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ABSTRACT
When modelling human discrete choice the standard ap-
proach is to adopt the rational model. This has been shown,
however, to fail systematically under some conditions, which
makes evident the need for a better approach. The choice
model is however only part of the problem because it does
not say how to deal with uncertainty, where learning is nec-
essary. In this regard, some evidences support the claim
that the brain employs a reinforcement learning strategy
and the Q-Learning is a model that copes with it. The
Q-Learning, nevertheless, is based on the rational choice
defined by Bernoulli principle and von Neumann’s axioms.
Then to cope with a non-rational learning algorithm, for
modelling human discrete choice, a novel modification to
the Q-Learning algorithm is here presented.

1. INTRODUCTION
In lay terms, the discrete choice problem is to choose an
option from a set of those that, to the individual, the best
is. According to the Utility Theory [20] (UT) it is possible
to model such human process by assigning a numerical value
to each of those options. Then, if those values are correctly
assigned, the observed preferences (in the human subjects)
are represented by the numerical relations established by
those values.

One of the firsts tries to model this behaviour has been pro-
posed by Bernoulli [11, 12], which says that humans seek
to maximise the accumulated total wealth. Based on this
principle von Neumann and Morgenstern [40, 41] proposed
a formal model, called Expected Utility Theory (EUT), and
since then it is widely accepted to be the definition of ra-
tionality. Besides being the model for rationality it is also
accepted as the model for the human discrete choice be-
haviour, where the criticisms arise. Among the critics, Si-
mon [37, 38] became the most notorious but McFadden [29]
and Kahneman [22] have expressed their concern with the
rational model as well.

Moreover, not recently the rational assumption had been
demonstrated wrong by Allais [1, 2] and Ellsberg [19], to cite
only the most well-known. For this reason the Allais para-
dox (after Allais [1, 2]) is the focus in this text – formally
presented in Sec. 5.3. This paradox shows that the ratio-
nal assumption systematically fails to reproduce the human
preferences over a simple discrete choice problem. Fortu-
nately a mathematical model has been developed by Kah-
neman and Tversky [24] to cope with the Allais paradox, it
is called the Prospect Theory (PT) – presented in Sec. 5.

The PT, however, does not cope with uncertainty, i.e., en-
vironments where the exactly nature of the choices is un-
known. Examples of such uncertain environments are stock
markets and route choice. One approach to model such en-
vironments is to suppose a Markovian Decision Process [27,
8, 7] (MDP), where the agents are neither aware of the tran-
sition nor the reward functions. This way, for the agent, the
reward for each state is uncertain and to tackle this issue
reinforcement learning is an alternative. Among the several
algorithms the Q-Learning [45, 46] is the algorithm adopted
here.

The problem with the Q-Learning is that it is based on the
rational principle, i.e., it is a rational model. This leads to
the theme of this text: modifying the Q-Learning algorithm
to reproduce the human non-rational behaviour using the
PT as its basis (instead of the EUT). It is important to make
it clear that it is not a general purpose decision model but
a model to be used when modelling human decision making
for discrete choice problems. This means that this modified
Q-Learning algorithm does only apply for modelling human
agents and in particular for MDP environments.

2. STATE-OF-THE-ART
Rational models have been developed since von Neumann [40,
41] in several directions and in the microeconomics are the
most impressive developments. The EUT is a too restricted
model because it demands from the individuals perfect knowl-
edge and unrestricted computational power. Then a new
class of models, the Random Utility Model [26] family (RUM),
emerges to cope with the perfect knowledge, allowing a par-
tial awareness of the options. This development led to sev-
eral other models that have, as common feature, a structure
to explicitly model the correlation among the options. Ex-
amples of such models are: the Multi Nominal Logit [28],
with no correlation; Probit [13, 14]; Nested-Logit [9]; Cross-



Nested-Logit [42]; Path Size Logit [10]; and Mixed Logit [30].

