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ABSTRACT
Efficient management of large-scale job processing systems is
a challenging problem, particularly in the presence of multi-
users and dynamically changing system conditions. In ad-
dition, many real world systems require the processing of
multi-resource jobs where centralized coordination may be
difficult. Most conventional algorithms, such as load balanc-
ing, are designed for centralized, single resource problems.
Indeed, in such a case, load balancing is known to provide
optimal solutions. However, load balancing is not well suited
to the more general, distributed, multi-resource allocation
problem across heterogeneous networks that is frequently
encountered in real world applications. Approaches based
on heuristics can be designed to handle multi-resource allo-
cation, but such approaches do not necessarily attempt to
optimize directly a system-wide objective function. In this
paper, we investigate a multiagent coordination approach
to distributed, multi-resource job scheduling across hetero-
geneous servers. In this approach, agents at servers make
local decisions to optimize an agent specific objective. The
agent objectives though, are derived so that they are aligned
with the overall efficiency of the system. We demonstrate
that such a system outperforms (sometimes dramatically)
more crudely constructed multiagent systems as well as a
multi-resource version of load balancing.
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General Terms
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1. INTRODUCTION
With the ever increasing connectivity between servers,

networked or grid computing is becoming a natural alterna-
tive to either dedicated homogeneous server grids or super-
computers for processing large numbers of jobs with varying
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priorities and resource requirements. However, managing a
large, distributed data and job processing system capable
of handling multiple resource requirements is a challenging
problem, in that many difficulties need to be simultaneously
addressed. In the presence of heterogeneous servers (e.g.,
processor speed, memory), jobs with multiple resource re-
quirements (e.g., data access, memory) dynamic environ-
ments (e.g., job arrivals do not follow a static distribution)
and the presence of disturbances in the system (e.g., fail-
ing servers or links) most algorithms designed for a single
resource allocation algorithm either do not apply or fail to
provide good solutions.

Indeed, though the single-resource case has been exten-
sively, studied [33], the multi-resource job scheduling across
a network of heterogeneous servers has received much less at-
tention [27].1 In addition, because of the natural distributed
nature of such system, approaches based on centralized con-
trol are often inappropriate. Such methods, provide rigid,
inefficient solutions, and in most cases have communication
and synchronization requirements that offset any of the ben-
efits of using a grid based system.

Load balancing is a centralized algorithm that has been
successfully applied to single resource scheduling problems.
In fact, for single resource optimization problems, there are
theoretical results showing that load balancing does provide
optimal solutions [33]. Generalizing load balancing to the
multi-resource case, though, is far from straightforward. In
its simplest form, multi-resource load balancing aims at en-
suring that the level of activity on each server stays the
same, i.e., the load on the system is balanced across all the
servers. This approach to load balancing assumes that the
load being distributed across the servers is a de-facto de-
sirable solution, i.e. that it optimizes some pre-specified
global objective. In the multi-resource case, this assump-
tion is no longer valid, and one needs to determine which
resource (or which combination of resources) needs to be
“balanced”. In fact, different extensions of load balancing to
the multi-resource case leads to the optimization of different
functions [27], and thus there are no guarantees that bal-
ancing a particular combination of the resources will lead to
the optimization of the global objective. A further limiting
feature of load balancing is that it requires centralized con-

1Throughout this paper, we refer to servers with different
resource configurations as “heterogeneous” servers. We as-
sume that there are no compatibility issues related to com-
pilation of the jobs, and that any job can be executed at
any server, assuming the server has the necessary resources.
In some articles [27], this type of network is referred to as a
“near-homogeneous” computational grid.



trol, and though heuristics exist to overcome limitation for
the single-resource case, the performance of such algorithms
suffers greatly in the multi-resource case [27].

Multiagent learning methods are ideally suited to handle
the challenges presented by such problems. In particular,
agents based on reinforcement learning [5, 7, 24, 33, 34, 36]
offer adaptive and flexible solutions that sidestep the poten-
tial mismatch between balancing a“load”across the network
and optimizing the global objective function. Indeed, the
agent based approach we propose aims to optimize the global
objective without directly aiming to balance the load across
the servers. It is entirely possible that good solutions to
a multi-resource job scheduling across a heterogeneous grid
problem reside in states where some servers are idle while
others are operating at full capacity and have full queues.
As long as that system behavior is considered good in terms
of the global objective, no consideration should be made to
“split”, or balance the load.

