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ABSTRACT 
In order to move beyond simple keyword searching for textual 
information retrieval, extensive effort is often used to build 
specialized ontologies and dictionaries that can significantly 
improve retrieval.  Unfortunately, these efforts are generally not 
feasible for domain-specific data.  What is needed is an automated 
means of learning the characteristic cue phrase patterns of a 
domain-specific language and using those learned patterns as a 
basis for automatically categorizing, clustering, or retrieving 
relevant data for the user.  This work describes a multi-agent 
approach to learning domain-specific phrase patterns that utilizes 
a genetic algorithm (GA) as the learning method.  Using the GA, 
the agents have the ability to learn phrase patterns from both 
successful and failed individuals in the GA population.  This 
approach is applied to the analysis of mammography reports, 
which utilize a very specific language.  The approach described 
here successfully learned phrase patterns for two distinct classes 
of mammography reports. 

Categories and Subject Descriptors 
I.2.6 [Learning]: analogies, concept learning, connectionism and 
neural nets, induction, knowledge acquisition, language 
acquisition, parameter learning. 

H.3.3 [Information Search and Retrieval]: clustering, 
information filtering, query formulation, relevance feedback, 
retrieval models, search process, selection process. 

General Terms 
Algorithms, Design 

Keywords 
Learning agents, multi-agent system, genetic algorithm, 
information retrieval, maximum variation sampling, 
mammography reports. 

1. INTRODUCTION 
The state-of-the-practice in textual information retrieval continues 
to rely on keyword searching.  Over the past decade, there have 
been numerous research efforts to move past the dependence on 
keywords.  These efforts have included the use of various 

intelligent techniques such as intelligent agents, neural networks, 
genetic algorithms, and fuzzy logic.  There have also been 
attempts to enhance the automation of categorizing and clustering 
data.  In addition, the use of ontologies and term padding via 
dictionaries has also been heavily researched. 

For general topics, these research efforts have shown some 
promise with automated categorization and clustering beginning 
to move into the state-of-the-practice.  Unfortunately, these 
techniques are limited when handling domain-specific data.  The 
foundational problem is a direct result of the complexity of 
language (e.g., language that is specific only to breast cancer and 
mammography reports).  In order to move beyond simple 
keyword searching of domain-specific data, extensive effort is 
needed to build specialized ontologies and dictionaries that can 
significantly improve retrieval.  Such effort requires significant 
time from multiple domain experts.  In addition, there are no 
standards for the creation of such specialized ontologies or 
dictionaries. 

Furthermore, the complexity of language introduces difficulties of 
semantics and syntax to the existing difficulties of term 
definitions and usage in domain-specific data.  Typically, there 
are multiple ways of relaying the same meaning by using 
numerous combinations of terms and syntax.  Unfortunately, there 
are no rules for using these various techniques and the 
development of specialized ontology would not help.  As a result, 
meaningful information retrieval of domain specific data becomes 
nearly impossible with keyword searching as the user cannot 
possibly know all combinations of terms and syntax. 

Therefore, what is needed is an automated means of learning the 
characteristic cue phrase patterns of a domain-specific language 
and using those learned patterns as a basis for automatically 
categorizing, clustering, or retrieving relevant data for the user.  
This paper describes preliminary work being performed to address 
the learning aspect of this approach.  Section 2 will discuss the 
background of the domain-specific data being addressed by this 
work.  Section 3 discusses some related works.  Section 4 will 
describe the learning approach, while section 5 discusses results.  
Section 6 will discuss future work. 
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2. BACKGROUND 
This work focuses on the language domain of mammography 
reports.  Mammography is the procedure of using low-dose X-
rays to examine the human breast for the purposes of identifying 
breast cancer or other abnormalities.  Currently, for each patient 
that undergoes a mammogram, there is at least one X-ray image 
and one textual report written by a radiologist.  In the report, the 
radiologist describes the features or structures that they see or do 
not see in the image.  Essentially, this report is meta-data that is 
written by a human subject matter expert about the image.  In 
order to effectively train a computer-assisted detection (CAD) 
system, these reports could be mined and used as supplemental 
meta-data.  Unfortunately, little work has been done to utilize and 
maximize the knowledge potential that exists in these reports. 