These are, nevertheless, macroscopic and analytical mod-
els that, as far as the knowledge of the author goes, have
not counterparts in the Artificial Intelligence (AI). In AI
much more effort has been put into developing the learn-
ing algorithms. Which, put in other words, is to say that
besides the common ground, microeconomics and AI have
grown apart. For the learning mechanisms several options
are available but the focus here is in the reinforcement learn-
ing algorithms.

The adoption of a reinforcement learning algorithm comes
from the fact that biological evidences support such assump-
tion. In the experiments reported in [33] it is shown that
when rats were investigated about learning behaviour it was
observed a positive reinforcement process based on dopamine.
It was also observed a correlation between learning perfor-
mance and dopamine stimulation, i.e., reinforcement on the
neuronal activity, accelerating the learning process. In [32]
the human brain activity was also investigated for learn-
ing processes. It was observed that in the beginning of the
learning process the medial temporal lobe (MTL) activity
is low, but as the learning process is intensified the activity
becomes higher for the MTL. This indicates reinforcement
based learning process.

Moreover, the Q-Learning algorithm is a well known and
studied method with several extensions and applications.
Among them is the work made by Littman and colleges [25,
31, 15].

For the adoption of the PT as the model for non-rationality
(therefore, the adopted theory to model human decision pro-
cess) is because it is similar to the EUT model. Second, it re-
produces the results observed in the Allais paradox. Another
reason is in the evidences shown in [18, 23] that support the
PT as a valid hypothesis for the human decision behaviour.
Moreover, after the original model has been proposed [24],
some improvements were developed. Among them are the
Cumulative Prospect Theory [39, 43], the Prospect Theory
for continuous distributions [34], and the Continuous Cumu-
lative Prospect Theory [16].

For the other non-rational models some issues with them
made the PT more appropriated. One of such models is the
Fast and Frugal Way [21]. This model is based in a hier-
archical decision process. It is assumed that the decision
problem can be modelled by establishing a sequence of bi-
nary criteria (with yes/no answers). The problem with this
theory is that it is only possible to have binary choices and
only binary criteria are allowed (no numerical comparison
is considered). Another model was also taken into account:
the Small Feedbacks [5], but it presented some drawbacks
– it was behavioural unstable, which were reported to the
authors [4].

3. THE DISCRETE CHOICE PROBLEM
This work is focused in the single-person discrete choice
problem. It is, according to von Neumann [40, 41], formu-
lated as: to choose the best lottery (option) x in a lottery set
(choice set) X. A lottery is an option that has some utility
associated with it, i.e., an option can be associated with a

numerical value (called utility). The modelling problem is
to find a function u : X 7→ R that reproduces the observed
preferences, i.e., if x � y then u(x) > u(y). This means that
the utility value only says if an option is better or worse than
another. When this function is found the problem can be
modelled and analysed.

A lottery can be simple, i.e., the expected outcome of that
choice is deterministic, for instance a 100U$ bill has always
a utility equivalent to 100U$. A mixed lottery, on the other
hand, has an associated stochastic element, e.g., a stock op-
tion, whose outcome may vary. This type of lottery is ex-
pressed as a combination of simple lotteries in a probability
distribution function fashion. For now on, when lottery x is
mentioned it refers to a list of pairs 〈xi, pi〉, where xi ∈ R
is the ith outcome and pi ∈ (0, 1] is its corresponding prob-
ability (

P
i∈x pi = 1). In a lottery no two pairs have the

same outcome, i.e., x = {∀i ∈ x, 6 ∃j ∈ x | xi = xj ∧ i 6= j}.
The utility for its turn must associate each lottery to sin-
gle numerical values that is used to reproduce the observed
lottery/option ranking.