Because of its direct aim at optimizing an objective func-
tion, agent-based methods address the limitations of load
balancing. As such methods based on creating a currency
[31], bio-inspired swarms [14, 44], mechanism design [9] and
coordination [4] have been proposed, as have other innova-
tive methods [11, 18, 21, 26, 19, 15] However, they introduce
a new difficulty: how to ensure that the actions of multiple
agents lead to a good global solution. To address this coordi-
nation issue, we need to ensure that the objective function of
each agent is designed in a manner that promotes two prop-
erties. First, an action that improves the agent’s objective
function should also improve the global objective. Second
an agent needs to clearly see the impact of its actions on its
own objective function [1, 2, 3, 42]. An agent based solution
to grid computing where the agent objective are set accord-
ing to these two criteria offers the best compromise between
a rigid centralized solution and a distributed solution where
the interaction among the agents can have deleterious side
effects on system behavior.

In this paper, we present an agent-based solution to the
multi-resource optimization problem in heterogeneous net-
work that outperforms both the multi-resource version of
load balancing (by up to four times), and a “naive” mul-
tiagent system in which all the agents attempt to directly
optimize the system objective. The key contribution of this
paper is in providing local objective functions for the agents
(components of a server) in a manner that allows them to
adapt locally, while ensuring that their achieving their lo-
cal objectives improves global performance. In Section 2 we
present the system model and discuss the system dynamics
of the multi-resource job scheduling across a heterogeneous
grid. In In Section 3, we derive the agent based algorithm
and present a multi-resource load balancing algorithm, along
with a simple performance bound. In Section 5, we show
simulation results where the multiagent system approach
significantly outperforms multi-resource load balancing. Fi-
nally, in Section 6 we discuss these results and highlight
future directions of research.

2. MULTI-RESOURCE OPTIMIZATION
With demand for computing resources increasing as both

the number of users and the complexity of the applications
increase, the ability of a system to efficiently schedule and
process jobs is becoming increasingly important. As such,
heterogeneous computational grids where jobs can enter the

network from any point and be processed at any point are
becoming increasingly popular. Below, we describe a model
for such a computational grid and show how an agent-based
approach can be implemented.

2.1 System Model
The computational grid model we use consists of a net-

work of N servers each with K resources (r1, ...rk). Each
server has a specified capacity for each resource assigned
to be an integer ranging from [1,M ]. Thus, M measures
the heterogeneity of the resources. For example, the first
resource r1 can correspond to the processing speed of the
server. In our configurations, on average, each server has
2-4 neighbors with which it has a direct connection.

Each job entering the system is also specified by K re-
source requirements ranging from [1,M ]. For example, the
first job resource r1 is an indication of the number of cycles
the job requires to be processed. In this formulation, for
each resource ri, i > 1, the server resource capacity must be
equal or greater than the job’s requirement in order for a job
to run on a particular server. Intuitively, this corresponds
to the requirement that a server must have enough memory
to accommodate a given job.

2.2 System Dynamics
In this model, each server has its own wait queue for jobs.

For simplicity, we allow only one job to run on a server at
a time; the other jobs remain in the queue until the pro-
cessor becomes available. Jobs enter the local queues either
externally (to the system) or are shipped from other servers.
Jobs entering externally are sent to the back of the queue
while jobs received from other queues go to the front. There
are two reasons why shipped jobs go to the front: First, it
provides a measure of “fairness” as those jobs already had to
wait in the queue of the server in which they were originally
placed. Second it provides efficiency, as it forces the system
to deal with “difficult” jobs (either run them or ship them if
they could not be run). This approach prevents these jobs
from being endlessly shuffled. At each server, the first job in
the queue is activated if the processor is available, and the
resource requirements are met. If the processor is available,
but the server does not have the resource capacity to run
the job, the server remains idle until the problem job is sent
to another server.