In this preliminary study, unstructured mammography reports 
were used.  These reports consisted of 9,000 patients studied over 
a 5-year period from 1993 to 1998.  There are approximately 
120,000 reports in this set.  Each report generally consists of two 
sections.  The first section describes what features the radiologist 
does or does not see in the image.  The second section provides 
the radiologist’s formal opinion as to whether or not there are 
suspicious features that may suggest malignancy (i.e., or the 
possibility that the patient has cancer).  The set of reports also 
includes a number of reports that simply state that the patient 
canceled their appointment. 

As discussed in [9] using a subset of this data, these reports vary 
in length.  Some radiologists use more words than others when 
describing the same features.  For example, in patients that do not 
exhibit any suspicious features, there are some reports that very 
simply state that there are no suspicious features.  However, for 
the same patient in a different year, a different radiologist will 
provide a much more lengthy report that describes all of the 
suspicious features that did not exist. 

To provide a better perspective of the challenge of mining these 
reports, consider the following question.  Given a database of 
these reports, how does one retrieve those reports that represent 
abnormalities in the patient?  In mammography, most patient 
reports will represent “normal” conditions in the patient.  
Consequently, the reports with “abnormal” conditions are rare 
(defining the difference between what is “normal” and 
“abnormal” is beyond the scope of this paper).  Performing a 
cluster of these reports, most of the normal reports would cluster 
together while the abnormal reports would not form a cluster.  
This is because “abnormal” conditions tend to be very unique and 
very specific to a patient while “normal” conditions are much 
more generic and broad.  Even if clustering provided value, 
clustering a very large database of these reports is exceptionally 
computationally expensive.  Categorizing would be faster, 
however, the challenge remains of determining the appropriate 
categories, and even then, the abnormal reports may not 
categorize correctly. 

The main problem of trying to find abnormal reports lies in the 
language that is used in mammograms. As discussed in [9], 
abnormal reports tend to have a richer vocabulary than normal 
reports.  In addition, normal reports tend to have a higher number 
of “negation” phrases.  These are phrases that begin with the word 
“no” such as in the phrase “no findings suggestive of 
malignancy.”  Consider the phrases shown in Table 1 and Table 2.  
These are the negation phrases that generally occur in normal 

reports and the ones shown here are samples of the variations that 
have been found.  In the set of 120,000 reports used for this work, 
there were at least 286 variations of phrases for Table 1 and 1,231 
variations of phrases for Table 2. 

Table 1.  Example phrases using "no" and "malignancy" 

no malignancy 
no mammographic features malignancy 

no mammographic features suggestive of malignancy 
no findings suggestive of malignancy 

no significant radiographic features of malignancy 
no radiographic findings suggestive of malignancy 
no radiographic change suggestive of malignancy 

no specific radiograpic features of malignancy 
no mamographic evidence of malignancy 

 

Table 2.  Example phrases using "no" and "suspicious" 

no mammographic finding suspicious 
no strongly suspicious forms 

no strongly suspicious features 
no strongly suspicious masses 

no radiographically suspicious masses 
no developing suspicious clustered microcalcifications 

no finding strongly suspicious 
no new suspicious mass lesions 

no suspicious linear branching forms 
 

Consider the phrase shown in Table 3 and Table 4.  These phrases 
tend to occur in abnormal reports (but may also occur in normal 
reports) and the ones shown here are samples of the variations that 
have been found. In the set of 120,000 reports used for this work, 
there were at least 52 variations of phrases for Table 3 and 691 
variations of phrases for Table 4. 