4. RATIONALITY
Rationality here refers to the axioms defined by von Neu-
mann and Morgenstern [40, 41], which is also known as
the Expected Utility Theory (EUT) and its four axioms
are: Completeness, Transitivity, Convexity, and Indepen-
dence. For space reasons only the Independence axiom is
discussed (for further information please refer to [41]). The
Independence axiom, in lay terms, says that if two lotteries
are equivalent (a person expresses no preference regarding
them, x ∼ y) then they can be combined using any proba-
bility p ∈ [0, 1]: px + (1 − p)y = (1 − p)x + py. A particu-
lar derived statement is important here: the region (in the
probability interval) where the combination occurs does not
interfere in the person’s preference. This is exactly the point
where the PT “breaks” with the rational model (EUT).

After von Neumann, simple lotteries can be combined (as-
sociating a probability to each one) and the resulting utility
is: u(x) =

P
i∈x xipi. (Hereafter, the EUT utility function

is referred as eut(•).) A strong restriction of the original
model is that the option set is totally ordered (from the
Completeness and Transitivity axioms), i.e., X = {∀x,y ∈
X|x ∼ y⊕ x � y⊕ x ≺ y}.

5. PROSPECT THEORY
The name Prospect Theory [24] (PT) comes from calling
lotteries prospects, differentiating from the EUT. Prospects
differ from lotteries by introducing a reference point (called
status quo) that says which outcomes are gains and which
are losses. This new theory is an answer to the Allais para-
dox [2, 1] that cannot be explained/modelled using rational-
ity. The Allais paradox, for its turns, exploits the Indepen-
dence axiom to show that the rational model does not apply
to human decision makers. This is not the only paradox
that violates the rational model, another one is the Ellsberg
paradox [19]. But it is not covered by the PT and considered
out of the scope of this discussion.

5.1 Prospect Theory: Overview
In this short section the fundamentals underlying the PT are
presented, emphasising the differences between it and the



EUT. The PT introduces some elements that are not pre-
sented in the EUT and they are the status quo, perception
distortion, and lottery editing. The first represents the point
where the outcomes are classified into gains and losses and
its value can have different meanings. Among such mean-
ings are the current wealth of the individual (her/his bank
account balance) or the expected outcome (such as expect-
ing to receive an increase of 5% in some stock options and
any outcome below it is considered loss and above gain).

The second element (perception distortion) depends on the
status quo and two types of distortion are present: outcome
and probability perception distortion. It is said that in av-
erage a person tends to be conservative in gains, i.e., less
sensitive to gains and risky in losses, i.e., more sensitive to
the outcome variations. For this reason the outcome per-
ception distortion function differentiates between gains and
losses. This difference is represented by having the deriva-
tive in the losses higher than in the gains. (It can be visually
appreciated in Fig. 1.)

For the probability perception function the behaviour is sim-
ilar in gains and losses, what changes is in how accentuated
are the characteristics of the function (more acute in the
gains than in the losses). This function maps the following
characteristics. It was observed that people perceive proba-
bilities in a distorted way, when confronted with its numer-
ical value. The first distortion is the hope when facing low
probabilities, i.e., despite of low probability values the indi-
viduals behave as if the probability is actually higher (the
value is overcompensated with “hope”). The second phe-
nomenon is towards high probabilities where a person tends
to perceive the value lower than it actually is, i.e., the in-
dividuals show prejudice against the real value (they under
compensate with “scepticism/prejudice”). This means that
the probability perception function returns a value higher
than the actual probability if the value is low and lower if
the probability is high. (Fig. 2 depicts these characteristics.)

The last element is lottery editing. This concept was not
formalised in the original model and to this day lacks a stan-
dard definition. Nevertheless the guide-lines are informally
stated as to group similar outcomes aggregating their proba-
bilities. This means that the outcome domain must be anal-
ysed beforehand to establish what can be considered similar
and then apply a suitable “editing” algorithm. For these
reasons a lottery must first be edited (becoming a prospect)
before it is suitable for an evaluation by the PT. The used
editing algorithm is presented in Sec. 6.1 when presenting
the implemented Q-Learning. The formal presentation of
the PT is made in the next section.