The dynamics of our simulations thus proceed as follows.
At each time step τ , a random number of new jobs are added
to the wait queue of each server. In particular, each server
has a probability of receiving a new job at each time. If a
given processor is idle, and the first job in the queue meets
the resource requirements, that job is activated. If not, the
server remains idle. In addition, for each τ , the server makes
a decision about the first job in the queue, deciding whether
to keep the job or send it to a neighboring server. These
decisions are made based on the agents’ probability vectors
which in turn are set using a basic learning algorithm (dis-
cussed in more detail in Section 3.3).

Thus, there are two main sources of inefficiency in the
system. The first are the bottlenecks created by jobs whose
requirements exceed the capacity of their server. When such
a job get to the front of the queue, the server remains idle
until the job is shipped to a neighbor. The second source
of inefficiency arises from mismatches between a processor’s
speed and a job’s cycle requirement.



3. MULTIAGENT ARCHITECTURE
There are many possible ways to map the multi-job schedul-

ing problem onto a multiagent system, including simply as-
signing an agent to each server and letting those agents’
actions be determining where to send a particular job. In-
stead, in this work, we explore the mapping where there are
multiple agents at each server. This results in a system with
more agents with a relatively easier learning problem, rather
than fewer agents with a more difficult learning problem. In
fact, this choice shifts the burden from a pure learning prob-
lem where the details of the agents’ algorithms are the key
to the coordination problem to how the agents interact with
one another. In particular, to each agent, we assign a vec-
tor ~p whose components give the probability of routing a
job to its various neighbors. In this scenario, the agents
are given the task of setting their own probability vector.
The design question consists of determining what objective
function each agent should attempt to optimize so that they
set the probability vectors that also optimize the overall job
processing efficiency of the full system.

The resource specifications of a job determined which agent
at the server is responsible for the shipping decision. In this
work, we focus on the job partitioning where for jobs with K
resources, 2K agents can be assigned per server where agent
1 deals with jobs such that r1 ∈ [1,M/2], ..., rk ∈ [1,M/2],
agent 2 deals with jobs r1 ∈ [M/2 + 1,M ], r2 ∈ [1,M/2]
, · · · , rk ∈ [1,M/2], etc. This approach can be directly ap-
plied in systems with a small number of resources (e.g., three
for processing speed, memory requirement and disk access),
and this is the method we use in this paper. If the number
of resources to manage becomes large, then resources can be
clustered together as appropriate. This can be achieved ei-
ther by direct design or by having agents form teams based
on the correlations of those resources.

For the dynamics governing the system evolution, we will
distinguish between two time scales : τ gives the time steps
at which the system operates (e.g., jobs enter the system,
move between queues, and are processed) whereas t gives
the time steps at which the agents operate (e.g., observe
their objectives, change their actions). This distinction is
important because it is the only way by which an agent
can get a “signal” from the system that reflects the impact
of its decision, i.e, the system has to settle down before
an objective can be matched to an action. Therefore, an
agent i changes its probability vector at each time t. Within
a ”single agent time step” t though, many jobs enter the
system, are executed, routed etc. each of which occurs at
time interval τ (t >> τ).

3.1 State Space and Global Objective
Let us define the state of each agent i at time t as by

zi,t = {(j0, w0, I
i,t
0 , ei,t0 ), · · · , (jk, wk, Ii,tk , ei,tk ), · · · } (1)

where jk identifies job k, wk is the weight of that job which
gives the importance of that job in the system, Ii,tk is the
“job indicator” function and is equal to 1 if job k was handled
(received, shipped or executed) by agent i at time step t, and
0 otherwise, and ei,tk determines whether job k was executed
at agent i at time step t.

Now, the state of the full system, zt at time t, is given by:

zt = {(j0, w0, 1, e
t
0), · · · , (jk, wk, 1, etk), · · · } (2)

where etk determines whether job k was executed at time

step t. Note that the job indicator function Itk is always set
at 1 for the full system, since by definition, if the job is in
the system, it must have been handled by at least one agent.
Nevertheless, we keep the notation, both for ensuring con-
sistency between the state vector of an agent and that of the
full system, and because its presence in the global objective
will facilitate the derivation of the agents’ objectives.

