the class to which
the case belongs according to its case-base, and the con-
fidence degree on the solution it has computed. That is,
ai =< classi, δi >, where ai is the answer of the i agent;
classi the class provided by the agent; and δi is a confidence
value in [0,1], where 1 means high confident. We are cur-
rently considering a diagnosis environment, so only two class
values are under evaluation: 1 (positive diagnosis or illness)
and 0 (negative diagnosis or healthy).

Afterwards, the coordinator agent combines the different
answers in order to find information regarding the positive
diagnostic according to the following expression:

v =

∑n
i=1 classi ∗ ωi

ωi
(1)

where n is the number of agents; and ωi is a combina-
tion of the weight of the i agent and δi, such that ωi =
f(weighti, δi). The f function can be any, as for example
the multiplication.

Then, if v is over a given threlhold τ , the final answer
of the multi-agent system is positive. Otherwise, negative.
This decision procedure follows the reuse step of a case-based
system as explained in [12]. See also [6] for further details
on the boosting CBR MAS system.

3. MCDM FOR GA RESULTS
The method we propose to learn the agents weight has

two phases: genetic algorithm learning and a multi-criteria
decision process.

3.1 Genetic algorithm
A genetic algorithm (AG) consists on the following steps

[9]:

1. Start with a randomly generated population of chro-
mosomes

2. Calculate the fitness of each chromosome in the popu-
lation

3. Repeat

(a) Select a pair of chromosomes from the current
population

(b) With a probability pc cross over the pair to form
two offsprings

(c) With a probability pm mutate the two offsprings

4. Replace the current population with the new one

5. Goto step 2 until some ending condition holds..

When applying genetic algorithms to learn the weights in
a boosting CBR agents scenario, the key issues are how to
represent chromosomes and how to define the fitness func-
tion. Particularly, we have defined the chromosome as an
array of n values; each value represents the weight of an
agent. On the other hand, the fitness of a chromosome is a
function of the error of the boosting CBR system it codifies
when applied to a data set of examples. So the chromosome
is translated to the corresponding boosting CBR MAS, it is
run for a given set of examples, and an averaged error over

S GA 1
…

1
1weight 1

2weight 1
nweight

Set 1 GA 1

Error 1

S

M examples

GAm
…

mweight1
mweight2

m
nweight

…

Set m Error m

Figure 1: AG runs.

all of the examples is provided. Finally, whenever between a
population and the new one there is no improvements (the
error does not decrease), 50 additional iterations are per-
formed, and the GA is stopped. Regarding other details
about crossover, mutation, and remaining details see [6].

As it is possible to observe, randomness plays a large role
in each run; so two different runs can produce different re-
sults. Thus, different runs are required, and a final solution
should be obtained. For this purpose, we apply a cross-
validation methodology, to obtain m folds from the original
M examples. Each fold is composed by a training data set
and a test data set. Then, the GA is repeated for each
training data set, obtaining m sets of weights. After that,
the boosting CBR multi-agent system configured with the
learnt weights is tested with the test data set and m error
rates are obtained, one per each of the GA run (see Figure
1).

Thus, after the m GA runs, we have get m sets of weights
and m error rates, from which we need to determine a final
set of weights. Note, that it is not the case that the GA with
the lowest error rate is the best. As stated above, random-
ness is involved in the cross-validation procedure (data with
which the weights have been obtained) and in the algorithm.
So we propose the use of multi-criteria decision making to
obtain a final set of weights for our boosting schema.

3.2 Multi-Criteria Decision Methods
Multi-criteria decision making (MCDM) aims at support-

ing decisions when several alternatives are available accord-
ing to different criteria [17]. We can order those alternatives,
and then choose one. We can also combine all of them to
obtain a new solution thanks to either information fusion
techniques or aggregation operators. We are interested in
the second option. Among the different aggregation opera-
tors, there are the mean (M) and the weighted mean (WM).

Thus, after m runs of the GA on boosting a number of n
CBR agents, we get the following sets of weights:

run Agent1 Agent2 ... Agentn
1 weight11 weight12 ... weight1n
...
m weightm1 weightm2 ... weightmn

The different runs can be considered alternatives from the
MCDM point of view. Thus, a mean that can compute a
final weight weighti for the i agent is the following:

weighti =

∑m
i=1 weight

j
i

m
(2)

where m is the total number of weights obtained by the AGs
regarding the i agent (see Figure 1).