5.2 Prospect Theory: Formalisation
The PT utility function is shown in Eq. 1 where the differ-
ence to the EUT is evident. In EUT the utility function
is eut(x) =

P
i∈x xipi and in PT pt(x) =

P
i∈x v(xi)π(pi).

This means that the distortion functions are explicit in the
utility function – v(xi) for the outcome and π(pi) for the
probability distortion functions. (For simplicity it is as-
sumed that xi is already adjusted according to the status quo.
If that is not case it would be: v(xi − sq), where sq is the
status quo value.) These functions “distort” the real values
to map the features discussed in the previous section. The

Figure 1: v(x) with the original parameters

Figure 2: π(p) with different γ values

formal definition of these functions are in Eq. 2 and 3 and to
have a visual impression of the functions’ behaviour please
refer to Fig. 1 and 2.

The parameters were calibrate (in [24]) for a modified ver-
sion of the Allais paradox (Tab. 1 from Sec. 5.3). In the Eq. 2
the parameters’ values are: α = β = 0.88 and λ = 2.25. For
the Eq. 3 the values are γ+ = 0.61 and γ− = 0.69.

pt(x) =
X
i∈x

v(xi)π(pi) (1)

v(xi) =


xαi xi ≥ 0
−λ(−xi)β xi < 0

(2)

π(pi) =
pγi

(pγi + (1− pi)γ)1/γ


γ = γ+ xi ≥ 0
γ = γ− xi < 0

(3)

The function in Eq. 2, as explained, just expresses a higher
sensibility in the losses than in the gains ( d

dx
v(x+

i ) < d
dx
v(x−i ),

where x+
i represents the positive values and x−i the nega-

tive). Remember that it can be problematic to establish
which value must the status quo must assume. It could be
0, the current wealth, or the expected outcome (taking some
obvious candidates).

The probability distortion function π(•), in Eq. 3, is char-
acterised by its inverted “S” shape (for γ < 1). This shape
overestimates the low and underestimates the high proba-
bilities; it, as explained before, says that individuals tend
to compensate the low probabilities with “hope” and the



Table 1: Modified Allais problem

Opt. Outcome Prob. eut(•) pt(•) Pref. (in %)

C
2500 0.33

825 326.7 83
0 0.67

D
2400 0.34

816 320.1 17
0 0.66

A
2500 0.33

2409 806.5
18

2400 0.66
0 0.01

B 2400 1.0 2400 943.2 82

high with “prejudice” (some external factor might interfere).
These features are better seen with an example, which is the
subject of the next section.

5.3 The Allais Paradox
The Allais paradox is rather well-known in economics and
shows that people systematically violate the rational be-
haviour. But instead of presenting the original version of
it the modified version is presented – used for the results
in [24] and for which the PT was calibrated.

The decision problem is to choose first between two op-
tions/prospects (A and B) and then repeat the process for
other two options (C and D). In Tab. 1, extracted from [24],
the problem is reproduced with the corresponding results
and analysis.

The problem is so presented: first choose between A and B
and then between C and D. To the participant only the
columns “Outcome” and “Prob.” were presented (represent-
ing the monetary outcomes and the corresponding probabil-
ities). The survey results can be seen in the column “Pref.
(in %)” (the preferences in percentage). If the utility values
given in the “eut(•)” are compared with the actual prefer-
ence it can be seen that it corresponds to the preferences for
C and D, i.e., C � D ⇒ eut(C) > eut(D). But looking at A
and B it is observed that A ≺ B 6⇒ eut(A) < eut(B), which
is not right, i.e., it invalidates u as a valid utility function
– it does not reproduce the actual preferences. A solution
is to make monetary outcomes to have a negative utility,
which first does not make any sense and second transfers
the problem to the choice between C and D. On the other
hand, if the “pt(•)” column in Tab. 1 (the PT evaluation) is
observed it yields all preferences: A ≺ B ⇒ pt(A) < pt(B)
and C � D ⇒ pt(C) > pt(D).