Based on this, the global objective at time t is given by:

G(zt) =

P
k wk.e

t
kP

k wk
(3)

Intuitively, G gives the weighted ratio of all the jobs that
were processed at time step t to all jobs that entered the
system at that time step (recall that“time step t is a window
of time, not a single time step from the point of view of the
jobs”.)

3.2 Agent Objectives
In this work we investigated three different types of agent

objectives. Each was used exactly in the same manner with
the same learning algorithms. Hence, the only difference
in system performance is based on the objective the agents
were trying to optimize.

• The first agent objective was the global objective given
in Equation 3. This objective allowed each agent to
directly attempt to optimize the full system objective
directly. By definition, this objective guarantees that
if all agents succeed in optimizing their own objectives,
the system objective will also be optimized. However,
because in large systems each agents objective will de-
pend on the actions of other agents, in practice this ob-
jective function only provides good solutions for very
small systems [2, 13, 40].

• The second agent objective was the difference objective
discussed which aims to isolate the impact of an agent
on the system [3, 2, 39, 40, 42]. This is achieved by
computing the difference between the system objective
and the system objective that would result if agent
i were removed from the system. An agent can be
“removed” from the system by setting Ii,tk to 0 for all
jobs k for which it was set to 1 at time step t. The
difference objective (D) for agent i is given by:

Di = G(z)−G(z−i)

=

P
k wk.e

t
kP

k w
t
k

−
P
k wk.e

t
k.Ī

i,t
kP

k w
t
k

=

P
k wk.e

t
k.I

i,t
kP

k w
t
k

(4)

where Īi,tk is the complement of Ii,tk and equals 1 when

Ii,tk equals 0 and 0 when Ii,tk equals 1. Intuitively,
Di represents the weighted fraction of jobs that were
handled by agent i to the jobs that entered the system.

• The third agent objective was the “Selfish” objective,
where the agents were only concerned with processing
jobs that were assigned to them. The selfish objective
(S) for agent i is given by:

Si = G(zi)

=

P
k wk.e

t
k.I

i,t
kP

k w
t
k.I

i,t
k

(5)



Intuitively, S gives the ratio of the jobs processed by
the system at time step t, to the total jobs that passed
through that agent, hence the indicator function in the
denominator.

Notice that both D and S are specifically tuned to the
performance of a particular agent, their form is significantly
different. D attempts to measure the impact of agent i on
the system, whereas S attempts to measure the efficiency
of agent i directly, without attempting to measures its ef-
fect on the full system. Systems using both D and S are
highly sensitive to the actions of the agent, and D is much
more aligned with the system objective than S is. Similarly,
though both G and D are aligned with the system objective
(tautologically for G), an agent using D will have an easier
time seeing the impact of their actions on their objective
functions. Note that regardless of which objective function
the agents use, the system performance is always measured
by the global objective given in Eq 3.

3.3 Agent Learning
As discussed above, the agent learning took place at a

higher time scale than the system operated. For a given
time step t, each agent followed a fixed policy (e. g., the
probability vectors were fixed). During that time step t, the
system operated at τ intervals (for these experiments t =
400τ). At the end of time step t, the objective functions were
calculated and recorded in the agents’ training sets. In order
to be able to compare the performance individual probability
vectors, we cleared the system (i.e. the queues) after each t.
During the initial phase, 0 ≤ t ≤ 100, the probability vectors
were set at random. After this “data collection” phase, t ≥
100, the agents utilized a basic learning algorithm to set
their probability vectors as described below.

The learning algorithm proceeded by first generating a set
of candidate probability vectors with a Gaussian distribution
about the current probability vector. Expected objective
function values were estimated by performing a weighted av-
erage over objective function values from the agents’ training
set. The objective values were weighted by both how long
ago the value was recorded (data aging) and the distance
between the candidate and the previous probability vector.