In the case of a WM, we need to compute the mean val-

ues of the different weights weigthj
i obtained according to

another ponderation µ1
1, ...µ

m
1 , . . . , µ

1
n, ...µ

m
n . Thus,

weighti =

∑m
j=1 weight

j
i ∗ µ

j
i∑m

j=1 µ
j
i

(3)

So, a new parameter µj
i should be determined in order to

obtain the final values weigthi. We propose four methods:
rated ranking, voted ranking, error based, and mean value.

First, the rated ranking method consist on 1) ranking the
different weights for a given sets, and 2) computing the dis-
tance to the first position.

We can compute the ranking of each agent in all the runs
by sorting them according to a descending order (from the
highest to the lowest weight). So, we obtain a set of ranks
as follows:

run Agent1 Agent2 ... Agentn
1 rank1

1 rank1
2 ... rank1

n

...
m rankm

1 rankm
2 ... rankm

n

Next, the µj
i is computed as follows:

µj
i =

1

rankj
i

(4)

Second, in the voted ranking method, all the weights ob-
tained by the GA weightji are ranked as in the previous one.
However, after obtaining the ranking, we count the times an
agent occupies the same rank, obtaining the ”voted” rank
for each agent votki . Thus if we have m runs, we have m
possible votes per agent. In the next step, all the votes are
averaged according to the following expression:

µj
i =

∑n
k=1[(n+ 1)− k] ∗ votk

i
m

n
∀j (5)

Third, the error based method takes advantage of the in-
formation provided by the learning algorithm related to the
error to which the GA converges. Thus, the distance to the
error is used as the µj

i , as follows

µj
i = 1− errorj (6)

Finally, we define a the mean value method based on the
mean weight value obtained for the agents in all the runs.
Let mvi be this mean value. Then, the inverse to the dis-
tances to this value is used as µj

i . That is,

µj
i = 1− |mvi − weightji | (7)

4. APPLICATION TO DIAGNOSIS
We have tested our methodology in a breast cancer di-

agnosis scenario. We have used a Breast Cancer data base
provided by the team of physicians we are working with. The
database was constituted of 612 independent cases, with 239
healthy people. A first selection of the relevant attributes
was performed by the physicians and 85 attributes were se-
lected.

Data of each case has been partitioned in 8 groups, fol-
lowing the questionnaire criteria with which physicians have

collected them that are related to different medical special-
isations (epidemiology data, family information data, etc.).
Therefore, we have 8 CBR agents in our system.

4.1 Experimental set up
We have followed a cross-validation procedure, with 90%

of the cases for training and 10% for testing. Up to 10 folds
were generated, and 10 AG runs have been performed, one
per fold. Thus, we finally obtain 10*8 weights.

The following experimental settings have been defined:

• None: no learning has been applied. So all the agents
weights have been set to 1.

• Mean: the mean operator has been used

• Ranking: the WM has been used together with the
rated ranking method

• Voting: the WM operator has been applied together
with the voting method

• Error: the WM operator has been used together with
the error-based method

• MeanValue: the WM operator has been used together
with the mean value method.

The results obtained in each experimental configuration
are detailed in the next section.

4.2 Results
The weights obtained are after the 10 AG runs are the

following:

A0 A1 A2 A3 A4 A5 A6 A7
None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0.58 0.02 0.03 0.03 0.27 0.02 0.04 0.02

Ranking 0.55 0.01 0.01 0.01 0.22 0.01 0.01 0.00
Voting 0.54 0.01 0.02 0.01 0.21 0.01 0.03 0.01
Error 0.39 0.02 0.02 0.02 0.19 0.01 0.03 0.01

MeanValue 0.45 0.02 0.03 0.03 0.19 0.02 0.04 0.02

Then, we have implemented the corresponding CBR agents.
We have used ROC (Receiver Operator Characteristics) curves
to plot the results[2]. Figure 2 shows the plot corresponding
to the different scenarios. As it is possible to observe, the
worst situation is when all of the agents weights are set to 1
(so the boosting voting schema has no weight). The remain-
ing methods perform quite well and in a similar behaviour.

Analysing the weights obtained by all of our methods, we
see that in fact, the weights are quite closer. So we are not
surprised on obtaining so close results.

5. RELATED WORK
There are several works related to boosting CBR agents

in particular, and ensemble learning in general [16, 15, 8].
For example, in [11] two schemas are proposed: bagging
and boosting. In this work, the authors focus on how cases
should be shared among agents. We are not so worried about
that, but in how to set up the weights assigned to the agents
thanks to a GA methodology. We are using the complete
set of examples to train all the agents according to a cross-
validation methodology as in [7].