6. Q-LEARNING BASED IN THE PT
TheQ-Learning algorithm optimises the total discounted ac-
cumulated reward, the rational utility in the original model [45,
46]. To better explain how the modified version works, the
original formulation is presented in Eq. 5, where Vn(s) re-
turns an action a for interaction n and state s and this ac-
tion tends to be the best choice, based on the accumulated
knowledge about the received rewards (stored in the table Q
from Eq. 4). In Eq. 4, rn is the immediate reward (received
in interaction n), γ a discount factor, and αn the decreasing
learning factor.

Qn(s, a) = (1− αn)Qn−1(s, a) (4)

+αn
h
rn + γVn−1(s

′
)
i

Vn(s) ≡ argmax
a∈A

[Qn(s, a)] (5)

It is shown, but here omitted, that Q converges to the math-
ematical expectation of the reward and this is equivalent to
eut(•) value. This means that the original Q-Learning algo-
rithm is rational and to change it to be non-rational (based
in the PT) means to have Q converging to the pt(•) instead
of the eut(•) value.

A naive implementation would be to keep a reward frequency
table (assuming that the reward is a discrete probability
distribution). This is impractical (linear complexity growth
in time and space) and also implies that having this ta-
ble makes the Q-Learning algorithm unnecessary (since the
eut(•) or pt(•) value can be direct calculated and no learn-
ing is necessary). Another problem of this approach is that
it still does not include the editing phase (necessary for the
pt(•) function).

6.1 Editing Phase
To cope with the problem of complexity growth, the editing
phase comes handy. The main idea is to aggregate simi-
lar outcomes into a single value that receives a representing
probability. Then inspired by [17], the following method is
used. An aggregation threshold ε is given so that rewards
closer than ε to each other must edited (aggregated). This
implies that the reward domain is more or less known, i.e.,
the aggregation threshold is known or given. (It is known
that this means that to the agent an advantage is given, be-
cause it is not “blind” but sees some shades of “grey” from
the reward function.) An example would be: if the reward
is the gain per share in the stock market then using quarters
of dollars as the threshold might suit it. This example illus-
trates that the agents have some idea of the reward range
(because it must be fairly divided) and also that this method
depends on the problem domain.

Having the threshold ε is not enough to solve the problem.
Because holding all outcomes and their probabilities is not
an option (discussed previously) it is necessary to build the
prospect in an “on-demand” way. The method used to edit
the lottery was a centroid based clustering algorithm that
builds the clusters as they appear.

The algorithm is basically formed by a set of centroid-and-
counter pairs C. This set is defined by C = {c ∈ C | c =
〈c, a〉 ∧ c ∈ R ∧ a ∈ N∗}, where c is the centroid value and a
the counter/accumulator. Moreover, C = {∀ c ∈ C, 6 ∃ d ∈
C | c = d}, i.e., no pair in C may share the same centroid
value. The complete, non-optimised, algorithm is in Algo. 1.



Algorithm 1: Clustering algorithm: cluster()

Data: 〈centroid, accumulator〉 set C, the threshold ε, and
the reward r to be included