V (~pT ) =

P
t Ft e

−αT (T−t) e−αP ||~pT−~pt||P
t e
−αT (T−t) e−αP ||~pT−~pt||

. (6)

Here, T is the current learning period, t is the period which
resulted in objective value Ft, ~pT is the current probabil-
ity vector, ~pt is the vector that resulted in objective value
Ft, and αP and αT are system parameters. Depending on
the agent objective chosen, Ft is given by G, Di, or Si as
discussed above. The new probability vector is then chosen
by sampling a Boltzmann probability distribution over the
estimated values V (~pT ). This process allows for good explo-
ration of the probability space, while ensuring that the most
recent probability vectors have more relevance in that they
are more likely to provide solutions tuned to the current
conditions.

4. MULTI-RESOURCE LOAD BALANCING
ALGORITHM

In addition to the agent-based methods introduced in this
article, we also investigated the feasibility of a distributed,
deterministic, multi-resource load balancing algorithm. For

each server, we calculated a load for each of the k resources,
lk = ΣNn (snk/ck) where snk is the need of resource k of job
n and ck is the the capacity of resource k of the server.
Thus, the resource load has been normalized to the resource
capacity of the server. We assign a load to a particular server
i as the average of its individual resource loads Li = Avg(lk).
We, then, calculate the system load as the average over the
servers Lavg = Avg(Li).

The load balancing algorithm proceeds as follows. At each
time step τ , each server calculates its own load and compares
it with the global load Lavg. If the server’s load is greater
than the global, modulo some tolerance, the server looks to
get rid of its highest load job. Each server has access to
global information about the loads on all the other servers.
Using this information, the server determines which of the
other servers has the lowest load. It then ships its high
load job to the low load server via the one of its neighbors
that lies on the shortest path between the sending and the
receiving servers.

5. EXPERIMENTAL RESULTS
We ran extensive simulations that tested the performance

of the algorithms in a variety of settings. All the results
reported here were on networks of N = 50 servers having
K = 2 and K = 4 resources. The 50 servers had 4 or
16 agents respectively, making for 200 to 800 total agents
in the system. The servers were connected into a network
having a ring configuration with random connections added
in the spirit of ”small world” networks [32, 41]. In general,
each server had 2-4 neighbors with which it had a direct
connection.

We examined the performance for different number of re-
sources K, job arrival probabilities r and different resource
ranges M . We tabulated the performance for the multiagent
approach with learning agents, a load balancing algorithm
generalized for the multi-resource case, and a random ship-
ping algorithm RAND. In the RAND algorithm, the propor-
tion vectors for shipping/holding the first job in the queue
was set randomly. This is the situation when the agents are
in the training phase of their learning algorithm. For sce-
narios involving learning agents, we performed experiments
using agent objectives based on global (G), selfish (S), and
the difference (D) objectives.

The experiments can be grouped into three categories:2

• Low Difficulty: There are two resources, each having
two types and the jobs enter the system at a slow pace.
All three key parameters have “low” settings: (K = 2,
r = .2, M = 2).

• Medium Difficulty: One of the parameters is set to a
“high” setting. For example, there are four resources,
or there are eight settings for each resource, or jobs
have a high arrival rate. This covers the following pa-

2The case where all three parameters are set to “high” re-
sults in an impossible problem in that the jobs entering the
system have a high probability of not running on most of
the machines. Because jobs are coming into the system at a
high rate, the system never has a chance to move those jobs
before they ”clog” the system, leading to a situation where
jobs are entering the system faster than the system can pro-
cess them. This situation leads to poor performance by all
the algorithms as the problem is in essence unsolvable.



rameter combinations: (K = 4, r = .2, M = 2) ;
(K = 2, r = .8, M = 2) ; (K = 2, r = .2, M = 8) .

• High Difficulty: Two of the parameters are set to“high”
values. For example, there may be both four resources
and eight types for each, or four resources and a high
rate of job arrival). This covers the following param-
eter combinations: (K = 4, r = .2, M = 2) ; (K = 2,
r = .8, M = 2) ; (K = 2, r = .2, M = 8) .

In the following subsections, we present the results of all
the algorithms for the three cases outlined above. The re-
sults show the algorithm performance at the end of the runs
(t=400) and are averaged over 50 different randomly gener-
ated network configurations. The best performance in each
case is noted in bold when the differences in the mean ( σ√

N

for N runs with standard deviation σ) are statistically sig-
nificant.