Table 3.  Example phrases using "appearance" and "tissue" 

appearance suggesting radiating strands of tissue 
appearance suggestive of accessory breast tissue 

appearance of normal glandular tissue 
appearance of asymmetric fibroglandular tissue 

appearance of fibroglandular tissue 
appearance of glandular tissue 

appearance of normal fibroglandular tissue 
appearance of soft tissue densities bilaterally 

 

Table 4.  Example phrases using "additional" and "views" 

additional views obtained today demonstrate variation 
additional compression views 

additional set of bilateral cc views 
additional lateral views  

additional mediolateral oblique views 
additional mammographic views 

additional bilateral craniocaudal views 
additional bilateral lateral medial views 

 

Considering the language variations shown previously, the task of 
retrieving those reports that represent abnormalities is daunting.  
The variations of terms and syntax create a combinatorial 



explosion while, semantically, these combinations tend to mean 
the same thing. 

The goal, then, is to develop an automated approach to learning 
the skip bigrams (or s-grams) of cue phrases in the domain-
specific language that sufficiently characterize the reports such 
that information retrieval becomes both more accurate and 
simplistic while, at the same time, not being computationally 
intensive.  S-grams are word pairs in their respective sentence 
order that allow for arbitrary gaps between the words [1][10].  The 
s-grams for Table 1 are the words “no” and “malignancy.”  This s-
gram uniquely identifies a particular semantic in the language of 
mammography reports and enables the identification of all 
possible variations of such phrases.  Higher-level patterns may 
then be formed from these s-grams.  For example, the s-grams for 
Table 1 and Table 2 both imply that there are no abnormalities 
seen in the patient. 

The work here describes a possible approach toward this goal of 
automatically learning s-grams that can provide meaningful 
retrieval on domain-specific data and the results achieved thus far. 

3. RELATED WORKS 
Further improvement in information retrieval techniques requires 
the continued development of algorithms whose basis lies in 
semantic extraction and representation.  Information retrieval (IR) 
research began with simple representations of documents and the 
terms that they contained [16].  This research progressed into 
syntactic analysis such as co-occurrence, N-grams, part of speech 
analysis, and context-free grammars.  Recently, IR research has 
continued to move toward a basis in semantics.  Many of these 
approaches involve the use of ontologies, conceptual graphs, and 
language models such as described in [3][4][6][7][17].  
Unfortunately, many of these approaches are either unable to 
scale, require significant effort on the part of subject matter 
experts, or do not handle domain specific data robustly.  The work 
described here differs from these approaches in that it leverages 
computationally efficient, unsupervised learning of domain 
specific data in order to more effectively retrieve information.  As 
a result, extensive ontologies are not needed, nor extensive effort 
on the part of a subject matter expert. 

In [1], an unsupervised approach to identifying cue phrases is 
discussed.  Cue phrases are formulaic patterns of phrases that 
have similar semantics but vary in syntactical and lexical ways.  
In [1], the authors use a lexical bootstrapping algorithm that relies 
on the use of “seed” phrases.  While our work is addressing nearly 
the same problem, our work differs in that no seed phrases are 
needed, and that s-grams found for cue phrases using our 
approach are split into two classes. 
Finally, the work described here is an extension of the work 
described in [9].  The goal for that work was “to find an ideal 
sample of mammography reports that represents the diversity 
without applying clustering techniques or without prior 
knowledge of the population categories.”  That approach 
successfully leveraged non-probabilistic sampling to retrieve 
documents that were as diverse as possible.  The success of that 
approach was a direct result of the rich variations of the language 
used in mammography reports.  The work described here 
continues that investigation of those rich variations. 

4. APPROACH 
As discussed in section 2 and in [9], mammography reports 
exhibit two characteristics.  First, abnormal reports tend to have a 
wider variation in the language that is used.  Consequently, these 
reports tend not to cluster with other reports.  The second 
characteristic is that normal reports use more negation phrases 
than abnormal reports.  It is these two characteristics that we seek 
to exploit in this approach. 

To exploit the first characteristic, an enhancement of the 
maximum variation sampling technique [9] is developed.  This 
technique is implemented via a genetic algorithm (MVS-GA) and 
is discussed in section 4.2 along with the enhancements.  In 
addition, the work described here differs from [9] in that the 
MVS-GA is used to learn common phrase patterns among diverse 
documents and not explicitly for sampling.  To exploit the second 
characteristic, the MVS-GA is augmented with a simple memory 
that stores the common phrase patterns of samples that failed to 
survive in the MVS-GA. This will be discussed in section 4.3. 