Result: Updated set C

cmin ← NIL ; /* cmin is the closest centroid to r1

*/

∆d←∞ ; /* ∆d is the distance between r and cmin2

*/

/* finds the closest centroid to the reward r */

forall pair c ∈ C do3

if distance(c, r) < ∆d then4

∆d← distance(c, r);5

cmin ← c;6

end7

end8

/* checks if the centroid is suitable for

aggregation */

if ∆d ≤ ε then9

ccmin ←
r+acmin

ccmin
1+acmin

; /* new centroid value */10

acmin ← acmin + 1 ; /* increments11

counter/accumulator */

else/* it is a new centroid */12

C← 〈r, 1〉 ; /* adds the new centroid */13

end14

This algorithm avoids linear complexity growth for any re-
ward function (assuming the function’s codomain being a
limited interval in R) and also edits the prospect (assuming
that the threshold ε was properly chosen). Furthermore, this
algorithm is rather simple and its complexity independent
from the amount of rewards (learning horizon), the proof is
omitted but informally it is: the clustering complexity de-
pends on the amount of clusters. Then since the amount
of clusters is constant (because of the fixed ε and limited
reward codomain) its complexity is too.

6.2 Modified Q-Learning
Assuming that Cn ← cluster(Cn−1, rn) represents the cen-
troid set at step n and the function cluster(•) is the Algo. 1,
then the modified Q-Learning algorithm is given by Eq. 6,
7, 8, and 9; where v(•) and π(•) are the same as in Eq. 2
and 3. It is worth noticing that the Q-Learning suffers no
complexity increase. This is so because the only modifica-
tions are the inclusion of the set C and the pt(•) function.
Since the pt(•) function depends on the size of C and func-
tion cluster(•) (which also depends on the size of C). Then
the complexity is independent from the learning horizon.

pt(C) =
X
c∈C

v(cc)π

„
acP

c∈C ac

«
(6)

Cn = cluster(Cn−1, rn) (7)

Qn(s, a) = (1− αn)Qn−1(s, a) (8)

+αn
h
pt(Cn) + γVn−1(s

′
)
i

Vn(s) ≡ argmax
a∈A

[Qn(s, a)] (9)

7. RESTRICTIONS TO THE USE OF THE
PT

In this section the “worthiness” of using the PT is discussed,
more specifically the PT modified version of Q-Learning.
The PT has some particularities concerning its deviation
from rationality. The first of them is that if all outcomes
have sufficiently close probabilities (or frequencies) the re-
sult is the same as in the EUT. Second, the status quo can be
tricky to establish (commented previously), specially if it is
not known how people really establishes it for the modelled
problem domain. A last criticism is concerning the calibra-
tion parameters. The original values are set for monetary
lotteries in the specific scenario of the modified Allais para-
dox, in [24]. This means that they should be calibrated and
checked for scenarios that deviate from its original scenario.

These criticisms, as already said, concern the cases where the
PT deviates from the EUT and in the worst case it reduces to
the EUT. That is it, if the issues mentioned in the previous
paragraph are not observed the PT model might turn out to
be a “fancy” EUT. This leaves the question: “when the PT
is needed?”

8. REASONS TO USE THE PT
The first reason to use the PT is to model human decision
processes involving prospects (the options have a stochas-
tic nature). But only the stochastic nature of the outcome
does not fulfil all requirements. After editing the prospects,
whenever the proposed method is used or not, the outcomes
must end up having distinct probabilities/frequencies. Being
more specific, some of these probabilities must be located on
at least one of the “bumps” of the π(•) function (see Fig. 2).
If this does not occur then no ranking (given by the utility
function) will deviate from rationality and the PT degener-
ates to an EUT model (pt(•) ∼ eut(•)).

Regarding the outcomes rather than the probabilities, the
status quo must be self-evident and shall not imply in hav-
ing outcome mixture (positive and negative outcomes as-
suming the status quo as the reference). Another issue is
to avoid outcomes near the status quo, whose behaviour is
not well-known (regarding the human behaviour). But these
concerns are also true for the EUT (they are just grossly ig-
nored). Regarding the ranking, the function v(•) (in Eq. 2)
does not account for the major deviation from EUT, i.e., if
the model does not include the π(•) function it will behave
exactly as an EUT model (even though the numerical utility
values are different) because what the v(•) function does is
more or less as an Affine transformation, not a “distortion”.
(It is not in consideration the case of outcome mixture, i.e.,
options with positive and negative outcomes.)