A work closer to us is [10], in which the authors propose
a corporate memory for agents, so that each agent knows
about a piece of the case, as in our case. In [10], however,

Figure 2: Comparison of the different scenarios.

the authors propose a negotiated retrieval method based on
distributed constraint optimisation techniques. We are us-
ing the basic weighting voting schema for combining CBR
agents.

Regarding research works on to use GA in a boosting envi-
ronment, it is important to distinguish the approach followed
in [14]. Here, the authors analyse the greedy behaviour of
Adaboost and suggest to use GAs to improve the results.
Another interesting work is [4], in which the AGs are used
to search on the boosting space for sub-ensembles of learn-
ers.

6. CONCLUSIONS
Boosting mechanism are a promising paradigm for multi-

agent systems. In this paper we have described a boosting
mechanism based on CBR agents, in which the final result
of the system is the weighted voting results of the different
agents. In order to determine the weights, we are using ge-
netic algorithms. Due to the randomness involved in GA, it
is necessary to run several times the GAs, obtaining different
results. In this paper we present a analyse different multi-
criteria decision making methods in order to deal with the
different GA results, and that allows to determine a single
weight for each agent.

The methods have been applied to a breast cancer diag-
nosis data base. The results shown that MCDM methods
obtain weights that are more robust to changes on the ex-
amples. Among all the methods presented, the one based
on the ranking of the agents in each AG is the one that
outperforms the other, although the results are quite close.

7. ACKNOWLEDGMENTS
This research project has been partially funded by the

Spanish MEC projects DPI 2006-09370, CTQ2008-06865-
C02-02/PPQ, TIN2008-04547/TIN, and Girona Biomedical
Research Institute (IdiBGi) project GRCT41.

8. REFERENCES
[1] A. Birk. Boosting cooperation by evolving trust.

Applied Artificial Intelligence, 14:769–784, 2000.

[2] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27:861–874, 2006.

[3] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boostingg. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[4] D. Hernández-Lobato, J. M. Hernández-Lobato,
R. Ruiz-Torrubiano1, , and A. Valle. Pruning adaptive
boosting ensembles by means of a genetic algorithm.
In IDEAL (LNCS 4224), pages 322–329, 2006.

[5] K. Komathyk and P. Narayanasamy. Trust-based
evolutionary game model assisting aodv routing
againsts selfishness. Journal of network and
computer-application, 31(4):446–471, 2008.

[6] B. López, A. Pla, P. Gay, and C. Pous. Boosting cbr
agents with genetic algorithms. In ICCBR, submitted,
2009.

[7] E. Lozano and E. Acuña. Parallel computation of
kernel density estimates classifiers and their
ensembles. In Proceedings of the International
Conference on Computer, Communication and Control
Technologies, 2003.

[8] F. J. Martin, E. Plaza, and J. L. Arcos. Knowledge
and experience reuse through communication among
competent (peer) agents. International Journal of
Software Engineering and Knowledge Engineering,
9(3):319–341, 1999.

[9] M. Mitchell. An Introduction to Genetic Algorithms.
The MIT Press, 1998.

[10] M. V. Nagendra-Prasad and E. Plaza. Corporate
memories as distributed case libraries. In 10th Banff
Knowledge Acquisition for Knowledge-based Systems
Workshop, pages 1–19, 1996.

[11] S. Ontañon and E. Plaza. Cooperative multiagent
learning. In ALAMAS, LNAI 2636, pages 1–17, 2003.

[12] C. Pous, P. Gay, A. Pla, J. Brunet, J. Sanz, and
B. López. Modeling reuse on case-base reasoning with
application to breast cancer diagnosis. In AIMSA,
LNAI 5253, pages 322–332, 2008.

[13] S. Russell and P. Norvig. Artificial Intelligence: A
modern approach (second edition). Prentice Hall, 2003.

[14] Ïsmet Yalabik, F. T. Yarman-Vural, G. Uçoluk, and
O. T. Sehitoglu. A pattern classification approach for
boosting with genetic algorithms. In 22th
International Symposium on Computer and
Information Sciences, pages 1–6, 2007.

[15] Z. Sun and G. R. Finnier. Case based reasoning in
multiagent systems (chapter 7). In Intelligent
techniques in E-commerce: A case-based reasomning
perspective, Springer, 2004.

[16] E. I. Teodorescu and M. Petridis. An architecture for
multiple heterogeneous case-based reasoning
employing agent technologies. In CIMAS, 2008.

[17] V. Torra and Y. Narukawa. Modeling Decisions:
Information Fusion and Aggregation Operators.
Springer, 2007.

[18] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques,2nd Edition.
Morgan Kaufmann, 2005.