5.1 Low Difficulty Parameters

Table 1: System Processing Efficiency for Easy Set-
ting

K r M Algorithm Global Objective σ
RAND 0.9318 -

2 .2 2 S 0.976 0.0039
G 0.947 0.0052
D 0.979 0.0023
LB 0.997 0.00083

Table 5.1 shows the results (and the standard deviations
σ) for the setting where the system is not overloaded and
where there are only two resource types. Load balancing
performs best in this setting. This is an interesting, though
expected result. All the algorithms perform well in this case
and there are two reasons for the success of load balanc-
ing. First, this is a situation that is closest to the single
resource resource allocation problem where load balancing
excels. Second, because the problem is easy, there is no need
for the agent based algorithms to explore alternative solu-
tions. However, because of the nature of such algorithms,
they occasionally try a suboptimal solution to determine
whether a better alternative exists. This “exploration” is a
desirable trait. In this case however, because the “greedy”
solution is good, any exploration causes a minor drop in
performance. Figure 1 shows the convergence characteris-
tics of the agent based algorithms, demonstrating the quick
learning capability of agent using S and D objectives.

5.2 Medium Difficulty Parameters
Table 5.2 shows the results (and the standard deviations

σ) for moderately difficult settings. All three cases have
one form of difficulty (too high an arrival rate, too many
resources or too many types of jobs). In this setting, the
agent based algorithms significantly outperform load balanc-
ing. The performance of load balancing degrades markedly
for high K, and especially for high M . In fact, even setting
the probability vectors at random (RAND) outperforms load
balancing for M = 8.

This can be understood by the fact that the agent based
approaches make decisions about only the first job in the
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Figure 1: Simulations results for 50 servers
with 4 agents each with parameter values:
(K=2,r=0.2,M=2). Each t represents a “run” of 400
τ time steps with each agent having a fixed proba-
bility vector ~p during the run. At the end of each
run, objectives are calculated, the queues cleared,
and the agents reset/modify their ~p based on their
learning algorithms. Results are averages over 50
different systems configurations, and error bars (dif-
ferences in the mean) are less than .01 in all figures.

queue. But it is this first job that can create serious bot-
tlenecks in the system; if the first job needs more resources
than the server can provide, the job cannot run and remains
in queue, blocking other jobs from being processed as well.
Load balancing, on the other hand, is attempting only to
equalize the load across on the entire queue and does noth-
ing to deal with such potential bottlenecks. For large M ,
the potential for bottlenecks increases markedly. Random
probability vectors have the advantage over load balancing
that they operate directly on the location where a bottle-
neck can occur. In cases for which there are many resources
but low arrival rates (r = 0.2,M = 8) this provides an ad-
vantage for the random probability algorithm, whereas for
cases with few resources buy high arrival rates, it does not.

More interestingly, in this setting, both S and D out-
perform G, showing the need for providing local and agent
specific objectives. This result is explained by the need of
the agents to extract the signal from the noise in order to
learn the right actions. The close dependence of these agent
specific objectives to the actions of the agents allows these
algorithms to learn in settings where agents using G do not.
Figure 2 shows the convergence characteristics of the agent
based algorithms, demonstrating that the rapid learning ca-
pability of S and D. In this setting, both S and D outper-
form load balancing shortly after their learners are turned
on.