The main concern then is the distribution of the reward
function r that must have the “features” described on the
first paragraph of this section. If that is not present then
the PT is not needed.

9. EXPERIMENTS AND RESULTS
To verify the relevance of such theory for MASim, a traffic
scenario inspired in the El Farol Bar Problem [3] is adopted.
This scenario is a minority game instance, where, given two
routes one has a lower capacity than the other, i.e., the



O D

Secondary

Main

Figure 3: El Farol traffic scenario

option is only attractive if a minority of the agents choose
that option. The traffic scenario used is depicted in Fig. 3.
There two routes are offered to go from O (origin) to D
(destination). These routes are named Main and Secondary
where the latter has half the capacity of the first (meaning
that Main as twice the amount of lanes as Secondary).

In this scenario the optimal split is 1/3 for the Secondary
and 2/3 for the Main route, i.e., with this distribution the
User Equilibrium [44] (UE) is reached. A similar scenario is
also used in [6]. The objective of the experiments were to
verify if and when the PT diverges from the rational choice,
i.e., under which conditions the PT becomes a worth using
model for human decision. If the PT does not diverge from
the EUT then it is not relevant for the investigation of traffic
assignment models. But that is not what the results shown.

The experiments done were to verify, first, if the PT be-
haviour is stable across different simulation horizons and
agent amount. (Each experiment was repeated 100 times
and the results aggregated into the mean and standard de-
viation.) For this particular case (agent amount), it is stable
for an agent population of 50 or higher. In the horizon ex-
periment it shows that the behavioural stability is reached
with 300 or more iterations (for this scenario). The third ex-
periment was to verify if the PT deviates from rationality,
i.e., when the PT is relevant.

Before showing the results it is necessary to explain how
the travel-time (the metric for the utility function) is cal-
culated. In each iteration all agents are asked about their
decisions and then each route is “burden” with the corre-
sponding amount of agents. After the occupation for each
route is determined, the travel-time for each route is cal-
culated. To calculate the travel-time a simple function is
used (based in [35] and [36]). This function determines the
occupational density and from this value it derives the ve-
hicle flow, which gives the corresponding travel-time. This
relation between density and flow is called the fundamental
diagram (depicted in Fig. 4).

Resuming the discussion of the final experiment, the scenario
was simulated with different target densities, to verify the
validity of the PT. A target density was determined and this
means that it represents the density expected for the UE,
i.e., when both routes have the same travel-time (the same
density) and the density expected in both routes for the
optimal split. The results are shown in Tab. 2. These values
(Tab. 2) are the resulting occupation for the Main route
over 100 repetitions, using 100 agents. The column PLAIN
is the result for agents using the standard Q-Learning, C −
EUT is the clustered version of it (to verify if the clustering
method is biased), and C−PT the PT modified Q-Learning.
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Figure 4: Fundamental Diagram

The first issue concerns the use of the clustering method. As
it can be seen in Tab. 2 the values of PLAIN and C−EUT
are fairly similar (which is an evidence for saying that the
clustering method has no bias). Then it can also be shown
that the C − PT column has a consistent divergence from
the other two at densities 0.6 and 0.8.

The apparent determinism of the first values (densities from
0.1 to 0.4) is due to the fact that all agents are accommo-
dated by Main route under the free-flow regime (see the cor-
responding travel-time region in Fig. 4). The determinism
is apparent because the variation is too low to be captured
with only 100 agents – see the row identified by “0.3 with
500 agents”. Another point is why all agents use the Main
and not the Secondary. This is caused by the route internal
order, with a different order another distribution is shown –
see the row “0.1 with inverse route presentation”.