Finally, intelligent software agents were created using this 
learning technique.  Each agent analyzes different segments of the 
data set to learn the various language patterns.  Currently, the 
agents work individually.  However, future work will explore 
cooperative multi-agent learning.  The multi-agent framework that 
was used for this work is described in the next section. 

4.1 Multi-Agent Framework 
All of the software agents in this system were developed using the 
Oak Ridge Mobile Agent Community (ORMAC).  The ORMAC 
framework allows execution of mobile, distributed software 
agents, and establishes communication among them.  The 
ORMAC framework provides a peer-to-peer communication and 
control topology (i.e., one agent can communicate with one or 
several other agents). This messaging approach provides the 
ability for communication that is encapsulated and asynchronous 
with a blackboard coordination model.   

Messages are passed to a blackboard, and agents that are 
subscribed to the blackboard receive the messages. ORMAC 
enables an agent community to be quickly created using a set of 
machines with each machine executing the ORMAC agent host 
software.  The ORMAC agent host software allows agents to 
migrate among machines.  The ORMAC framework uses the 
Foundation for Intelligent Physical Agent (FIPA) compliant agent 
communication language (ACL) messages.  Within the ORMAC 
community, each agent host is registered with a name server 
responsible for tracking where agents are currently being hosted 
[14]. 

The focus of this work is primarily on the learning algorithm 
described in the next section.  However, future work will leverage 
the communication of agents to enable cooperative multi-agent 
learning. 

4.2 Learning from Maximum Variation 
Sampling 
Maximum variation sampling is a nonprobability-based sampling.  
This form of sampling is based on purposeful selection, rather 
than random selection.  The advantage of this form of sampling is 
that it allows a doctor or radiologist to look at data that may not 
otherwise be visible via the random selection process.  Since 
abnormal mammography reports are not as common as normal 



ones, random sampling would make it difficult to find them.  
Within nonprobability-based sampling, there are several 
categories of sampling [8], one of which is maximum variation 
sampling (MVS) [8].  This particular sampling method seeks to 
identify a particular sample of data that will represent the diverse 
data points in a data set.  In this case, the diverse data points will 
represent abnormal mammograms.  According to [8], “This 
strategy for purposeful sampling aims at capturing and describing 
the central themes or principle outcomes that cut across a great 
deal of [data] variation.”  The MVS is naturally implemented as a 
genetic algorithm (MVS-GA). 

Before applying a GA to the analysis of mammography reports, 
the reports must be prepared using standard information retrieval 
techniques.  First, reports are processed by removing stop words 
and applying the Porter stemming algorithm [5][11][12].  Once 
this has been done, the articles are then transformed into a vector-
space model (VSM) [13][16].  In a VSM, a frequency vector of 
word and phrase occurrences within each report can represent 
each report.  Once vector-space models have been created, the GA 
can then be applied. 

Two of the most critical components of implementing a GA are 
the encoding of the problem domain into the GA population and 
the fitness function to be used for evaluating individuals in the 
population.  To encode the data for this particular problem 
domain, each individual in the population represents one sample 
of size N.  Each individual consists of N genes where each gene 
represents one radiology report (each report is given a unique 
numeric identifier) in the sample.  For example, if the sample size 
were 10, each individual would represent one possible sample and 
consist of 10 genes that represent 10 different reports.  This 
representation is shown in the following figure. 

 
Figure 1.  Genetic representation of each individual 

The fitness function evaluates each individual according to some 
predefined set of constraints or goals.  In this particular 
application, the goal for the fitness function was to achieve a 
sample that represents the maximum variation of the data set 
without applying clustering techniques or without prior 
knowledge of the population categories.  To measure the variation 
(or diversity) of our samples, the summation of the similarity 
between the vector-space models of each document (or gene) in 
the sample is calculated as shown in the following equation. 