5.3 High Difficulty Parameters
Table 5.3 shows the results (and the standard deviations

σ) for the difficult problem settings. All three cases have two



Table 2: System Processing Efficiency for Moderate
Settings

K r M Algorithm Global Objective σ
RAND 0.644 -
G 0.670 0.012

2 .2 8 S 0.793 0.011
D 0.793 0.012
LB 0.225 0.013
RAND 0.626 -
G 0.629 0.0095

2 .8 2 S 0.654 0.010
D 0.691 0.0088
LB 0.645 0.014
RAND 0.530 -
G 0.549 0.012

4 .2 2 S 0.749 0.011
D 0.687 0.0098
LB 0.474 0.020

forms of difficulty (e.g., high arrival rates and too many job
types). In this setting, not only do agent based algorithm
significantly outperform load balancing, but the D agent
objective function starts to outperform the other objective
functions. These results also show the importance of setting
the agents’ objectives to be functions that are both aligned
with the system objective and impacted by the agents’ ac-
tions. The team game (G) objective has poor learning prop-
erties for the individual agents since it includes information
from the full system. The selfish (S) objective is not aligned
with the global objective, and therefore leads to the agent
learning the wrong actions. The difference objective con-
sistently outperforms G and S for the difficult parameter
settings, because it depends more closely on the action of
the agents and is aligned with the global objective.

Note that for K = 2, r = .8, and M = 8, the differences
in the mean are significant since the results are based on 50
runs and in this case σ√

N
= 0.0018, well below the difference

between the performance of S and D. Figure 3 provide the
convergence results for that setting, showing that because
they depend on the actions of the agents more closely S
and D outperform G and that because it is aligned with the
system objective, D outperforms S.

6. DISCUSSION
In this work we investigated how agent based algorithms

can learn to effectively solve a multi-resource optimization
problem involving networks of heterogeneous servers. Con-
ventional approaches to this problems (e.g., as load balanc-
ing) work well when there is instantaneous, centralized con-
trol. For all but very few applications, this is an unrea-
sonable assumption on the system’s capabilities. Practical,
heuristics based approaches on the other hand provide good
solutions for the resource problems, but often break down
in the more general, multi-resource optimization case.

The agent based solution we propose is based on assigning
agents to each server whose actions are to determine whether
a job requiring specific resources should be processed at that
server or shipped to another server, and if so, to which other
server. After a job is shipped, a new agent (residing at the
new server) becomes responsible for that job. These deci-
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Figure 2: Simulations results for 50 servers with
4 agents each with parameter values (r=0.8,M=2).
For this medium difficulty problem, agents using D
and G as objectives outperform load balancing.
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Figure 3: Simulations results for 50 servers with
4 agents each with parameter values (r=0.8,M=8).
For this hard problem, load balancing performs very
poorly, and agents using tailored objectives S and D
perform significantly better than agents using G.



Table 3: System Processing Efficiency for Difficult
Setting

K r M Algorithm Global Objective σ
RAND 0.194 -
G 0.198 0.0077

2 .8 8 S 0.241 0.0093
D 0.249 0.013
LB 0.0974 0.0045
RAND 0.130 -
G 0.137 0.0050

4 .2 8 S 0.178 0.0072
D 0.238 0.014
LB 0.0092 0.0022
RAND 0.176 -
G 0.189 0.0069

4 .8 2 S 0.195 0.0080
D 0.195 0.0073
LB 0.139 0.0099

sions are based on agent objective functions (i.e., local goals)
which are constructed to be aligned with the global objective
and be directly impacted by the actions of an agent.

The results demonstrate that for particularly easy configu-
rations, the agent-based methods do not outperform (and in
fact underperform by a slight margin) a multi-resource ver-
sion of load balancing. For moderately difficult problems,
the agent based approaches start to outperform load bal-
ancing. In those cases, a multiagent system in which all the
agents attempt to optimize the same global objective func-
tion only provide marginal improvements over conventional
load balancing. However, those marginal improvements are
obtained without requiring a centralized controller (only re-
quirement is for the global objective to be broadcast at regu-
lar intervals). Finally, for difficult problems, agents using the
difference objective (D) outperform both team games (G),
selfish agents (S) and load balancing (up to four times).

In this study we explored only cases where the number
of resources is small (K=2 and K=4)allowing for an agent
to be responsible for each permutation of resources (split
into high-low for each resource). When the number of re-
sources rises to preclude each agent being responsible for
a particular permutation, job “types” need to be selected.
This process can either be done using prior knowledge or by
using correlations among the jobs. The key factor in achiev-
ing good results is in having both an appropriate number
of agents in the system and in ensuring each agent has an
action space that is appropriate for the task. Exploring how
agents can be grouped or “teamed” at each server to provide
good solutions is an intriguing avenue for future research.
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