The reason why at density 0.5 the C − PT does not differ
from the rational model is due to the lack of variability. For
the PT to diverge from EUT the outcome probabilities must
be located at the π(•) function “bumps”. The next value
(target density 0.6) shows a disproportional occupation at
the Main route. This is a consequence of the first “bump”,
where most of the (bad) outcomes of the Secondary are lo-
cated. This means that the high outcomes are overestimated
(and as higher the travel-time as worse for route evaluation)
and therefore the Secondary route is avoided by the agents.
The outcomes at density 0.7 could not be explained with
satisfactory evidences1 and the reasons can only be specu-
lated. The strongest speculation is that the outcomes are
located at both “bumps” of π(•), therefore cancelling each
other.

For the density 0.9 the reason is simple. Because the scenario
is overloaded no much room is left for deviations.

The optimal density, where the PT behaviour can be better
appreciated is 0.8. This density is a consequence of the fun-
damental diagram used (in Fig. 4) that forces the scenario to

1The other results are a consequence of the prospects, which
were omitted but support the argumentation.



Table 2: Occupation results of the Main route for density experiments
Density value µPLAIN (σPLAIN ) µC−EUT (σC−EUT ) µC−PT (σC−PT )
0.1 100.0(0.0) 100.0(0.0) 100.0(0.0)
0.2 100.0(0.0) 100.0(0.0) 100.0(0.0)
0.3 100.0(0.0) 100.0(0.0) 100.0(0.0)
0.4 100.0(0.0) 100.0(0.0) 100.0(0.0)
0.5 76.6732(3.7392) 61.3960(2.6924) 63.6039(3.5406)
0.6 67.3762(2.2814) 67.4653(2.1413) 91.6831(5.0206)
0.7 67.1782(2.2663) 63.7326(2.7463) 66.7029(4.3156)
0.8 67.5346(2.3570) 67.7326(3.9823) 71.9504(2.8297)
0.9 67.1485(2.4550) 68.6435(2.7198) 68.2376(2.2345)
0.1 with inverse route presentation 0.0(0.0) 0.0(0.0) 0.0(0.0)
0.3 with 500 agents 499.9900(0.0990) 499.9900(0.0990) 499.9801(0.1393)
0.8 with inverse π(•) 67.0099(2.2755) 68.2277(3.4808) 34.4059(4.3239)

User equilibrium 66.6

deal with constant congestion (where the highest variation
in the travel-time occurs). The other experiments (horizon
and agent population variation) where performed under this
conditions and the results are consistent the results depicted
in Tab. 2 for the density 0.8.

One point left open is why the Main route is the stressed
one and not the Secondary. The reason is on the shape of
the π(•) function and because the Secondary route is the
most “sensible” of them, i.e., a variation of one agent in the
occupation has a stronger influence in the travel-time there
than for the Main. This means that high and seldom travel-
times are located at the first“bump”and therefore penalising
the Secondary route while frequent and not optimal travel-
times in the Main route are tolerated. If this argument is
true then “inverting” the shape2 of π(•) function would also
invert this distribution. This is exactly what happens – see
the row “0.8 with inverse π(•)” in Tab. 4.

10. CONCLUSION AND FUTURE WORK
In this article a modified Q-Learning algorithm based on the
Prospect Theory was presented for modelling non-rational
human behaviour. Model and implementation issues were
discussed emphasising the drawbacks in the use of the PT.
It was so done to give a fair and critical view of the impli-
cations in using these algorithms. A point that is recurrent
in the text, which is here mentioned once more, is that the
algorithm will reduce to the normal Q-Learning in the worst
case. It was also informally shown that the use of the PT
does not imply in computational complexity growth (the
big-O complexity stays the same).

In a not so far future this algorithm will be used for urban
traffic modelling, it is actually already in use but the analysis
is preliminary. This means that a complete framework is
already implemented and is being used.

For the experiments, the main conclusion is that the PT is
worth investigating. It is a valid alternative for the EUT
and may be a better approach for modelling real discrete
choice problems such as traffic assignment, stock markets,
and shop/consumption behaviour.

2This can be made by making γ higher then 1.0 in Eq. 3.
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