In [9], the data was a test set that was selected by a human expert.  
For that work, the data was specifically chosen to test the ability 
of the MVS-GA.  However, the data set for this current work 
utilizes a data set of approximately 120,000 reports.  Within this 
data are numerous reports that simply state that the patient 
canceled their appointment.  These reports are very small in 
length and are exceptionally distinct from all other reports 
(similarity values approaching zero).  Unfortunately, the MVS-
GA from [9] gravitates toward these cancellation reports as the 
best solution for a maximum variation sample. 

In an effort to effectively characterize the phrase patterns of the 
mammography reports, it is necessary to examine reports that are 
longer in length, so that more language can be examined for 

patterns.  In addition, abnormal reports tend to be longer in length 
than normal reports since the radiologist is describing the 
abnormalities in more detail.  Consequently, the fitness function 
of the MVS-GA was enhanced to incorporate penalty functions as 
shown in equations 1 – 3. 

€ 

Fitness(i) = α j + βk + Similarity (Gene(i, j),Gene(i,k))
k= j+1

N
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Equation 1.  Revised MVS-GA Fitness Function 

€ 

α j = e
−
|| j ||
100
 

 
 

 

 
 

 

Equation 2.  Penalty factor for document j 
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Equation 3.  Penalty factor for document k 
In Equation 1, the Similarity function calculates the distance 
between the vector space models of gene j and k of the individual 
i.  This distance value ranges between 0 and 1 with 1 indicating 
that the two reports are identical and 0 indicating that they are 
completely different in terms of the words used in that report.  
Therefore, in order to find a sample with the maximum variation, 
Equation 1 must be minimized (i.e., lower fitness values are 
better).  In this fitness function, there will be (N2 – N) / 2 
comparisons for each sample to be evaluated. 

The penalty functions are incorporated into the fitness function in 
order to penalize individuals in the MVS-GA based on the length 
of the documents they represent.  Shorter documents receive 
higher penalties while longer documents receive much lower 
penalties. The penalty functions also return values that are 
between 0 and 1, inclusive.  As a result of the penalty functions, 
the cancellation reports will receive the highest fitness values, 
while lengthy, abnormal reports will receive the lowest fitness 
values. 

After the MVS-GA is executed, the end result is a best sample of 
mammography reports that are as diverse from each other as 
possible.  Once this sample is achieved, then phrases are extracted 
from each document in the sample.  For each phrase in the 
document, s-grams are extracted.  Next, the s-grams are counted 
across the sample of documents.  S-grams that are common across 
the sample will have higher frequency counts while s-grams with 
a frequency of 1 are uniquely identify a particular document in the 
sample.  For this work, only those s-grams that are the most 
common in the best sample found are considered valuable.  It is 
these s-grams that have the ability to uniquely retrieve abnormal 
documents from a large set. 

4.3 Learning from Failures 
Genetic algorithms (GA) are nature-inspired algorithms that 
mimic the natural selection process.  The natural selection process 
is generically defined as survival of the fittest (i.e., only the most 
fit individuals for a given environment survive and reproduce 
offspring).  During this process, the offspring are created from the 
best individuals; therefore, the population should continue to 
improve over several generations.  It has been shown that 
canonical genetic algorithms converge to an optimal solution if 
the best individual remains in the population [15]. 



The primary intent of the GA is to converge toward an optimal 
solution.  However, very little GA research, if any, has been 
performed that leverages knowledge gained from the individuals 
that failed to be selected and reproduce.  In a typical GA, 
individuals that are not selected for reproduction are simply 
discarded. 
For this work, the MVS-GA has been augmented to store the 
common s-grams of the failed individuals.  This will enable 
answering questions such as what characteristic phrases make 
failed individuals inferior to successful individuals.  After each 
generation, s-grams and their frequencies from each failed 
individual are extracted from each individual and stored in 
memory.  After the MVS-GA has completed, the memory now 
contains the most common s-grams that caused individuals to fail 
in the GA.  The end result is that the MVS-GA learns the s-grams 
for both abnormal and normal classes of reports. 

5. RESULTS 
The s-grams discovered by the learning agents on the data set are 
shown in Tables 5 and 6.  Table 5 shows the top ten s-grams from 
the best solution obtained by the learning agents using MVS-GA.  
These s-grams tend to uniquely define abnormal reports.  Many of 
these s-grams refer to procedures that are performed in the event 
that a suspicious feature in the patient was observed by the 
radiologist.  For example, the patient may be asked to return with 
a few weeks for additional imaging such as an ultrasound and 
magnification imaging.  In addition, patients with suspicious 
features may undergo biopsy, and in some cases, may also have a 
needle localization performed to enhance the biopsy procedure.  
Furthermore, since breast cancer often affect the lymph nodes, 
radiologist look for abnormalities relating to the lymph nodes as 
well.  As can be seen in Table 5, the MVS-GA successfully 
learned key s-grams that would significantly enhance automated 
retrieval of abnormal reports. 

Table 5.  Top Ten s-grams from best solution obtained by 
MVS-GA 

Rank S-gram Example Phrase Number of 
Variations 
Observed 

1 left & breast left breast demonstrating 
apparent distortion 

3640 

2 core & 
biopsy 

stereotactic guided core 
biopsy of 

microcalcifications 

636 

3 compression 
& views 

additional bilateral anterior 
compression mlo views 

762 

4 spot & views laterally exaggerated 
craniocaudal spot views 

838 

5 magnification 
& views 

magnification views 
requested  

648 

6 spot & 
compression 

mediolateral oblique spot 
compression views 

1094 

7 needle & 
localization 

ultrasound-guided needle 
localization procedure 

233 

8 nodular & 
density 

showing questionable 
increased nodular density 

2701 

9 lymph & 
node 

atypically located 
intramammary lymph node 

717 

10 spot & 
magnification 

breasts requiring spot 
magnification imaging 

624 

 

Table 6 show the top ten s-grams that begin with the “no” and 
were learned from the failed individuals in the MVS-GA.  As 
discussed previously, most normal reports contain some form of a 
“negation” phrase.  These phrases refer to the non-existence of a 
particular feature or condition in which the radiologist was 
searching.  Abnormal reports may contain such negation phrases, 
however, abnormal reports tend to be more focused on the 
abnormalities that were found and not the abnormalities that were 
not found.  Consequently, the learning agents using MVS-GA 
successfully learned from the failed samples the key s-grams of 
normal reports. 

Table 6.  Top Ten s-grams with the word "no" 

Rank S-gram Example Phrase Number of 
Variations 
Observed 

1 no & suspicious no finding strongly 
suspicious 

1231 

2 no & masses no new focal masses 365 
3 no & focal no dominant focal 

lesion 
210 

4 no & evidence no evidence of cyst 716 
5 no & specific no specific palpable 

abnormality detected 
187 

6 no & findings no current physical 
findings 

308 

7 no & mass no development of 
abnormal dominant 

mass 

534 

8 no & 
mammographic 

no persisting 
mammographic 
abnormalities 

390 

9 no & 
radiographic 

no radiographic lesions 
seen 

285 

10 no & 
calcifications 

no clear cut clustered 
punctate calcifications 

138 

 

One of the most significant aspects of these results is that the 
learning agents did not require any specialized ontology or 
dictionary or feedback from a subject matter expert.  The learning 
agents utilized an unsupervised, domain independent learning 
algorithm to achieve these results.  Now that the agents have 
learned the s-grams, the agents can then begin retrieval of relevant 
documents.  Future work will examine the retrieval quality of this 
approach. 

6. FUTURE WORK 
While the work described here focuses primarily on the learning 
aspect of mining domain-specific data, there are many avenues for 
future research.  First, this work uniquely identified s-grams that 
defined two classes of mammography reports (abnormal and 
normal).  Other data sets may have more than two classes of data, 
and so future work will investigate the expansion of this approach 
to identify n classes of data.  Secondly, the work focused on a 
single learning algorithm for an intelligent software agent.  
However, intelligent agents have additional capabilities that can 
be utilized.  To further enhance the learning capability and 
domain flexibility, future work will investigate cooperative agent 
learning to enhance this approach.  Finally, the current approach 



used a very rudimentary memory.  A more advanced cognitive 
memory model will be explored in the future. 
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